1
|
Li W, Kuhar S, Seo JH, Mittal R. Modeling the Effect of Sleeve Gastrectomy on Gastric Digestion in Stomach: Insights From Multiphase Flow Modeling. J Biomech Eng 2025; 147:061007. [PMID: 40192645 DOI: 10.1115/1.4068373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Indexed: 05/06/2025]
Abstract
The geometry and motility of the stomach play a critical role in the digestion of ingested liquid meals. Sleeve gastrectomy, a common type of bariatric surgery used to reduce the size of the stomach, significantly alters the stomach's anatomy and motility, which impacts gastric emptying and digestion. In this study, we use an imaging data-based computational model, StomachSim, to investigate the consequences of sleeve gastrectomy. The pre-operative stomach anatomy was derived from imaging data, and the postsleeve gastrectomy shapes were generated for different resection volumes. We investigate the effect of sleeve sizes and motility patterns on gastric mixing and emptying. Simulations were conducted using an immersed-boundary flow solver, modeling a liquid meal to analyze changes in gastric mixing and emptying rates. The results reveal that different degrees of volume reduction and impaired gastric motility have complex effects on stomach's mixing and emptying functions, which are important factors in gastric health of the patient. Specifically, the total gastric liquid emptying rates increased by 21% with a 30% volume reduction and by 51% with reductions exceeding 50%, due to altered intragastric pressure. Additionally, impaired motility functions resulted in slower mixing, leading to delayed food emptying. These findings provide insights into the biomechanical effects of sleeve gastrectomy on gastric digestion and emptying functions, highlighting the potential of computational models to inform surgical planning and postoperative management.
Collapse
Affiliation(s)
- Weixuan Li
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| | - Sharun Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
- Johns Hopkins University
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| |
Collapse
|
2
|
Fernandes SQ, Kothare MV, Mahmoudi B. A novel compartmental approach for modeling stomach motility and gastric emptying. Comput Biol Med 2024; 181:109035. [PMID: 39213708 PMCID: PMC11493153 DOI: 10.1016/j.compbiomed.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The stomach, a central organ in the Gastrointestinal (GI) tract, regulates the processing of ingested food through gastric motility and emptying. Understanding the stomach function is crucial for treating gastric disorders. Experimental studies in this field often face difficulties due to limitations and invasiveness of available techniques and ethical concerns. To counter this, researchers resort to computational and numerical methods. However, existing computational studies often isolate one aspect of the stomach function while neglecting the rest and employ computationally expensive methods. This paper proposes a novel cost-efficient multi-compartmental model, offering a comprehensive insight into gastric function at an organ level, thus presenting a promising alternative. The proposed approach divides the spatial geometry of the stomach into four compartments: Proximal/Middle/Terminal antrum and Pyloric sphincter. Each compartment is characterized by a set of ordinary differential equations (ODEs) with respect to time to characterize the stomach function. Electrophysiology is represented by simplified equations reflecting the "slow wave behavior" of Interstitial Cells of Cajal (ICC) and Smooth Muscle Cells (SMC) in the stomach wall. An electro-mechanical coupling model translates SMC "slow waves" into smooth muscle contractions. Muscle contractions induce peristalsis, affecting gastric fluid flow velocity and subsequent emptying when the pyloric sphincter is open. Contraction of the pyloric sphincter initiates a retrograde flow jet at the terminal antrum, modeled by a circular liquid jet flow equation. The results from the proposed model for a healthy human stomach were compared with experimental and computational studies on electrophysiology, muscle tissue mechanics, and fluid behavior during gastric emptying. These findings revealed that each "ICC" slow wave corresponded to a muscle contraction due to electro-mechanical coupling behavior. The rate of gastric emptying and mixing efficiency decreased with increasing viscosity of gastric liquid but remained relatively unchanged with gastric liquid density variations. Utilizing different ODE solvers in MATLAB, the model was solved, with ode15s demonstrating the fastest computation time, simulating 180 s of real-time stomach response in just 2.7 s. This multi-compartmental model signifies a promising advancement in understanding gastric function, providing a cost-effective and comprehensive approach to study complex interactions within the stomach and test innovative therapies like neuromodulation for treating gastric disorders.
