1
|
Guo M, Shu L, He Z. Genomic and GEO data integration identifies PDGFB as a potential therapeutic target for sepsis. Sci Rep 2025; 15:12615. [PMID: 40221544 PMCID: PMC11993713 DOI: 10.1038/s41598-025-96655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Sepsis is a major contributor to global health loss, yet effective therapeutic options remain scarce. This study aims to identify potential therapeutic targets for sepsis. We integrated data from the druggable genome, expression quantitative trait loci (eQTLs) from human blood, and genome-wide association studies on sepsis. Mendelian randomization (MR) was employed to investigate causal relationships between drug target genes and sepsis. The eQTLGen Consortium data served as the discovery set and was validated using genotype-tissue expression (GTEx) eQTLs. Sensitivity and colocalization analyses were conducted to support causal inferences. Additionally, phenome-wide MR (Phe-MR) was used to assess potential side effects of druggable genes. The expression levels of the target genes were validated using the GSE154918 dataset. In the discovery MR analysis phase, we identified 26 potential targets with significant expression in blood (PFDR < 0.05). PDGFB and BPI were further validated in the replication MR analysis. Colocalization analysis provided strong evidence (PPH4 > 0.75) supporting PDGFB as a therapeutic candidate for sepsis. Phe-MR analysis suggested that targeting PDGFB is unlikely to cause adverse effects. PDGFB downregulation was confirmed in sepsis groups via the GEO dataset. PDGFB is identified as a promising druggable target for sepsis treatment, supported by strong evidence of its therapeutic potential.
Collapse
Affiliation(s)
- Mingjun Guo
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Lei Shu
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Zhihui He
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
2
|
The Role of Connexin in Ophthalmic Neovascularization and the Interaction between Connexin and Proangiogenic Factors. J Ophthalmol 2022; 2022:8105229. [PMID: 35783340 PMCID: PMC9242797 DOI: 10.1155/2022/8105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
The formation of new blood vessels is an important physiological process that occurs during development. When the body is injured, new blood vessel formation helps the body recuperate by supplying more oxygen and nutrients. However, this mechanism can have a negative effect. In ophthalmologic diseases, such as corneal new blood vessels, neonatal vascular glaucoma, and diabetes retinopathy, the formation of new blood vessels has become a critical component in patient survival. Connexin is a protein that regulates the cellular and molecular material carried by cells. It has been demonstrated that it is widely expressed in vascular endothelial cells, where it forms a slit connection between adjacent cells to promote cell-cell communication via hemichannels, as well as substance exchange into intracellular environments. Numerous studies have demonstrated that connexin in vascular endothelial cells plays an important role in angiogenesis and vascular leakage. The purpose of this study was to investigate the effect between the angiogenesis-associated factor and the connexin. It also reveals the effect of connexin on ophthalmic neovascularization.
Collapse
|
3
|
Santini MP, Malide D, Hoffman G, Pandey G, D'Escamard V, Nomura-Kitabayashi A, Rovira I, Kataoka H, Ochando J, Harvey RP, Finkel T, Kovacic JC. Tissue-Resident PDGFRα + Progenitor Cells Contribute to Fibrosis versus Healing in a Context- and Spatiotemporally Dependent Manner. Cell Rep 2021; 30:555-570.e7. [PMID: 31940496 DOI: 10.1016/j.celrep.2019.12.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/11/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| | - Daniela Malide
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Gabriel Hoffman
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Gaurav Pandey
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Valentina D'Escamard
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Aya Nomura-Kitabayashi
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Ilsa Rovira
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Jordi Ochando
- Department of Medicine and Oncological Sciences, ISMMS, New York, NY 10029, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia; Stem Cells Australia, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Jason C Kovacic
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| |
Collapse
|
4
|
van Leeuwen ALI, Dekker NAM, Jansma EP, Boer C, van den Brom CE. Therapeutic interventions to restore microcirculatory perfusion following experimental hemorrhagic shock and fluid resuscitation: A systematic review. Microcirculation 2020; 27:e12650. [PMID: 32688443 PMCID: PMC7757213 DOI: 10.1111/micc.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Objective Microcirculatory perfusion disturbances following hemorrhagic shock and fluid resuscitation contribute to multiple organ dysfunction and mortality. Standard fluid resuscitation is insufficient to restore microcirculatory perfusion; however, additional therapies are lacking. We conducted a systematic search to provide an overview of potential non‐fluid‐based therapeutic interventions to restore microcirculatory perfusion following hemorrhagic shock. Methods A structured search of PubMed, EMBASE, and Cochrane Library was performed in March 2020. Animal studies needed to report at least one parameter of microcirculatory flow (perfusion, red blood cell velocity, functional capillary density). Results The search identified 1269 records of which 48 fulfilled all eligibility criteria. In total, 62 drugs were tested of which 29 were able to restore microcirculatory perfusion. Particularly, complement inhibitors (75% of drugs tested successfully restored blood flow), endothelial barrier modulators (100% successful), antioxidants (66% successful), drugs targeting cell metabolism (83% successful), and sex hormones (75% successful) restored microcirculatory perfusion. Other drugs consisted of attenuation of inflammation (100% not successful), vasoactive agents (68% not successful), and steroid hormones (75% not successful). Conclusion Improving mitochondrial function, inhibition of complement inhibition, and reducing microvascular leakage via restoration of endothelial barrier function seem beneficial to restore microcirculatory perfusion following hemorrhagic shock and fluid resuscitation.
