1
|
He Q, Lin J, Mo C, Li G, Lu J, Sun Q, Cao L, Gan H, Sun Q, Yao J, Lian S, Wang W. Endothelin receptor antagonists (ERAs) can potentially be used as therapeutic drugs to reduce hypertension caused by small molecule tyrosine kinase inhibitors (TKIs). Front Pharmacol 2025; 15:1463520. [PMID: 39850566 PMCID: PMC11754196 DOI: 10.3389/fphar.2024.1463520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
The emergence of targeted anti-tumor drugs has significantly prolonged the lifespan and improved the prognosis of cancer patients. Among these drugs, vascular endothelial growth factor (VEGF) inhibitors, particularly novel small molecule tyrosine kinase inhibitors (TKIs), are extensively employed as VEGF inhibitors; however, they are also associated with a higher incidence of complications, with hypertension being the most prevalent cardiovascular toxic side effect. Currently, it is widely accepted that TKIs-induced hypertension involves multiple mechanisms including dysregulation of the endothelin (ET) axis, reduced bioavailability of nitric oxide (NO), imbalance in NO-ROS equilibrium system, vascular rarefaction, and activation of epithelial sodium calcium channels; nevertheless, excessive activation of ET system appears to be predominantly responsible for this condition. Moreover, studies have demonstrated that ET plays a pivotal role in driving TKIs-induced hypertension. Therefore, this review aims to explore the significance of ET in the pathogenesis of hypertension induced by targeted anti-tumor drugs and investigate the potential therapeutic value of endothelin antagonists in managing hypertension caused by targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Qingjian He
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Junling Lin
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Chanjuan Mo
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Guodong Li
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Jianzhong Lu
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Qiyin Sun
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Lijun Cao
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Haojian Gan
- School of Medicine, Huzhou University, Huzhou, China
| | - Quan Sun
- School of Medicine, Huzhou University, Huzhou, China
| | - Jiafang Yao
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Shengyi Lian
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - WenJuan Wang
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Duailibe JBB, Viau CM, Saffi J, Fernandes SA, Porawski M. Protective effect of long-chain polyunsaturated fatty acids on hepatorenal syndrome in rats. World J Nephrol 2024; 13:95627. [PMID: 39351184 PMCID: PMC11439093 DOI: 10.5527/wjn.v13.i3.95627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Hepatorenal syndrome (HRS) is the most prevalent form of acute kidney injury in cirrhotic patients. It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic patients with advanced disease. Previous research has indicated that antioxidants can delay the onset of a hyperdynamic circulatory state in cirrhosis and improve renal function in HRS patients. Regular omega-3 supplementation has significantly reduced the risk of liver disease. This supplementation could represent an additional therapy for individuals with HRS. AIM To evaluated the antioxidant effect of omega-3 polyunsaturated fatty acid supplementation on the kidneys of cirrhotic rats. METHODS Secondary biliary cirrhosis was induced in rats by biliary duct ligation (BDL) for 28 d. We used 24 male Wistar rats divided into the following groups: I (control); II (treated with omega-3, 1 g/kg of body weight); III (BDL treated with omega-3, 1 g/kg of body weight); and IV (BDL without treatment). The animals were killed by overdose of anesthetic; the kidneys were dissected, removed, frozen in liquid nitrogen, and stored in a freezer at -80℃ for later analysis. We evaluated oxidative stress, nitric oxide (NO) metabolites, DNA damage by the comet assay, cell viability test, and apoptosis in the kidneys. Data were analyzed by one-way analysis of variance, and means were compared using the Tukey test, with P ≤ 0.05. RESULTS Omega-3 significantly decreased the production of reactive oxygen species (P < 0.001) and lipoperoxidation in the kidneys of cirrhotic rats treated with omega-3 (P < 0.001). The activity of the antioxidant enzymes superoxide dismutase and catalase increased in the BDL+omega-3 group compared to the BDL group (P < 0.01). NO production, DNA damage, and caspase-9 cleavage decreased significantly in the omega-3-treated BDL group. There was an increase in mitochondrial electrochemical potential (P < 0.001) in BDL treated with omega-3 compared to BDL. No changes in the cell survival index in HRS with omega-3 compared to the control group (P > 0.05) were observed. CONCLUSION The study demonstrates that omega-3 can protect cellular integrity and function by increasing antioxidant enzymes, inhibiting the formation of free radicals, and reducing apoptosis.