Collapse
Affiliation(s)
- Shannon Q Fernandes
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Mayuresh V Kothare
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Babak Mahmoudi
- Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Liu X, Fletcher DF, Bornhorst GM. A review of the use of numerical analysis in stomach modeling. J Food Sci 2024; 89:3894-3916. [PMID: 38865250 DOI: 10.1111/1750-3841.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
Food digestion is important for human health. Advances have been made using in vitro models to study food digestion, but there is considerable potential for numerical approaches in stomach modeling, as they can provide a comprehensive understanding of the complex flow and chemistry in the stomach. The focus of this study is to provide a concise review of the developed numerical stomach models over the past two decades. The gastric physiological parameters that are required for a computational model to represent the human gastric digestion process are discussed, including the stomach geometry, gastric motility, gastric emptying, and gastric secretions. Computational methods used to model gastric digestion are introduced and compared, including different computational fluid dynamics as well as solid mechanics methods. The challenges and limitations of current studies are discussed, as well as the areas for future research that need to be addressed. There has been progress in simulating gastric fluid flow with stomach wall motion, but much work remains to be done. The complex food breakdown mechanisms and a comprehensive chemical digestion process have not been implemented in any developed models. Numerical method that was once computationally expensive will be revolutionized as computing power continues to improve. Ultimately, the advancement of modeling of gastric food digestion will allow for additional hypothesis testing to streamline the development of food products that are beneficial to human health.
Collapse
Affiliation(s)
- Xinying Liu
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - David F Fletcher
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Gail M Bornhorst
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
4
|
Kuhar S, Mittal R. Computational Models of the Fluid Mechanics of the Stomach. J Indian Inst Sci 2024; 104:65-76. [DOI: 10.1007/s41745-024-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 01/04/2025]
|
5
|
Swackhamer C, Bedane T, Keppler S, Poltorak A, Cheung K, Awais N, Marra F, Bornhorst GM. Development and analysis of a multi-module peristaltic simulator for gastrointestinal research. Food Res Int 2023; 170:112877. [PMID: 37316038 DOI: 10.1016/j.foodres.2023.112877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023]
Abstract
Many existing in vitro digestion systems do not accurately represent the peristaltic contractions of the gastrointestinal system; most of the systems that have physiologically-relevant peristaltic contractions have low throughput and can only test one sample at a time. A device has been developed that provides simulated peristaltic contractions for up to 12 digestion modules simultaneously using rollers of varying width to modulate the dynamics of the peristaltic motion. The force applied to a simulated food bolus varied from 2.61 ± 0.03 N to 4.51 ± 0.16 N (p < 0.05) depending on roller width. Video analysis showed that the degree of occlusion of the digestion module varied from 72.1 ± 0.4% to 84.6 ± 1.2% (p < 0.05). A multiphysics, computational fluid dynamics model was created to understand the fluid flow. The fluid flow was also examined experimentally using video analysis of tracer particles. The model-predicted maximum fluid velocity in the peristaltic simulator incorporating the thin rollers was 0.016 m/s, and the corresponding value measured using tracer particles was 0.015 m/s. The occlusion, pressure, and fluid velocity in the new peristaltic simulator fell within physiologically representative ranges. Although no in vitro device perfectly recreates the conditions of the gastrointestinal system, this novel device is a flexible platform for future gastrointestinal research and could allow for high-throughput screening of food materials for health-promoting properties under conditions representative of human gastrointestinal motility.