Collapse
Affiliation(s)
- Anoek L I van Leeuwen
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nicole A M Dekker
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Elise P Jansma
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health research institute, Amsterdam, The Netherlands.,Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Christa Boer
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Zhao F, Yan J, Zhao J, Shi B, Ye M, Huang X, Yu B, Lv B, Huang W. Effect of platelet-derived growth factor-BB on gap junction and connexin43 in rat penile corpus cavernosum smooth muscle cells. Andrologia 2018; 51:e13200. [PMID: 30467872 DOI: 10.1111/and.13200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023] Open
Abstract
We explored whether platelet-derived growth factor (PDGF)-BB regulates corpus cavernosum smooth muscle cell gap junctions and can ameliorate erectile dysfunction and how it modulates connexin43 (CX43) after bilateral cavernous neurectomy. Primary cultured rat corpus cavernosum smooth muscle cells were treated with PDGF-BB with or without a PDGFR inhibitor, Akt siRNA or the depletion or promotion of β-catenin. PDGF-BB improved CCSMCs gap junction coupling and increased CX43 and PDGFRβ expression; inhibition of PDGFR activity down-regulated CX43 and decreased Akt and nuclear β-catenin. Knockdown or promotion of β-catenin down-regulated and up-regulated CX43 expression respectively. Moreover, β-catenin activation induced CX43 nuclear accumulation, which impeded CX43 down-regulation induced by PDGFR inhibition, suggesting that CX43 expression is positively correlated with nuclear β-catenin expression. Furthermore, CX43 promoter luciferase and chromatin immunoprecipitation assays indicated that β-catenin regulates CX43 transcription by directly interacting with its promoter. Male rats underwent bilateral cavernous neurectomy. After 12 weeks, they were injected with PDGF-BB, CX43 and PDGFRβ expression was significantly lower than in the control group, which was reversed by PDGF-BB injection. These results suggested that PDGF-BB contributed to the improvement of gap junction intracellular communication among corpus cavernosum smooth muscle cells, increased CX43 through PDGFRβ/Akt/nuclear β-catenin signalling, and ameliorated cavernous nerve injury-induced erectile dysfunction.
Collapse
Affiliation(s)
- Fan Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfeng Yan
- Department of Urology, Zhejiang Hospital, Hangzhou, China
| | - Jianfeng Zhao
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Shi
- Department of Urology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Miaoyong Ye
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojun Huang
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Yu
- Technology and Development Center for TCM of China, Beijing, China
| | - Bodong Lv
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
| | - Wenjie Huang
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Zhang X, Zhao F, Zhao JF, Fu HY, Huang XJ, Lv BD. PDGF-mediated PI3K/AKT/β-catenin signaling regulates gap junctions in corpus cavernosum smooth muscle cells. Exp Cell Res 2017; 362:252-259. [PMID: 29174980 DOI: 10.1016/j.yexcr.2017.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
Abstract
Erectile dysfunction (ED) is the most common sexual disorder that men report to healthcare providers. Gap junctions (GJs) are thought to be responsible for synchronous shrinkage of corpus cavernosum smooth muscle cells (CCSMCs), and play thus an important role in the maintenance of an erection. Hypoxia has been suggested as a pathological mechanism underlying ED. Here we demonstrate that hypoxia increased the expression of platelet-derived growth factor (PDGF) and the main GJ component connexin (Cx)43 in CCSMCs. Inhibiting PDGF receptor (PDGFR) activity decreased Cx43 expression. Treatment with different concentrations of PDGF increased the levels of phosphorylated protein kinase B (AKT), β-catenin, and Cx43, whereas inhibition of PDGFR or activation of phosphatidylinositol 3 kinase (PI3K)/AKT signaling altered β-catenin and Cx43 expression. Meanwhile, silencing β-catenin resulted in the downregulation of Cx43. These results demonstrate that PDGF secretion by CCSMCs and vascular endothelial cells is enhanced under hypoxic conditions, leading to increased Cx43 expression through PI3K/AKT/β-catenin signaling and ultimately affecting GJ function in ED. Thus, targeting this pathway is a potential therapeutic strategy for the treatment of ED.