Collapse
Affiliation(s)
- João Bruno Beretta Duailibe
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Cassiana Macagnan Viau
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Jenifer Saffi
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Sabrina Alves Fernandes
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Marilene Porawski
- Department of Hepatology and Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
3
|
Velez JCQ, Latt N, Rodby RA. Pathophysiology of Hepatorenal Syndrome. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:87-99. [PMID: 38649221 DOI: 10.1053/j.akdh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024]
Abstract
Hepatorenal syndrome type 1 (HRS-1) is a unique form of acute kidney injury that affects individuals with decompensated cirrhosis with ascites. The primary mechanism leading to reduction of kidney function in HRS-1 is hemodynamic in nature. Cumulative evidence points to a cascade of events that led to a profound reduction in kidney perfusion. A state of increased intrahepatic vascular resistance characteristic of advanced cirrhosis and portal hypertension is accompanied by maladaptive peripheral arterial vasodilation and reduction in systemic vascular resistance and mean arterial pressure. As a result of a fall in effective arterial blood volume, there is a compensatory activation of the sympathetic nervous system and the renin-angiotensin system, local renal vasoconstriction, loss of renal autoregulation, decrease in renal blood flow, and ultimately a fall in glomerular filtration rate. Systemic release of nitric oxide stimulated by the fibrotic liver, bacterial translocation, and inflammation constitute key components of the pathogenesis. While angiotensin II and noradrenaline remain the critical mediators of renal arterial and arteriolar vasoconstriction, other novel molecules have been recently implicated. Although the above-described mechanistic pathway remains the backbone of the pathogenesis of HRS-1, other noxious elements may be present in advanced cirrhosis and likely contribute to the renal impairment. Direct liver-kidney crosstalk via the hepatorenal sympathetic reflex can further reduce renal blood flow independently of the systemic derangements. Tense ascites may lead to intraabdominal hypertension and abdominal compartment syndrome. Cardio-hemodynamic processes have also been increasingly recognized. Porto-pulmonary hypertension, cirrhotic cardiomyopathy, and abdominal compartment syndrome may lead to renal congestion and complicate the course of HRS-1. In addition, a degree of ischemic or toxic (cholemic) tubular injury may overlap with the underlying circulatory dysfunction and further exacerbate the course of acute kidney injury. Improving our understanding of the pathogenesis of HRS-1 may lead to improvements in therapeutic options for this seriously ill population.
Collapse
Affiliation(s)
- Juan Carlos Q Velez
- Department of Nephrology, Ochsner Health, New Orleans, LA; Ochsner Clinical School, The University of Queensland, Brisbane, QLD, Australia.
| | - Nyan Latt
- Virtua Center for Liver Disease, Virtua Health, Toms River, NJ
| | - Roger A Rodby
- Division of Nephrology, Rush University School of Medicine, Chicago, IL
| |
Collapse
|
4
|
Abstract
Hepatorenal syndrome (HRS) is defined as a functional renal failure without major histologic changes in individuals with severe liver disease and it is associated with a high mortality rate. Renal hypoperfusion due to marked vasoconstriction as a result of complex circulatory dysfunction has been suggested to be the cornerstone of HRS. Splanchnic and peripheral arterial vasodilation and cirrhotic cardiomyopathy result in effective arterial hypovolemia and compensatory activation of vasoconstrictor mechanisms. The efficacy of current therapeutic strategies targeting this circulatory dysfunction is limited. Increasing evidence suggests a substantial role of systemic inflammation in HRS via either vascular or direct renal effects. Here we summarize the current understanding of HRS pathophysiology.
Collapse
Affiliation(s)
- Timea Csak
- Sandra Atlas Bass Center for Liver Diseases, Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA.
| | - David Bernstein
- Division of Hepatology and Sandra Atlas Bass Center for Liver Diseases, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, 400 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
5
|
|
6
|
Matyas C, Haskó G, Liaudet L, Trojnar E, Pacher P. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications. Nat Rev Cardiol 2021; 18:117-135. [PMID: 32999450 DOI: 10.1038/s41569-020-0433-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
The liver is a crucial metabolic organ that has a key role in maintaining immune and endocrine homeostasis. Accumulating evidence suggests that chronic liver disease might promote the development of various cardiac disorders (such as arrhythmias and cardiomyopathy) and circulatory complications (including systemic, splanchnic and pulmonary complications), which can eventually culminate in clinical conditions ranging from portal and pulmonary hypertension to pulmonary, cardiac and renal failure, ascites and encephalopathy. Liver diseases can affect cardiovascular function during the early stages of disease progression. The development of cardiovascular diseases in patients with chronic liver failure is associated with increased morbidity and mortality, and cardiovascular complications can in turn affect liver function and liver disease progression. Furthermore, numerous infectious, inflammatory, metabolic and genetic diseases, as well as alcohol abuse can also influence both hepatic and cardiovascular outcomes. In this Review, we highlight how chronic liver diseases and associated cardiovascular effects can influence different organ pathologies. Furthermore, we explore the potential roles of inflammation, oxidative stress, vasoactive mediator imbalance, dysregulated endocannabinoid and autonomic nervous systems and endothelial dysfunction in mediating the complex interplay between the liver and the systemic vasculature that results in the development of the extrahepatic complications of chronic liver disease. The roles of ageing, sex, the gut microbiome and organ transplantation in this complex interplay are also discussed.
