1
|
Effect of L-Glutamine on Chylomicron Formation and Fat-Induced Activation of Intestinal Mucosal Mast Cells in Sprague-Dawley Rats. Nutrients 2022; 14:nu14091777. [PMID: 35565745 PMCID: PMC9104139 DOI: 10.3390/nu14091777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glutamine (Gln) is required for intestinal mucosal homeostasis, and it can promote triglyceride absorption. The intestinal mucosal mast cells (MMCs) are activated during fat absorption. This study investigated the potential role of Gln on fat absorption-induced activation of MMCs in rats. Lymph fistula rats (n = 24) were studied after an overnight recovery with the infusion of saline only, saline plus 85 mM L-glutamine (L-Gln) or 85 mM D-glutamine (D-Gln), respectively. On the test day, rats (n = 8/group) were given an intraduodenal bolus of 20% Intralipid contained either saline only (vehicle group), 85 mM L-Gln (L-Gln group), or 85 mM D-Gln (D-Gln group). Lymph was collected hourly for up to 6 h for analyses. The results showed that intestinal lymph from rats given L-Gln had increased levels of apolipoprotein B (ApoB) and A-I (ApoA-I), concomitant with an increased spectrum of smaller chylomicron particles. Unexpectedly, L-Gln also increased levels of rat mucosal mast cell protease II (RMCPII), as well as histamine and prostaglandin D2 (PGD2) in response to dietary lipid. However, these effects were not observed in rats treated with 85 mM of the stereoisomer D-Gln. Our results showed that L-glutamine could specifically activate MMCs to degranulate and release MMC mediators to the lymph during fat absorption. This observation is potentially important clinically since L-glutamine is often used to promote gut health and repair leaky gut.
Collapse
|
2
|
Hasani M, Mansour A, Asayesh H, Djalalinia S, Mahdavi Gorabi A, Ochi F, Qorbani M. Effect of glutamine supplementation on cardiometabolic risk factors and inflammatory markers: a systematic review and meta-analysis. BMC Cardiovasc Disord 2021; 21:190. [PMID: 33865313 PMCID: PMC8053267 DOI: 10.1186/s12872-021-01986-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Background Evidence exists that glutamine plays multiple roles in glucose metabolism, insulin sensitivity, and anti-inflammatory effects. This systematic review and meta-analysis of controlled trials aimed to assess the effect of glutamine supplementation on cardio-metabolic risk factors and inflammatory markers. Methods The processes of systematic reviews and meta-analyses were performed according to the PRISMA checklist. PubMed, Web of Sciences, Cochrane library, and Scopus databases were search for relevant studies without time or language restrictions up to December 30, 2020. All randomized clinical trials which assessed the effect of glutamine supplementation on “glycemic indices”, “level of triglyceride, “and “inflammatory markers” were included in the study. The effect of glutamine supplementation on cardio-metabolic risk factors and inflammatory markers was assessed using a standardized mean difference (SMD) and 95% confidence interval (CI). Heterogeneity between among studies was assessed using Cochran Q-statistic and I-square. Random/fixed-effects meta-analysis method was used to estimate the pooled SMD. The risk of bias for the included trials was evaluated using the Cochrane quality assessment tool. Results In total, 12 studies that assessed the effect of glutamine supplementation on cardio-metabolic risk factors were included in the study. Meta-analysis showed that glutamine supplementation significantly decreased significantly serum levels of FPG [SMD: − 0.73, 95% CI − 1.35, − 0.11, I2: 84.1%] and CRP [SMD: − 0.58, 95% CI − 0.1, − 0.17, I2: 0%]. The effect of glutamine supplementation on other cardiometabolic risk factors was not statistically significant (P > 0.05). Conclusion Our findings showed that glutamine supplementation might have a positive effect on FPG and CRP; both of which are crucial as cardio-metabolic risk factors. However, supplementation had no significant effect on other cardio-metabolic risk factors.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asayesh
- Department of Medical Emergencies, Qom University of Medical Sciences, Qom, Iran.
