1
|
Wooldridge AL, Kirschenman R, Spaans F, Pasha M, Davidge ST, Cooke CLM. Advanced maternal age alters cardiac functional and structural adaptations to pregnancy in rats. Am J Physiol Heart Circ Physiol 2024; 326:H1131-H1137. [PMID: 38456848 DOI: 10.1152/ajpheart.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
A significant number of pregnancies occur at advanced maternal age (>35 yr), which is a risk factor for pregnancy complications. Healthy pregnancies require massive hemodynamic adaptations, including an increased blood volume and cardiac output. There is growing evidence that these cardiovascular adaptations are impaired with age, however, little is known about maternal cardiac function with advanced age. We hypothesized that cardiac adaptations to pregnancy are impaired with advanced maternal age. Younger (4 mo; ∼early reproductive maturity in humans) and aged (9 mo; ∼35 yr in humans) pregnant Sprague-Dawley rats were assessed and compared with age-matched nonpregnant controls. Two-dimensional echocardiographic images were obtained (ultrasound biomicroscopy; under anesthesia) on gestational day 19 (term = 22 days) and compared with age-matched nonpregnant rats (n = 7-9/group). Left ventricular structure and function were assessed using short-axis images and transmitral Doppler signals. During systole, left ventricular anterior wall thickness increased with age in the nonpregnant rats, but there was no age-related difference between the pregnant groups. There were no significant pregnancy-associated differences in left ventricular wall thickness. Calculated left ventricular mass increased with age in nonpregnant rats and increased with pregnancy only in young rats. Compared with young pregnant rats, the aortic ejection time of aged pregnant rats was greater and Tei index was lower. Overall, the greater aortic ejection time and lower Tei index with age in pregnant rats suggest mildly altered cardiac adaptations to pregnancy with advanced maternal age, which may contribute to adverse outcomes in advanced maternal age pregnancies.NEW & NOTEWORTHY We demonstrated that even before the age of reproductive senescence, rats show signs of age-related alterations in cardiac structure that suggests increased cardiac work. Our data also demonstrate, using an in vivo echocardiographic approach, that advanced maternal age in a rat model is associated with altered cardiac function and structure relative to younger pregnant controls.
Collapse
Affiliation(s)
- Amy L Wooldridge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Mazhar Pasha
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Kang J, Rhee J, Wang C, Yang Y, Li G, Li H. Unlocking the dark matter: noncoding RNAs and RNA modifications in cardiac aging. Am J Physiol Heart Circ Physiol 2024; 326:H832-H844. [PMID: 38305752 PMCID: PMC11221808 DOI: 10.1152/ajpheart.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cardiac aging is a multifaceted process that encompasses structural and functional alterations culminating in heart failure. As the elderly population continues to expand, there is a growing urgent need for interventions to combat age-related cardiac functional decline. Noncoding RNAs have emerged as critical regulators of cellular and biochemical processes underlying cardiac disease. This review summarizes our current understanding of how noncoding RNAs function in the heart during aging, with particular emphasis on mechanisms of RNA modification that control their activity. Targeting noncoding RNAs as potential novel therapeutics in cardiac aging is also discussed.
Collapse
Affiliation(s)
- Jiayi Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - James Rhee
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| | - Chunyan Wang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Yolander Yang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guoping Li
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Haobo Li
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Gervais MJ, Cooke CLM, Davidge ST, Bains G, Davenport MH, Steinback CD. Cardioautonomic control in pregnant individuals with advanced maternal age. Clin Auton Res 2023; 33:909-914. [PMID: 37676418 DOI: 10.1007/s10286-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Matthew J Gervais
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059D Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Christy-Lynn M Cooke
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Gyan Bains
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Margie H Davenport
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059D Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
4
|
Smith KJ, Evans MJ, Gordon IJ, Pierson JC, Newport J, Manning AD. Analyzing captive breeding outcomes to inform reintroduction practice: lessons from the pookila ( Pseudomys novaehollandiae). J Mammal 2023; 104:1047-1061. [PMID: 37800101 PMCID: PMC10550247 DOI: 10.1093/jmammal/gyad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 05/04/2023] [Indexed: 10/07/2023] Open
Abstract
Captive breeding is often used to produce individuals for reintroduction programs in order to reestablish a species in an area where it has become locally extinct. To maximize the likelihood of establishing a self-sustaining population in the wild, an analysis of data from captive breeding programs is commonly undertaken to (1) increase the quantity of individuals and rate at which they can be released, and (2) maintain or improve the genetic and phenotypic quality of individuals. Here we demonstrate how the knowledge gained from these analyses can also be applied to decision-making during the design of subsequent reintroductions to further advance a reintroduction program toward success. We conducted an analysis of data from a captive breeding program for the threatened pookila (Pseudomys novaehollandiae, New Holland mouse) spanning 6 years. We found evidence for relationships between the reproductive output of pookila and behavioral, demographic, experiential, health, and physiological predictors. Based on a biological interpretation of these results, and with reference to a checklist of all known translocation tactics, we recommend 11 specific design elements to maximize the probability of pookila reproduction postrelease (thereby improving the likelihood of reintroduction success). These recommendations should be interpreted as hypotheses to be evaluated and refined in future reintroduction trials for the pookila. The uncertainty around the postrelease survival and reproduction of a species that is common in reintroduction practice warrants the creative use of existing data to inform adaptive management. Indeed, there is a wealth information in well-kept captive breeding records that is currently underused by reintroduction practitioners. The direct integration of knowledge derived from captive breeding (where available) with decision-making for reintroductions, as described here, will help navigate these uncertainties, which would benefit the conservation of both understudied and well-known species around the world.