Collapse
Affiliation(s)
- Clay Swackhamer
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Tesfaye Bedane
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Silvia Keppler
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Adam Poltorak
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Kyle Cheung
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Nashea Awais
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Francesco Marra
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Gail M Bornhorst
- Department of Biological and Agricultural Engineering, University of California, Davis, USA; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
6
|
Ebara R, Ishida S, Miyagawa T, Imai Y. Effects of peristaltic amplitude and frequency on gastric emptying and mixing: a simulation study. J R Soc Interface 2023; 20:20220780. [PMID: 36596453 PMCID: PMC9810435 DOI: 10.1098/rsif.2022.0780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
The amplitude and frequency of peristaltic contractions are two major parameters for assessing gastric motility. However, it is not fully understood how these parameters affect the important functions of the stomach, such as gastric mixing and emptying. This study aimed to quantify the effects of peristaltic amplitude and frequency on gastric mixing and emptying using computational fluid dynamics simulation of gastric flow with an anatomically realistic model of the stomach. Our results suggest that both the increase and decrease in peristaltic amplitude have a significant impact on mixing strength and emptying rate. For example, when the peristaltic amplitude was 1.2 times higher than normal, the emptying rate was 2.7 times faster, whereas when the amplitude was half, the emptying rate was 4.2 times slower. Moreover, the emptying rate increased more than proportionally with the peristaltic frequency. The nearest contraction wave to the pylorus and the subsequent waves promoted gastric emptying. These results suggest the importance of maintaining parameters within normal ranges to achieve healthy gastric function.
Collapse
Affiliation(s)
- Rika Ebara
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Shunichi Ishida
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Taimei Miyagawa
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Yohsuke Imai
- Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
7
|
Lee JH, Kuhar S, Seo JH, Pasricha PJ, Mittal R. Computational modeling of drug dissolution in the human stomach: Effects of posture and gastroparesis on drug bioavailability. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:081904. [PMID: 35971381 PMCID: PMC9372820 DOI: 10.1063/5.0096877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 05/25/2023]
Abstract
The oral route is the most common choice for drug administration because of several advantages, such as convenience, low cost, and high patient compliance, and the demand and investment in research and development for oral drugs continue to grow. The rate of dissolution and gastric emptying of the dissolved active pharmaceutical ingredient (API) into the duodenum is modulated by gastric motility, physical properties of the pill, and the contents of the stomach, but current in vitro procedures for assessing dissolution of oral drugs are limited in their ability to recapitulate this process. This is particularly relevant for disease conditions, such as gastroparesis, that alter the anatomy and/or physiology of the stomach. In silico models of gastric biomechanics offer the potential for overcoming these limitations of existing methods. In the current study, we employ a biomimetic in silico simulator based on the realistic anatomy and morphology of the stomach (referred to as "StomachSim") to investigate and quantify the effect of body posture and stomach motility on drug bioavailability. The simulations show that changes in posture can potentially have a significant (up to 83%) effect on the emptying rate of the API into the duodenum. Similarly, a reduction in antral contractility associated with gastroparesis can also be found to significantly reduce the dissolution of the pill as well as emptying of the API into the duodenum. The simulations show that for an equivalent motility index, the reduction in gastric emptying due to neuropathic gastroparesis is larger by a factor of about five compared to myopathic gastroparesis.
Collapse
Affiliation(s)
| | - S. Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | - P. J. Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - R. Mittal
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Mixing and emptying of gastric contents in human-stomach: A numerical study. J Biomech 2021; 118:110293. [PMID: 33588327 DOI: 10.1016/j.jbiomech.2021.110293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 11/21/2022]
Abstract
Stomach is one of the most important organs in human gastro-track. To better understand the operation of human-stomach, the process of mixing and emptying of gastric contents is simulated using a numerical method. The numerical results confirm that a fast pathway is located close to the lesser curvature of the stomach when water is emptied. However, this fast pathway doesn't exist when the gastric contents are composed of water and food boluses with different properties. The muscle contractions enhance the mixing of light food boluses and water, while they have limited effects on heavy food boluses. As a result, the foods are distributed in layers; heavy food boluses are located in the bottom layer. Besides the gastric motility and high viscosity of foods, the food matrix made of heavy food particles is also important to the formation of the Magenstrasse (stomach road). The food matrix and the zone of wrinkles behave like a porous medium which has higher flow resistance to the light food particles than to the water, leading to faster emptying of water. The water is emptied along the stomach wall since the flow resistance in the stomach wrinkles is smaller than the one in the food matrix. This mechanism is supported by the numerical results, while it might interpret the phenomena observed in the experiments.