Collapse
Affiliation(s)
- Xiang Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Feng Zhao
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Ying Fu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
| | - Xiao-Jun Huang
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Dong Lv
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China; Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Yang G, Peng X, Wu Y, Li T, Liu L. Involvement of connexin 43 phosphorylation and gap junctional communication between smooth muscle cells in vasopressin-induced ROCK-dependent vasoconstriction after hemorrhagic shock. Am J Physiol Cell Physiol 2017; 313:C362-C370. [PMID: 28974518 DOI: 10.1152/ajpcell.00258.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022]
Abstract
We examined the roles played by gap junctions (GJs) and the GJ channel protein connexin 43 (Cx43) in arginine vasopressin (AVP)-induced vasoconstriction after hemorrhagic shock and their relationship to Rho kinase (ROCK) and protein kinase C (PKC). The results showed that AVP induced an endothelium-independent contraction in rat superior mesenteric arteries (SMAs). Blocking the GJs significantly decreased the contractile response of SMAs and vascular smooth muscle cells (VSMCs) to AVP after shock and hypoxia. The selective Cx43-mimetic peptide inhibited the vascular contractile effect of AVP after shock and hypoxia. AVP restored hypoxia-induced decrease of Cx43 phosphorylation at Ser262 and gap junctional communication in VSMCs. Activation of RhoA with U-46619 increased the contractile effect of AVP. This effect was antagonized by the ROCK inhibitor Y27632 and the Cx43-mimetic peptide. In contrast, neither an agonist nor an inhibitor of PKC had significant effects on AVP-induced contraction after hemorrhagic shock. In addition, silencing of Cx43 with siRNA blocked the AVP-induced increase of ROCK activity in hypoxic VSMCs. In conclusion, AVP-mediated vascular contractile effects are endothelium and myoendothelial gap junction independent. Gap junctions between VSMCs, gap junctional communication, and Cx43 phosphorylation at Ser262 play important roles in the vascular effects of AVP. RhoA/ROCK, but not PKC, is involved in this process.
Collapse
Affiliation(s)
- Guangming Yang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Mesenchymal stem cells correct haemodynamic dysfunction associated with liver injury after extended resection in a pig model. Sci Rep 2017; 7:2617. [PMID: 28572613 PMCID: PMC5454025 DOI: 10.1038/s41598-017-02670-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
In patients, acute kidney injury (AKI) is often due to haemodynamic impairment associated with hepatic decompensation following extended liver surgery. Mesenchymal stem cells (MSCs) supported tissue protection in a variety of acute and chronic diseases, and might hence ameliorate AKI induced by extended liver resection. Here, 70% liver resection was performed in male pigs. MSCs were infused through a central venous catheter and haemodynamic parameters as well as markers of acute kidney damage were monitored under intensive care conditions for 24 h post-surgery. Cytokine profiles were established to anticipate the MSCs’ potential mode of action. After extended liver resection, hyperdynamic circulation, associated with hyponatraemia, hyperkalaemia, an increase in serum aldosterone and low urine production developed. These signs of hepatorenal dysfunction and haemodynamic impairment were corrected by MSC treatment. MSCs elevated PDGF levels in the serum, possibly contributing to circulatory homeostasis. Another 14 cytokines were increased in the kidney, most of which are known to support tissue regeneration. In conclusion, MSCs supported kidney and liver function after extended liver resection. They probably acted through paracrine mechanisms improving haemodynamics and tissue homeostasis. They might thus provide a promising strategy to prevent acute kidney injury in the context of post-surgery acute liver failure.
Collapse
|
9
|
Expanded endothelial progenitor cells mitigate lung injury in septic mice. Stem Cell Res Ther 2015; 6:230. [PMID: 26611795 PMCID: PMC4660838 DOI: 10.1186/s13287-015-0226-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023] Open
Abstract
Endothelial progenitor cells (EPCs) improve survival and reduce organ failure in cecal ligation and puncture-induced sepsis; however, expanded EPCs may represent an even better approach for vascular repair. To date, no study has compared the effects of non-expanded EPCs (EPC-NEXP) with those of expanded EPCs (EPC-EXP) and mesenchymal stromal cells of human (MSC-HUMAN) and mouse (MSC-MICE) origin in experimental sepsis. One day after cecal ligation and puncture sepsis induction, BALB/c mice were randomized to receive saline, EPC-EXP, EPC-NEXP, MSC-HUMAN or MSC-MICE (1 × 105) intravenously. EPC-EXP, EPC-NEXP, MSC-HUMAN, and MSC-MICE displayed differences in phenotypic characterization. On days 1 and 3, cecal ligation and puncture mice showed decreased survival rate, and increased elastance, diffuse alveolar damage, and levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α, vascular endothelial growth factor, and platelet-derived growth factor in lung tissue. EPC-EXP and MSC-HUMAN had reduced elastance, diffuse alveolar damage, and platelet-derived growth factor compared to no-cell treatment. Tumor necrosis factor-α levels decreased in the EPC-EXP, MSC-HUMAN, and MSC-MICE groups. IL-1β levels decreased in the EPC-EXP group, while IL-10 decreased in the MSC-MICE. IL-6 levels decreased both in the EPC-EXP and MSC-MICE groups. Vascular endothelial growth factor levels were reduced regardless of therapy. In conclusion, EPC-EXP and MSC-HUMAN yielded better lung function and reduced histologic damage in septic mice.
Collapse
|