| | - Shirin Djalalinia
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Development of Research and Technology Center, Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Ochi
- Students Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. .,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Intervention and Mechanisms of Alanyl-glutamine for Inflammation, Nutrition, and Enteropathy: A Randomized Controlled Trial. J Pediatr Gastroenterol Nutr 2020; 71:393-400. [PMID: 32649365 PMCID: PMC8576339 DOI: 10.1097/mpg.0000000000002834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Determine the minimum dosage of alanyl-glutamine (Ala-Gln) required to improve gut integrity and growth in children at risk of environmental enteropathy (EE). METHODS This was a double-blinded randomized placebo-controlled dose-response trial. We enrolled 140 children residing in a low-income community in Fortaleza, Brazil. Participants were 2 to 60 months old and had weight-for-age (WAZ), height-for-age (HAZ), or weight-for-height (WHZ) z-scores less than -1. We randomized children to 10 days of nutritional supplementation: Ala-Gln at 3 g/day, Ala-Gln at 6 g/day, Ala-Gln at 12 g/day, or an isonitrogenous dose of glycine (Gly) placebo at 12.5 g/day. Our primary outcome was urinary lactulose-mannitol excretion testing. Secondary outcomes were anthropometry, fecal markers of inflammation, urine metabolic profiles, and malabsorption (spot fecal energy). RESULTS Of 140 children, 103 completed 120 days of follow-up (24% dropout). In the group receiving the highest dose of Ala-Gln, we detected a modest improvement in urinary lactulose excretion from 0.19% on day 1 to 0.17% on day 10 (P = 0.05). We observed significant but transient improvements in WHZ at day 10 in 2 Ala-Gln groups, and in WHZ and WAZ in all Ala-Gln groups at day 30. We detected no effects on fecal inflammatory markers, diarrheal morbidity, or urine metabolic profiles; but did observe modest reductions in fecal energy and fecal lactoferrin in participants receiving Ala-Gln. CONCLUSIONS Intermediate dose Ala-Gln promotes short-term improvement in gut integrity and ponderal growth in children at risk of EE. Lower doses produced improvements in ponderal growth in the absence of enhanced gut integrity.
Collapse
|
4
|
Hayashi H. Enhancement of rat lymphatic lipid transport by glucose or amino acids ingestion. Physiol Rep 2019; 7:e14079. [PMID: 31016888 PMCID: PMC6478621 DOI: 10.14814/phy2.14079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 11/24/2022] Open
Abstract
To elucidate the effect of simultaneously fed carbohydrate or protein on lipid absorption, lymphatic lipid transports in the rat intestine were observed with or without simultaneous feeding of glucose or amino acids. A lipid emulsion containing 40 μmol/h (35.4 mg/h) of triolein, 2.74 μmol/h (1.06 mg/h) of cholesterol, 7.8 μmol/h (6.08 mg/h) of egg phosphatidylcholine without any additive (the Control group), with 560 mmol/h (300 mg/h) of glucose (the Glucose group), or with 400 mmol/h (150 mg/h) of amino acids (the Amino Acids group), was infused intraduodenally at 3 mL/h for 8 h into mesenteric lymph-fistula rats. The amounts of triglyceride transported in lymph for 8 h were 185 ± 12 (mean ± SE) mg in the Amino Acids group (n = 4), 175 ± 3 mg in the Glucose group (n = 5), and 147 ± 7 mg in the Control group (n = 4), respectively, with a statistically significant difference (P < 0.05) among the groups. The amounts of cholesterol transported in lymph for 8 h of the Amino Acid group and the Glucose group seemed to be larger than that of the Control group. The amount of phosphatidylcholine transported in lymph for 8 h were 16.4 ± 1.0 mg in the Amino Acids group, 15.7 ± 0.4 mg in the Glucose group, and 12.4 ± 0.3 mg in the Control group, respectively, with a statistically significant difference (P < 0.01) among the groups. Simultaneous glucose or amino acids feeding enhanced lymphatic lipid transport in the rat intestine during lipid feeding.
Collapse
Affiliation(s)
- Hiroshi Hayashi
- Department of Internal MedicineTokyo Ariake University of Medical and Health SciencesKoto‐kuTokyoJapan
| |
Collapse
|
5
|
da Rosa CVD, Azevedo SCSF, Bazotte RB, Peralta RM, Buttow NC, Pedrosa MMD, de Godoi VAF, Natali MRM. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats. PLoS One 2015; 10:e0143005. [PMID: 26659064 PMCID: PMC4681705 DOI: 10.1371/journal.pone.0143005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a whole. Thus, we can conclude that local differences in absorption and metabolism could explain the differences between the supplementation with L-glutamine or GDP.
