1
|
Kaneko YK, Sawatani T, Ishikawa T. Involvement of Diacylglycerol Kinase on the Regulation of Insulin Secretion in Pancreatic β-Cells during Type 2 Diabetes. YAKUGAKU ZASSHI 2022; 142:457-463. [PMID: 35491149 DOI: 10.1248/yakushi.21-00176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depression of lipid metabolism in β-cells has been indicated to be one of the causes of impaired insulin secretion in type 2 diabetes. Diacylglycerol (DAG) is an important lipid mediator and is known to regulate insulin secretion in pancreatic β-cells. Intracellular DAG accumulation is involved in β-cell dysfunction in the pathogenesis of type 2 diabetes; thus, the regulation of intracellular DAG levels is likely important for maintaining the β-cell function. We focused on diacylglycerol kinases (DGKs), which strictly regulate intracellular DAG levels, and analyzed the function of type I DGKs (DGKα, γ), which are activated by intracellular Ca2+ and expressed in the cytoplasm, in β-cells. The suppression of the DGKα and γ expression decreased the insulin secretory response, and the decreased expression of DGKα and γ was observed in islets of diabetic model mice. In the pancreatic β-cell line MIN6, 1 μM R59949 (a type I DGK inhibitor) and 10 μM DiC8 (a cell permeable DAG analog) enhanced glucose-induced [Ca2+]i oscillation in a PKC-dependent manner, while 10 μM R59949 and 100 μM DiC8 suppressed [Ca2+]i oscillation and voltage-dependent Ca2+ channel activity in a PKC-independent manner. These results suggest that the intracellular accumulation of DAG by the loss of the DGKα and γ functions regulates insulin secretion in a dual manner depending on the degree of DAG accumulation. The regulation of the insulin secretory response through DAG metabolism by type I DGKs may change depending on the degree of progression of type 2 diabetes.
Collapse
Affiliation(s)
- Yukiko K. Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
2
|
Kania A, Gugula A, Grabowiecka A, de Ávila C, Blasiak T, Rajfur Z, Lewandowski MH, Hess G, Timofeeva E, Gundlach AL, Blasiak A. Inhibition of oxytocin and vasopressin neuron activity in rat hypothalamic paraventricular nucleus by relaxin-3-RXFP3 signalling. J Physiol 2017; 595:3425-3447. [PMID: 28098344 DOI: 10.1113/jp273787] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Relaxin-3 is a stress-responsive neuropeptide that acts at its cognate receptor, RXFP3, to alter behaviours including feeding. In this study, we have demonstrated a direct, RXFP3-dependent, inhibitory action of relaxin-3 on oxytocin and vasopressin paraventricular nucleus (PVN) neuron electrical activity, a putative cellular mechanism of orexigenic actions of relaxin-3. We observed a Gαi/o -protein-dependent inhibitory influence of selective RXFP3 activation on PVN neuronal activity in vitro and demonstrated a direct action of RXFP3 activation on oxytocin and vasopressin PVN neurons, confirmed by their abundant expression of RXFP3 mRNA. Moreover, we demonstrated that RXFP3 activation induces a cadmium-sensitive outward current, which indicates the involvement of a characteristic magnocellular neuron outward potassium current. Furthermore, we identified an abundance of relaxin-3-immunoreactive axons/fibres originating from the nucleus incertus in close proximity to the PVN, but associated with sparse relaxin-3-containing fibres/terminals within the PVN. ABSTRACT The paraventricular nucleus of the hypothalamus (PVN) plays an essential role in the control of food intake and energy expenditure by integrating multiple neural and humoral inputs. Recent studies have demonstrated that intracerebroventricular and intra-PVN injections of the neuropeptide relaxin-3 or selective relaxin-3 receptor (RXFP3) agonists produce robust feeding in satiated rats, but the cellular and molecular mechanisms of action associated with these orexigenic effects have not been identified. In the present studies, using rat brain slices, we demonstrated that relaxin-3, acting through its cognate G-protein-coupled receptor, RXFP3, hyperpolarized a majority of putative magnocellular PVN neurons (88%, 22/25), including cells producing the anorexigenic neuropeptides, oxytocin and vasopressin. Importantly, the action of relaxin-3 persisted in the presence of tetrodotoxin and glutamate/GABA receptor antagonists, indicating its direct action on PVN neurons. Similar inhibitory effects on PVN oxytocin and vasopressin neurons were produced by the RXFP3 agonist, RXFP3-A2 (82%, 80/98 cells). In situ hybridization histochemistry revealed a strong colocalization of RXFP3 mRNA with oxytocin and vasopressin immunoreactivity in rat PVN neurons. A smaller percentage of putative parvocellular PVN neurons was sensitive to RXFP3-A2 (40%, 16/40 cells). These data, along with a demonstration of abundant peri-PVN and sparse intra-PVN relaxin-3-immunoreactive nerve fibres, originating from the nucleus incertus, the major source of relaxin-3 neurons, identify a strong inhibitory influence of relaxin-3-RXFP3 signalling on the electrical activity of PVN oxytocin and vasopressin neurons, consistent with the orexigenic effect of RXFP3 activation observed in vivo.