Collapse
Affiliation(s)
- Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, University Hospital Medical Center, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA.
| |
Collapse
|
7
|
Liu R, Guan S, Gao Z, Wang J, Xu J, Hao Z, Zhang Y, Yang S, Guo Z, Yang J, Shao H, Chang B. Pathological Hyperinsulinemia and Hyperglycemia in the Impaired Glucose Tolerance Stage Mediate Endothelial Dysfunction Through miR-21, PTEN/AKT/eNOS, and MARK/ET-1 Pathways. Front Endocrinol (Lausanne) 2021; 12:644159. [PMID: 33967958 PMCID: PMC8104127 DOI: 10.3389/fendo.2021.644159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is an important prediabetic stage characterized by elevated concentrations of glucose and insulin in the blood. The pathological hyperglycemia and hyperinsulinemia in IGT may regulate the expression of microRNA-21 (miR-21) and affect the downstream insulin signaling pathways, leading to endothelial cell dysfunction and early renal damage. METHODS The individual and combined effects of insulin and glucose were investigated using human glomerular endothelial cells (HGECs). The expression levels of miR-21, and PTEN/AKT/eNOS and MAPK/ET-1 pathway proteins in the treated cells were measured. The levels of nitric oxide (NO) and endothelin-1 (ET-1) secreted by the cells were also measured. The role of miR-21 in mediating the regulatory effects of insulin and glucose was assessed by overexpression/inhibition of this miRNA using mimics/inhibitor. RESULTS High (>16.7 mmol/L) concentration of glucose upregulated the expression of miR-21, leading to the activation and inhibition of the PTEN/AKT/eNOS and MAPK/ET-1 pathways, and upregulation of NO and downregulation of ET-1 secretion, respectively. High (>25 ng/mL) concentration of insulin downregulated the expression of miR-21, and lead to the activation of the MAPK/ET-1 and inhibition of the PTEN/AKT/eNOS pathway, thereby upregulating the expression of ET-1 and downregulating the secretion of NO. MiR-21 was observed to play a key role by directly controlling the activation of the insulin signaling pathways when the cells were cotreated with different concentrations of insulin and glucose. The expression of miR-21 was found to be dependent on the relative concentration of insulin and glucose. Under simulated conditions of the IGT stage (8.3 mmol/L glucose + 50 ng/mL insulin), the inhibitory effect of high insulin concentration on miR-21 expression in the cells attenuated the activation by high glucose concentration, resulting in the downregulation of miR-21, upregulation of ET-1 and downregulation of NO secretion. CONCLUSION Taken together, these results indicate that high insulin and glucose concentrations regulate the secretory function of glomerular endothelial cells in opposite ways by regulating the expression of miRNA-21. Pathological concentrations of insulin and glucose in the IGT stage may lead to a decrease in miR-21 expression, thereby disordering the secretion of vasoactive factors, resulting in renal tubule ischemia.
Collapse
Affiliation(s)
- Ran Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Shilin Guan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhongai Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhaohu Hao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shaohua Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhenhong Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hailin Shao
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailin Shao, ; Baocheng Chang,
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailin Shao, ; Baocheng Chang,
| |
Collapse
|
8
|
Enhanced Endothelin A and B Receptor Expression and Receptor-Mediated Vasoconstriction in Rat Mesenteric arteries after Lipopolysaccharide Challenge. Mediators Inflamm 2019; 2019:6248197. [PMID: 31827377 PMCID: PMC6881566 DOI: 10.1155/2019/6248197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
During organ culture of intact vessels, endothelin receptors (ETRs) were upregulated in vascular smooth muscle cells (VSMCs) by various stimuli, but whether inflammation alters ETR expression in vivo remains unclear. We aimed to explore the effects of lipopolysaccharide (LPS) challenge on ETR expression in the VSMC in vivo. Male Sprague-Dawley rats received a single intraperitoneal injection of LPS (5 mg/kg body weight) or normal saline (NS) for 6 hrs. The function and expression of ETR type A (ETA) and type B (ETB) were evaluated in the mesenteric arteries without endothelium, by using myograph system, real-time quantitative PCR, Western blot, and immunohistochemical staining, respectively. Serum tumor necrosis factor-α (TNF-α) level was assessed by using enzyme-linked immunosorbent assay. The results showed that, compared to control (NS) group, LPS treatment potently enhanced the vasoconstriction mediated by ETA or ETB in rat mesenteric artery, with elevated maximum effects. ETA and ETB expressions in the VSMC were increased at both mRNA and protein levels after LPS treatment, paralleled with activation of the NF-κB pathway and augmented serum TNF-α level. Conclusively, in the rat model of immediate systemic inflammation induced by LPS, ETA and ETB expressions were increased in the mesenteric arterial VSMC, paralleled with enhanced receptor-mediated vasoconstriction and activation of the NF-κB pathway. Our data has for the first time demonstrated the upregulation of ETRs in VSMCs by LPS-induced immediate inflammation in vivo.
