1
|
Shvetsova AA, Khlystova MA, Shateeva VS, Simonenko SD, Borzykh AA, Abramochkin DV, Gaynullina DK. Acidosis enhances contribution of Ca 2+-activated chloride channels to vascular tone regulation in early postnatal period. Curr Res Physiol 2025; 8:100143. [PMID: 40242654 PMCID: PMC12002956 DOI: 10.1016/j.crphys.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Acidosis often occurs during clinical complications in newborns and can lead to changes in the mechanisms of arterial tone regulation. However, it is unknown how acidosis affects the activity of Ca2+-activated chloride channels (CaCC) in arteries during early ontogenesis. We hypothesized that their activity may increase during acidosis. Methods We studied isometric contractions of saphenous arteries isolated from adult and 10-13-day-old rats. Intracellular pH was measured using a fluorescent indicator BCECF-AM simultaneously with recording the contractile activity of the arterial preparation in isometric mode. Results Metabolic acidosis with pH = 6.8 caused a significant decrease in the arterial contractile responses of adult and 10-13-day-old rats. The functional contribution of CaCC was absent in the adult rat arteries both at pH = 7.4 and pH = 6.8. However, in 10-13-day-old rat pups, the functional contribution of CaCC was higher at pH = 6.8 compared to pH = 7.4. Conclusion Acidosis augments the functional role of CaCC in arteries during early postnatal ontogenesis, but not in adulthood.
Collapse
Affiliation(s)
| | | | | | | | - Anna A. Borzykh
- Lomonosov Moscow State University, Moscow, Russia
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
2
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
3
|
Mochalov SV, Tarasova NV, Kudryashova TV, Gaynullina DK, Kalenchuk VU, Borovik AS, Vorotnikov AV, Tarasova OS, Schubert R. Higher Ca 2+ -sensitivity of arterial contraction in 1-week-old rats is due to a greater Rho-kinase activity. Acta Physiol (Oxf) 2018; 223:e13044. [PMID: 29383848 DOI: 10.1111/apha.13044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
Abstract
AIM During early post-natal development, arterial contraction depends less on Ca2+ -signalling pathways but more on changes in Ca2+ -sensitivity compared to adult animals. Whether this difference is related to Rho-kinase, one of the major players affecting Ca2+ -sensitivity, is unknown for intact vessels. Thus, we tested the hypothesis that Rho-kinase critically contributes to the higher Ca2+ -sensitivity of contraction in intact arteries of 1-week-old rats. METHODS We studied 1-week-old, 4- to 5-week-old and 10- to 12-week-old rats performing isometric myography, Ca2+ -fluorimetry and Western blotting using intact saphenous arteries and arterial pressure measurements under urethane anaesthesia. RESULTS In 10- to 12-week-old rats, methoxamine (MX) produced vasoconstriction associated with an increase in [Ca2+ ]i and Ca2+ -sensitivity. In contrast, in 1-week-old rats these contractions were accompanied only by an increase in Ca2+ -sensitivity. All MX-induced effects were reduced by the Rho-kinase inhibitor Y-27632; this reduction was complete only in 1-week-old rats. The Rho-kinase specific site Thr855 on MYPT1 was increasingly phosphorylated by MX in vessels of 1-week-old, but not 10- to 12-week-old rats; this effect was also inhibited completely by Y-27632. The Rho-kinase inhibitor fasudil in a dose not affecting the pressor response to MX in 4- to 5-week-old rats reduced it considerably in 1-week-old rats. CONCLUSION Our results suggest that the higher Ca2+ -sensitivity of arterial contraction in 1-week-old compared to 10- to 12-week-old rats is due to a greater Rho-kinase activity. Constitutively active Rho-kinase contributes to MX-induced contraction in 10- to 12-week-old rats. In 1-week-old rats, additional Rho-kinase activation is involved. This remodelling of the Rho-kinase pathway is associated with its increased contribution to adrenergic arterial pressure responses.