Collapse
Affiliation(s)
- Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Agnieszka Grabowiecka
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Camila de Ávila
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 0A6
| | - Tomasz Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Zenon Rajfur
- Faculty of Physics, Astronomy and Applied Computer Science, Institute of Physics, Jagiellonian University, 30-348, Krakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland.,Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Poland
| | - Elena Timofeeva
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 0A6
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, VIC, 3010, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, VIC, 3010, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
3
|
de la Cruz L, Puente EI, Reyes-Vaca A, Arenas I, Garduño J, Bravo-Martínez J, Garcia DE. PIP2 in pancreatic β-cells regulates voltage-gated calcium channels by a voltage-independent pathway. Am J Physiol Cell Physiol 2016; 311:C630-C640. [PMID: 27488666 DOI: 10.1152/ajpcell.00111.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a membrane phosphoinositide that regulates the activity of many ion channels. Influx of calcium primarily through voltage-gated calcium (CaV) channels promotes insulin secretion in pancreatic β-cells. However, whether CaV channels are regulated by PIP2, as is the case for some non-insulin-secreting cells, is unknown. The purpose of this study was to investigate whether CaV channels are regulated by PIP2 depletion in pancreatic β-cells through activation of a muscarinic pathway induced by oxotremorine methiodide (Oxo-M). CaV channel currents were recorded by the patch-clamp technique. The CaV current amplitude was reduced by activation of the muscarinic receptor 1 (M1R) in the absence of kinetic changes. The Oxo-M-induced inhibition exhibited the hallmarks of voltage-independent regulation and did not involve PKC activation. A small fraction of the Oxo-M-induced CaV inhibition was diminished by a high concentration of Ca2+ chelator, whereas ≥50% of this inhibition was prevented by diC8-PIP2 dialysis. Localization of PIP2 in the plasma membrane was examined by transfecting INS-1 cells with PH-PLCδ1, which revealed a close temporal association between PIP2 hydrolysis and CaV channel inhibition. Furthermore, the depletion of PIP2 by a voltage-sensitive phosphatase reduced CaV currents in a way similar to that observed following M1R activation. These results indicate that activation of the M1R pathway inhibits the CaV channel via PIP2 depletion by a Ca2+-dependent mechanism in pancreatic β- and INS-1 cells and thereby support the hypothesis that membrane phospholipids regulate ion channel activity by interacting with ion channels.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Erika I Puente
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Arturo Reyes-Vaca
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Isabel Arenas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Julieta Garduño
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Jorge Bravo-Martínez
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - David E Garcia
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| |
Collapse
|
4
|
Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO. Ionic mechanisms in pancreatic β cell signaling. Cell Mol Life Sci 2014; 71:4149-77. [PMID: 25052376 PMCID: PMC11113777 DOI: 10.1007/s00018-014-1680-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K(+), Na(+), Ca(2+) and Cl(-) across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K(+) efflux through ATP-sensitive K(+) (KATP) channels, the voltage-gated Ca(2+) (CaV) channel-mediated Ca(2+) influx and K(+) efflux through voltage-gated K(+) (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K(+) efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca(2+) influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K(+) efflux mediated by KV2.1 delayed rectifier K(+) channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca(2+) entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
5
|
Karpinsky-Semper D, Volmar CH, Brothers SP, Slepak VZ. Differential effects of the Gβ5-RGS7 complex on muscarinic M3 receptor-induced Ca2+ influx and release. Mol Pharmacol 2014; 85:758-68. [PMID: 24586057 PMCID: PMC4170115 DOI: 10.1124/mol.114.091843] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/28/2014] [Indexed: 11/22/2022] Open
Abstract