Collapse
|
9
|
Wang TH, Angeli TR, Ishida S, Du P, Gharibans A, Paskaranandavadivel N, Imai Y, Miyagawa T, Abell TL, Farrugia G, Cheng LK, O’Grady G. The influence of interstitial cells of Cajal loss and aging on slow wave conduction velocity in the human stomach. Physiol Rep 2021; 8:e14659. [PMID: 33355992 PMCID: PMC7757374 DOI: 10.14814/phy2.14659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Loss of interstitial cells of Cajal (ICC) has been associated with gastric dysfunction and is also observed during normal aging at ~13% reduction per decade. The impact of ICC loss on gastric slow wave conduction velocity is currently undefined. This study correlated human gastric slow wave velocity with ICC loss and aging. High-resolution gastric slow wave mapping data were screened from a database of 42 patients with severe gastric dysfunction (n = 20) and controls (n = 22). Correlations were performed between corpus slow wave conduction parameters (frequency, velocity, and amplitude) and corpus ICC counts in patients, and with age in controls. Physiological parameters were further integrated into computational models of gastric mixing. Patients: ICC count demonstrated a negative correlation with slow wave velocity in the corpus (i.e., higher velocities with reduced ICC; r2 = .55; p = .03). ICC count did not correlate with extracellular slow wave amplitude (p = .12) or frequency (p = .84). Aging: Age was positively correlated with slow wave velocity in the corpus (range: 25-74 years; r2 = .32; p = .02). Age did not correlate with extracellular slow wave amplitude (p = .40) or frequency (p = .34). Computational simulations demonstrated that the gastric emptying rate would increase at higher slow wave velocities. ICC loss and aging are associated with a higher slow wave velocity. The reason for these relationships is unexplained and merit further investigation. Increased slow wave velocity may modulate gastric emptying higher, although in gastroparesis other pathological factors must dominate to prevent emptying.
Collapse
Affiliation(s)
| | - Timothy R. Angeli
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | | | - Peng Du
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Armen Gharibans
- Department of SurgeryUniversity of AucklandAucklandNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | | | - Yohsuke Imai
- Graduate School of EngineeringKobe UniversityKobeJapan
| | - Taimei Miyagawa
- Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan
| | - Thomas L. Abell
- Division of GastroenterologyUniversity of LouisvilleLouisvilleKYUSA
| | | | - Leo K. Cheng
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Gregory O’Grady
- Department of SurgeryUniversity of AucklandAucklandNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
10
|
Laparoscopic tubularized continent gastrostomy: an alternative to tube gastrostomies. Updates Surg 2020; 72:901-905. [PMID: 32430719 DOI: 10.1007/s13304-020-00795-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
Gastrostomy tubes, placed either endoscopically or laparoscopically, are the most widely used method to deliver enteral feeding to patients unable to be fed by mouth. Tube gastrostomy is quick and low cost and allows the health care professionals for a convenient route to deliver enteral nutrition to their patients. Nevertheless, bearing an indwelling gastric tube could not be as convenient for patients. Complications, such as bowel perforation, tube dislodgement, peristomal infection or bleeding occur in up to 17% of patients, and some other drawbacks of gastric tubes, such as peristomal pain, are often understated. We present our technique for laparoscopic creation of a tubularized continent gastrostomy, originally conceived for the emergency treatment of patients with a dislodged percutaneous endoscopic gastrostomy, to provide them with a reliable new route for gastric feeding. After healing, this gastrostomy does not need an indwelling tube to stay patent, requires only a light gauze dressing and can be used by intermittent catheterization at conventional feeding times during the day. Laparoscopic tubularized continent gastrostomy can be offered to patients as a reliable alternative to tube gastrostomy.