Collapse
Affiliation(s)
- Kiarrah J Smith
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Maldwyn J Evans
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Iain J Gordon
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Central Queensland University, Townsville, Queensland 4810, Australia
- Land and Water, CSIRO, Townsville, Queensland 4810, Australia
- Lead, Protected Places Mission, National Environmental Science Program, Reef and Rainforest Research Centre, Cairns, Queensland 4870, Australia
| | - Jennifer C Pierson
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Australian Wildlife Conservancy, Subiaco East, Western Australia 6008, Australia
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Jenny Newport
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Adrian D Manning
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Che C, Dudick K, Shoemaker R. Cardiac hypertrophy with obesity is augmented after pregnancy in C57BL/6 mice. Biol Sex Differ 2019; 10:59. [PMID: 31842996 PMCID: PMC6916003 DOI: 10.1186/s13293-019-0269-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Over a third of reproductive-age women in the USA are obese, and the prevalence of cardiovascular disease (CVD) is rising in premenopausal women. Cardiac hypertrophy is an independent predictor of CVD. In contrast to pregnancy, where transiently increased left ventricular (LV) mass is not associated with cardiac damage, obesity-mediated cardiac hypertrophy is pathological. There is a paucity of data describing the effect of obesity during pregnancy on maternal cardiovascular health. The purpose of this study was to determine the long-term effect of obesity during pregnancy on cardiac function and structure in mice. METHODS Female C57BL/6 J mice were fed a high-fat (HF) or a low-fat (LF) diet for 20 weeks. After 4 weeks, LF- and HF-fed female mice were either crossed with males to become pregnant or remained non-pregnant controls. Following delivery, pups were euthanized, and females maintained on respective diets. After 20 weeks of diet feeding, cardiac function was quantified by echocardiography, and plasma leptin and adiponectin concentrations quantified in LF- and HF-fed postpartum and nulliparous females. mRNA abundance of genes regulating cardiac hypertrophy and remodeling was quantified from left ventricles using the NanoString nCounter Analysis System. Cardiac fibrosis was assessed from picrosirius red staining of left ventricles. RESULTS HF-fed postpartum mice had markedly greater weight gain and fat mass expansion with obesity, associated with significantly increased LV mass, cardiac output, and stroke volume compared with HF-fed nulliparous mice. Plasma leptin, but not adiponectin, concentrations were correlated with LV mass in HF-fed females. HF feeding increased LV posterior wall thickness; however, LV chamber diameter was only increased in HF-fed postpartum females. Despite the marked increase in LV mass in HF-fed postpartum mice, mRNA abundance of genes regulating fibrosis and interstitial collagen content was similar between HF-fed nulliparous and postpartum mice. In contrast, only HF-fed postpartum mice exhibited altered expression of genes regulating the extracellular matrix. CONCLUSIONS These results suggest that the combined effects of pregnancy and obesity augment cardiac hypertrophy and promote remodeling. The rising prevalence of CVD in premenopausal women may be attributed to an increased prevalence of women entering pregnancy with an overweight or obese BMI.
Collapse
Affiliation(s)
- Chen Che
- University of Kentucky, Department of Dietetics and Human Nutrition, 203 Funkhouser Bldg, Lexington, KY, 40506-0054, USA
| | - Kayla Dudick
- University of Kentucky, Department of Dietetics and Human Nutrition, 203 Funkhouser Bldg, Lexington, KY, 40506-0054, USA
| | - Robin Shoemaker
- University of Kentucky, Department of Dietetics and Human Nutrition, 203 Funkhouser Bldg, Lexington, KY, 40506-0054, USA.
| |
Collapse
|
6
|
Cooke CLM, Davidge ST. Advanced maternal age and the impact on maternal and offspring cardiovascular health. Am J Physiol Heart Circ Physiol 2019; 317:H387-H394. [PMID: 31199185 DOI: 10.1152/ajpheart.00045.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Delaying pregnancy, which is on the rise, may increase the risk of cardiovascular disease in both women and their children. The physiological mechanisms that lead to these effects are not fully understood but may involve inadequate adaptations of the maternal cardiovascular system to pregnancy. Indeed, there is abundant evidence in the literature that a fetus developing in a suboptimal in utero environment (such as in pregnancies complicated by fetal growth restriction, preterm birth, and/or preeclampsia) is at an increased risk of cardiovascular disease in adulthood, the developmental origins of health and disease theory. Although women of advanced age are at a significantly increased risk of pregnancy complications, there is limited information as to whether advanced maternal age constitutes an added stressor on the prenatal environment of the fetus, and whether or not this is secondary to impaired cardiovascular function during pregnancy. This review summarizes the current literature available on the impact of advanced maternal age on cardiovascular adaptations to pregnancy and the role of maternal age on long-term health risks for both the mother and offspring.
Collapse
Affiliation(s)
- Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Sykora M, Kamocsaiova L, Egan Benova T, Frimmel K, Ujhazy E, Mach M, Barancik M, Tribulova N, Szeiffova Bacova B. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of Wistar rats: a pilot study 1. Can J Physiol Pharmacol 2019; 97:829-836. [PMID: 30908945 DOI: 10.1139/cjpp-2018-0740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.
Collapse
Affiliation(s)
- Matus Sykora
- CEM SAS, Institute for Heart Research, Bratislava, Slovakia
| | - Lucia Kamocsaiova
- Faculty of Natural Sciences of Comenius University, Bratislava, Slovakia
| | | | - Karel Frimmel
- CEM SAS, Institute for Heart Research, Bratislava, Slovakia
| | - Eduard Ujhazy
- CEM SAS, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Mojmir Mach
- CEM SAS, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | | | | | | |
Collapse
|