The G protein β subunit Gβ5 uniquely forms heterodimers with R7 family regulators of G protein signaling (RGS) proteins (RGS6, RGS7, RGS9, and RGS11) instead of Gγ. Although the Gβ5-RGS7 complex attenuates Ca(2+) signaling mediated by the muscarinic M3 receptor (M3R), the route of Ca(2+) entry (i.e., release from intracellular stores and/or influx across the plasma membrane) is unknown. Here, we show that, in addition to suppressing carbachol-stimulated Ca(2+) release, Gβ5-RGS7 enhanced Ca(2+) influx. This novel effect of Gβ5-RGS7 was blocked by nifedipine and 2-aminoethoxydiphenyl borate. Experiments with pertussis toxin, an RGS domain-deficient mutant of RGS7, and UBO-QIC {L-threonine,(3R)-N-acetyl-3-hydroxy-L-leucyl-(aR)-a-hydroxybenzenepropanoyl-2,3-idehydro-N-methylalanyl-L-alanyl-N-methyl-L-alanyl-(3R)-3-[[(2S,3R)-3-hydroxy-4- methyl-1-oxo-2-[(1-oxopropyl)amino]pentyl]oxy]-L-leucyl-N,O-dimethyl-,(7→1)-lactone (9CI)}, a novel inhibitor of Gq, showed that Gβ5-RGS7 modulated a Gq-mediated pathway. These studies indicate that Gβ5-RGS7, independent of RGS7 GTPase-accelerating protein activity, couples M3R to a nifedipine-sensitive Ca(2+) channel. We also compared the action of Gβ5-RGS7 on M3R-induced Ca(2+) influx and release elicited by different muscarinic agonists. Responses to Oxo-M [oxotremorine methiodide N,N,N,-trimethyl-4-(2-oxo-1-pyrrolidinyl)-2-butyn-1-ammonium iodide] were insensitive to Gβ5-RGS7. Pilocarpine responses consisted of a large release and modest influx components, of which the former was strongly inhibited whereas the latter was insensitive to Gβ5-RGS7. McN-A-343 [(4-hydroxy-2-butynyl)-1-trimethylammonium-3-chlorocarbanilate chloride] was the only compound whose total Ca(2+) response was enhanced by Gβ5-RGS7, attributed to, in part, by the relatively small Ca(2+) release this partial agonist stimulated. Together, these results show that distinct agonists not only have differential M3R functional selectivity, but also confer specific sensitivity to the Gβ5-RGS7 complex.
Collapse
Affiliation(s)
- Darla Karpinsky-Semper
- Department of Molecular and Cellular Pharmacology (D.K.-S., V.Z.S.) and Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences (C.-H.V., S.P.B.), University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | |
Collapse
|
6
|
Mears D, Zimliki CL. Muscarinic agonists activate Ca2+ store-operated and -independent ionic currents in insulin-secreting HIT-T15 cells and mouse pancreatic beta-cells. J Membr Biol 2004; 197:59-70. [PMID: 15014918 DOI: 10.1007/s00232-003-0642-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Indexed: 10/26/2022]
Abstract
The neurotransmitter acetylcholine, a muscarinic receptor agonist, augments glucose-induced insulin secretion from pancreatic beta-cells by depolarizing the membrane to enhance voltage-gated Ca(2+) influx. To clarify the electrical events involved in this process, we measured ionic currents from a clonal beta-cell line (HIT-T15) and mouse pancreatic beta-cells. In whole-cell recordings, the muscarinic agonist carbachol (CCh) dose-dependently and reversibly activated a voltage-independent, nonselective current (whole-cell conductance 24 pS/pF, reversal potential of approximately -15 mV). The current, which we refer to as I(musc), was blocked by atropine, a muscarinic receptor antagonist, and SKF 96365, a nonspecific ion channel blocker. The magnitude of the current decreased by 52% when extracellular Na(+) was removed, but was not affected by changes in extracellular Ca(2+), confirming that I(musc) is a nonselective current. To determine if I(musc) activates following release of Ca(2+) from an intracellular store, we blocked intracellular IP(3) receptors with heparin. Carbachol still activated a current in the presence of heparin, demonstrating the presence of a Ca(2+) store-independent, muscarinic agonist-activated ionic current in HIT cells. However, the store-independent current was smaller and had a more positive reversal potential (approximately 0 mV) than the current activated by CCh under control conditions. This result indicates that heparin had blocked a component of I(musc), which likely activates following release of stored Ca(2+). Depleting IP(3)-sensitive calcium stores with thapsigargin also activated a non-selective, SKF 96365-blockable current in HIT cells. The properties of this putative store-operated current were similar to the component of I(musc) that was blocked by heparin, being voltage-independent and reversing near -30 mV. We conclude that I(musc) consists of store-operated and store-independent components, both of which may contribute to the depolarizing action of muscarinic agonists on pancreatic beta-cells.