Collapse
|
9
|
Velez JCQ, Therapondos G, Juncos LA. Reappraising the spectrum of AKI and hepatorenal syndrome in patients with cirrhosis. Nat Rev Nephrol 2019; 16:137-155. [PMID: 31723234 DOI: 10.1038/s41581-019-0218-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
The occurrence of acute kidney injury (AKI) in patients with end-stage liver disease constitutes one of the most challenging clinical scenarios in in-hospital and critical care medicine. Hepatorenal syndrome type 1 (HRS-1), which is a specific type of AKI that occurs in the context of advanced cirrhosis and portal hypertension, is associated with particularly high mortality. The pathogenesis of HRS-1 is largely viewed as a functional derangement that ultimately affects renal vasculature tone. However, new insights suggest that non-haemodynamic tubulo-toxic factors, such as endotoxins and bile acids, might mediate parenchymal renal injury in patients with cirrhosis, suggesting that concurrent mechanisms, including those traditionally associated with HRS-1 and non-traditional factors, might contribute to the development of AKI in patients with cirrhosis. Moreover, histological evidence of morphological abnormalities in the kidneys of patients with cirrhosis and renal dysfunction has prompted the functional nature of HRS-1 to be re-examined. From a clinical perspective, a diagnosis of HRS-1 guides utilization of vasoconstrictive therapy and decisions regarding renal replacement therapy. Patients with cirrhosis are at risk of AKI owing to a wide range of factors. However, the tools currently available to ascertain the diagnosis of HRS-1 and guide therapy are suboptimal. Short of liver transplantation, goal-directed haemodynamically targeted pharmacotherapy remains the cornerstone of treatment for this condition; improved understanding of the underlying pathogenic mechanisms might lead to better clinical outcomes. Here, we examine our current understanding of the pathophysiology of HRS-1 and existing challenges in its diagnosis and treatment.
Collapse
Affiliation(s)
- Juan Carlos Q Velez
- Department of Nephrology, Ochsner Clinic Foundation, New Orleans, LA, USA. .,Ochsner Clinical School, The University of Queensland, Brisbane, Australia.
| | - George Therapondos
- Department of Gastroenterology and Hepatology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Luis A Juncos
- Division of Nephrology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Renal Section, Department of Medicine, Central Arkansas Veterans Affairs Medical Center, Little Rock, AR, USA
| |
Collapse
|
10
|
Peng JL, Techasatian W, Hato T, Liangpunsakul S. Role of endotoxemia in causing renal dysfunction in cirrhosis. J Investig Med 2019; 68:26-29. [PMID: 31324695 DOI: 10.1136/jim-2019-001056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Renal failure is a challenging problem in patients with cirrhosis since mortality increases with worsening renal function, hence the inclusion of serum creatinine in calculating the Model for End-Stage Liver Disease score for liver transplant evaluation. Among the various causes, infection is the leading etiology of mortality associated with cirrhosis. Bacterial infection frequently precipitates renal failure in patients with cirrhosis with the reported prevalence around 34%. Patients with cirrhosis are at increased risk of infections due to impaired immunity and increased gut permeability leading to bacterial translocation in the setting of portal hypertension. One of the most feared complications of severely decompensated liver and renal failure is hepatorenal syndrome, of which liver transplant may be the only available treatment. Furthermore, in those with spontaneous bacterial peritonitis and urinary tract infection, progressive renal failure occurs despite resolution of infection. Thus, the effects of endotoxemia on renal function in cirrhosis have become a major focus of research. The mechanisms of the damaging effects of endotoxin on renal function are complex but, in essence, involve dysregulated inflammation, circulatory dysfunction, poor clearance of endotoxin burden, as well as vasomotor nephropathy. In this article, we will review the mechanisms of endotoxemia-induced renal dysfunction in the setting of cirrhosis through the effects on renal blood flow, renal vascular endothelium, glomerular filtration rate, and tubular function.
Collapse
Affiliation(s)
- Jennifer L Peng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Witina Techasatian
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|