Collapse
Affiliation(s)
| | | | - Roberto B. Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Rosane M. Peralta
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Nilza C. Buttow
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Vilma A. F. de Godoi
- Department of Physiological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Maria Raquel M. Natali
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
- * E-mail: (MR)
| |
Collapse
|
6
|
Luo M, Bazargan N, Griffith DP, Estívariz CF, Leader LM, Easley KA, Daignault NM, Hao L, Meddings JB, Galloway JR, Blumberg JB, Jones DP, Ziegler TR. Metabolic effects of enteral versus parenteral alanyl-glutamine dipeptide administration in critically ill patients receiving enteral feeding: a pilot study. Clin Nutr 2008; 27:297-306. [PMID: 18258342 DOI: 10.1016/j.clnu.2007.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 11/01/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Glutamine (Gln) may become conditionally indispensable during critical illness. The short-term metabolic effects of enteral versus parenteral Gln supplementation are unknown in this clinical setting. OBJECTIVES We studied metabolic effects of intravenous (i.v.) alanyl-Gln dipeptide (AG) supplementation and enteral (e.n.) AG supplementation on plasma Gln concentration, antioxidant status, plasma lymphocyte subset number, gut permeability and nitrogen balance in adult critically ill patients requiring tube feeding compared to a control group not receiving Gln supplementation. METHODS In a double-blind, pilot clinical trial, 44 medical and surgical ICU patients received identical Gln-free tube feedings 24 h/day and were randomized to either isonitrogenous control (n=15), e.n. AG (n=15) or i.v. AG (n=14) groups (AG). Twelve patients were discontinued from the study. The goal AG dose was 0.5 g/kg/day. Biochemical and metabolic endpoints were measured at baseline and on day 9 (plasma Gln, antioxidant indices, lymphocyte subsets; serum IGF-1 and IGF-binding protein-3; intestinal permeability). Nitrogen balance was determined between study days 6 and 8. RESULTS Illness severity indices, clinical demographics, enteral energy and nitrogen intake and major biochemical indices were similar between groups during study. Plasma Gln was higher in the i.v. AG (565+/-119 microM, mean+/-SEM) vs the e.n. AG (411+/-27 microM) group by day 9 (p=0.039); however, subjects in the i.v. AG group received a higher dose of AG (i.v. AG 0.50 versus e.n. AG 0.32+/-0.02 g/kg/day; p<0.001). E.n. AG subjects showed a significant increase in plasma alpha-tocopherol levels over time and maintained plasma gamma-tocopherol concentrations. There were no differences between groups for plasma concentrations of vitamin C, glutathione, malondialdehyde (MDA), T-lymphocyte subsets, intestinal permeability or nitrogen balance. CONCLUSIONS This study showed that alanyl-Gln administration by enteral or parenteral routes did not appear to affect antioxidant capacity or oxidative stress markers, T-lymphocyte subset (CD-3, CD-4, CD-8) number, gut barrier function or whole-body protein metabolism compared to unsupplemented ICU patients requiring enteral tube feeding. Enteral Gln appeared to maintain plasma tocopherol levels in this pilot metabolic study.
Collapse
Affiliation(s)
- Menghua Luo
- Department of Medicine, Emory University, 1364 Clifton Road, Atlanta, GA 30322, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
D'Alessio D, Lu W, Sun W, Zheng S, Yang Q, Seeley R, Woods SC, Tso P. Fasting and postprandial concentrations of GLP-1 in intestinal lymph and portal plasma: evidence for selective release of GLP-1 in the lymph system. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2163-9. [PMID: 17898126 DOI: 10.1152/ajpregu.00911.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucagon like peptide 1 (GLP-1) is an intestinal hormone that plays an important role in glucose metabolism. GLP-1 is released from mucosal L cells following nutrient ingestion and contributes to the incretin effect, with the enhancement of insulin secretion occurring with enteral compared with intravenous glucose administration. The mechanisms linking nutrient absorption and GLP-1 secretion are unknown, and studies addressing this topic, particularly in small animal models, have been hampered by the relatively low concentrations of GLP-1 in the circulation. We hypothesized that GLP-1 levels would be higher in samples of intestinal lymph compared with plasma and could provide a novel system in which to study meal-induced hormone secretion. We addressed this hypothesis in conscious rats with indwelling catheters in the portal vein and distal intestinal lymph duct. These animals had plasma and lymph sampled before and for 240 min after instillation of a liquid meal in the gastrointestinal tract. Lymph contained detectable concentrations of glucose, insulin, and GLP-1 that were reliably measured using our assays. Before and after the Ensure feeding, plasma insulin levels were approximately two times as high in portal plasma as intestinal lymph. In marked contrast, GLP-1 levels were five to six times higher in lymph relative to portal plasma following nutrient administration. This relative difference in GLP-1 levels was even greater when lymph was compared with peripheral plasma and dramatically exceeded the ratio of lymph to plasma peptide tyrosine-tyrosine concentrations. This is the first observation of a gastrointestinal hormone being disproportionately transported in lymph. The remarkable levels of GLP-1 in intestinal lymph demonstrate the potential for lymphatic sampling as a more sensitive means of studying the secretory physiology of this hormone in vivo. In addition, these data raise the possibility that intestinal lymph may serve as a specialized signaling conduit for regulatory peptides secreted by gastrointestinal endocrine cells.
Collapse
Affiliation(s)
- David D'Alessio
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | | | |
Collapse
|