Collapse
Affiliation(s)
- D Mears
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
7
|
Sculptoreanu A, Yoshimura N, de Groat WC, Somogyi GT. Protein kinase C is involved in M1-muscarinic receptor-mediated facilitation of L-type Ca2+ channels in neurons of the major pelvic ganglion of the adult male rat. Neurochem Res 2001; 26:933-42. [PMID: 11699945 DOI: 10.1023/a:1012332500946] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used patch clamp recording techniques to determine if muscarinic signaling mechanisms are present in dissociated autonomic neurons obtained from the major pelvic ganglion, which provides the cholinergic innervation of the urinary bladder and other pelvic organs. The M1 specific agonist, McN-A-343 (2-30 microM) enhanced Ca2+ currents in approximately 37% of neurons (by 50-80%). This enhancement was reduced by atropine (5-10 microM) or a PKC inhibitor (bisindolylmaleimide, 50-200 nM). In responsive neurons Ca2+ currents were also enhanced by the phorbol ester, phorbol-12,13-dibutyrate (50-300 nM) and the dihydropyridine agonist Bay K 8644 (5 microM) and had kinetics of activation and inactivation as expected for L-type Ca2+ channels. We conclude that in a subpopulation of MPG neurons, M1-mediated activation of PKC phosphorylates and enhances L-type Ca2+ channel activities. This muscarinic facilitatory mechanism in MPG neurons may be the same as the M1-mediated facilitation of transmitter release reported previously at the nerve terminals in the urinary bladder.
Collapse
Affiliation(s)
- A Sculptoreanu
- Department of Pharmacology, University of Pittsburgh, School of Medicine, PA 15261, USA.
| | | | | | | |
Collapse
|
8
|
Bosco D, Gonelle-Gispert C, Wollheim CB, Halban PA, Rouiller DG. Increased intracellular calcium is required for spreading of rat islet beta-cells on extracellular matrix. Diabetes 2001; 50:1039-46. [PMID: 11334406 DOI: 10.2337/diabetes.50.5.1039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rat islet beta-cells spread in response to glucose when attached on the matrix produced by a rat bladder carcinoma cell line (804G). Furthermore, in a mixed population of cells, it has been observed previously that spread cells secrete more insulin acutely in response to glucose, compared with cells that remain rounded. These results suggest bi-directional signaling between the islet beta-cell and the extracellular matrix. In the present study, the role of increased intracellular free Ca2+ concentration [Ca2+]i as an intracellular step linking glucose stimulation and beta-cell spreading (inside-out signaling) was investigated. Purified rat beta-cells were attached to this matrix and incubated under various conditions known to affect [Ca2+]i. The effect of glucose on beta-cell spreading was mimicked by 25 mmol/l KCl (which induces calcium influx) and inhibited by diazoxide (which impairs depolarization and calcium entry) and by the L-type Ca2+ channel blocker SR-7037. When a 24-h incubation at 16.7 glucose was followed by 24 h at 2.8 mmol/l, beta-cells that had first spread regained a round phenotype. In the presence of thapsigargin, spreading progressed throughout the experiment, suggesting that capture of calcium by the endoplasmic reticulum is involved in the reversibility of spreading previously induced by glucose. Spreading was still observed in degranulated beta-cells and in botulinum neurotoxin E-expressing beta-cells when exocytosis was prevented. In summary, the results indicate that increased [Ca2+]i is required for the glucose-induced spreading of beta-cells on 804G matrix and that it is not a consequence of exocytotic processes that follow elevation of [Ca2+]i.
Collapse
Affiliation(s)
- D Bosco
- Research Laboratories Louis-Jeantet, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|