Collapse
|
11
|
Ohta J, Ishida S, Kawase T, Katori Y, Imai Y. A computational fluid dynamics simulation of liquid swallowing by impaired pharyngeal motion: bolus pathway and pharyngeal residue. Am J Physiol Gastrointest Liver Physiol 2019; 317:G784-G792. [PMID: 31566413 DOI: 10.1152/ajpgi.00082.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Common practices to improve the ability to swallow include modifying physical properties of foods and changing the posture of patients. Here, we quantified the effects of the viscosity of a liquid bolus and patient posture on the bolus pathway and pharyngeal residue using a computational fluid dynamics simulation. We developed a computational model of an impaired pharyngeal motion with a low pharyngeal pressure and no pharyngeal adaptation. We varied viscosities from 0.002 to 1 Pa·s and postures from -15° to 30° (from nearly vertical to forward leaning). In the absence of pharyngeal adaptation, a honey-like liquid bolus caused pharyngeal residue, particularly in the case of forward-leaning postures. Although the bolus speed was different among viscosities, the final pathway was only slightly different. The shape, location, and tilting of the epiglottis effectively invited a bolus to two lateral pathways, suggesting a high robustness of the swallowing process.NEW & NOTEWORTHY Thickening agents are often used for patients with dysphagia. An increase in bolus viscosity not only reduces the risk of aspiration but also can cause a residual volume in the pharynx. Because information obtained from videofluoroscopic swallowing studies is only two-dimensional, measurement of pharyngeal residue is experimentally difficult. We successfully quantified the three-dimensional bolus pathway and the pharyngeal residual volume using computational modeling and simulation.
Collapse
Affiliation(s)
- Jun Ohta
- Department of Otorhinolaryngology and Head and Neck Surgery, Tohoku University, Sendai, Japan
| | - Shunichi Ishida
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tetsuaki Kawase
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Audiology, Tohoku University, Sendai, Japan
| | - Yukio Katori
- Department of Otorhinolaryngology and Head and Neck Surgery, Tohoku University, Sendai, Japan
| | - Yohsuke Imai
- Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Ishida S, Miyagawa T, O'Grady G, Cheng LK, Imai Y. Quantification of gastric emptying caused by impaired coordination of pyloric closure with antral contraction: a simulation study. J R Soc Interface 2019; 16:20190266. [PMID: 31387481 PMCID: PMC6731493 DOI: 10.1098/rsif.2019.0266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
Proper coordination of gastric motor functions is required for healthy gastric emptying. However, pyloric function may be impaired by functional disorders or surgical procedures. Here, we show how coordination between pyloric closure and antral contraction affects the emptying of liquid contents. We numerically simulated fluid dynamics using an anatomically realistic gastrointestinal geometry. Peristaltic contractions in the proximal stomach resulted in gastric emptying at a rate of 3-8 ml min-1. When the pylorus was unable to close, the emptying rate increased to 10-30 ml min-1, and instantaneous retrograde flow from the duodenum to the antrum occurred during antral relaxation. Rapid emptying occurred if the pylorus began to open during the terminal antral contraction, and the emptying rate was negative if the pylorus only opened during the antral relaxation phase. Our results showed that impaired coordination between antral contraction and pyloric closure can result in delayed gastric emptying, rapid gastric emptying and bile reflux.
Collapse
Affiliation(s)
- Shunichi Ishida
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Taimei Miyagawa
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K. Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Yohsuke Imai
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|