Collapse
Affiliation(s)
- S. V. Mochalov
- Medical Faculty Mannheim; Centre for Biomedicine and Medical Technology Mannheim (CBTM) and European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Heidelberg University; Mannheim Germany
- Faculty of Biology, M.V. Lomonosov; Moscow State University; Moscow Russia
- ChemRar Research and Development Institute; Khimki Moscow Region Russia
| | - N. V. Tarasova
- Medical Faculty Mannheim; Centre for Biomedicine and Medical Technology Mannheim (CBTM) and European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Heidelberg University; Mannheim Germany
- Faculty of Biology, M.V. Lomonosov; Moscow State University; Moscow Russia
- Molecular Medicine Institute; I.M. Sechenov First Moscow State Medical University; Moscow Russia
| | - T. V. Kudryashova
- Institute of Experimental Cardiology; Cardiology Research Center; Moscow Russia
| | - D. K. Gaynullina
- Medical Faculty Mannheim; Centre for Biomedicine and Medical Technology Mannheim (CBTM) and European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Heidelberg University; Mannheim Germany
- Faculty of Biology, M.V. Lomonosov; Moscow State University; Moscow Russia
- Department of Physiology; Russian National Research Medical University; Moscow Russia
| | - V. U. Kalenchuk
- Faculty of Basic Medicine; M.V. Lomonosov Moscow State University; Moscow Russia
| | - A. S. Borovik
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
| | - A. V. Vorotnikov
- Institute of Experimental Cardiology; Cardiology Research Center; Moscow Russia
- Medical Center; M.V. Lomonosov Moscow State University; Moscow Russia
| | - O. S. Tarasova
- Faculty of Biology, M.V. Lomonosov; Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
| | - R. Schubert
- Medical Faculty Mannheim; Centre for Biomedicine and Medical Technology Mannheim (CBTM) and European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Heidelberg University; Mannheim Germany
| |
Collapse
|
4
|
Ivic I, Vamos Z, Cseplo P, Koller A. From Newborn to Senescence Morphological and Functional Remodeling Leads to Increased Contractile Capacity of Arteries. J Gerontol A Biol Sci Med Sci 2017; 72:481-488. [PMID: 27190209 DOI: 10.1093/gerona/glw085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/19/2016] [Indexed: 11/15/2022] Open
Abstract
Aging induces substantial morphological and functional changes in vessels. We hypothesized that due to morphological remodeling the total contractile forces of arteries increase, especially in older age as a function of age. Mean arterial blood pressure of rats and morphological and functional characteristics of isolated carotid arteries rats, from newborn to senescent, were assessed. The arterial blood pressure of rats increased significantly from 0.25 to the age of 6 months, and then it reached a level, which was maintained until age of 30 months. Wall lumen and wall thickness increased with age, mostly due to media (smooth muscle) thickening, whereas wall tension gradually reduced with age. Contractions of arteries to nonreceptor-mediated vasomotor agent (KCl, 60mM) increased in three consecutive age groups, whereas contractility first increased (until 2 months), then it did not change further with aging. Norepinephrine-induced contractions initially increased in young age and then did not change further in older age. These findings suggest that during normal aging due to remodeling of arterial wall (smooth muscle) the contractile capacity of arteries increases, which seems to be independent from systemic blood pressure. Thus, arterial remodeling can favor the development of increased circulatory resistance in older age.
Collapse
Affiliation(s)
- Ivan Ivic
- Institute for Translational Medicine, Medical School, and Szentagothai Res Center.,Department of Anatomy, Medical School, and
| | - Zoltan Vamos
- Department of Anesthesiology and Intensive Therapy, University of Pécs, Hungary
| | - Peter Cseplo
- Department of Central Anesthesiology and Intensive Therapy, Petz Aladar County Teaching Hospital, Gyor, Hungary
| | - Akos Koller
- Institute of Natural Sciences, University of Physical Education, Budapest, Hungary.,Department of Physiology, New York Medical College, Valhalla
| |
Collapse
|
5
|
Pearce WJ. The fetal cerebral circulation: three decades of exploration by the LLU Center for Perinatal Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:177-91. [PMID: 25015811 DOI: 10.1007/978-1-4939-1031-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
For more than three decades, research programs in the Center of Perinatal Biology have focused on the vascular biology of the fetal cerebral circulation. In the 1980s, research in the Center demonstrated that cerebral autoregulation operated over a narrower pressure range, and was more vulnerable to insults, in fetuses than in adults. Other studies were among the first to establish that compared to adult cerebral arteries, fetal cerebral arteries were more hydrated, contained smaller smooth muscle cells and less connective tissue, and had endothelium less capable of producing NO. Work in the 1990s revealed that pregnancy depressed reactivity to NO in extra-cerebral arteries, but elevated it in cerebral arteries through effects involving changes in cGMP metabolism. Comparative studies verified that fetal lamb cerebral arteries were an excellent model for cerebral arteries from human infants. Biochemical studies demonstrated that cGMP metabolism was dramatically upregulated, but that contraction was far more dependent on calcium influx, in fetal compared to adult cerebral arteries. Further studies established that chronic hypoxia accelerates functional maturation of fetal cerebral arteries, as indicated by increased contractile responses to adrenergic agonists and perivascular adrenergic nerves. In the 2000s, studies of signal transduction established age-dependent roles for PKG, PKC, PKA, ERK, ODC, IP3, myofilament calcium sensitivity, and many other mechanisms. These diverse studies clearly demonstrated that fetal cerebral arteries were functionally quite distinct compared to adult cerebral arteries. In the current decade, research in the Center has expanded to a more molecular focus on epigenetic mechanisms and their role in fetal vascular adaptation to chronic hypoxia, maternal drug abuse, and nutrient deprivation. Overall, the past three decades have transformed thinking about, and understanding of, the fetal cerebral circulation due in no small part to the sustained research efforts by faculty and staff in the Center for Perinatal Biology.
Collapse
Affiliation(s)
- William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, 92350, Loma Linda, CA, USA,
| |
Collapse
|
6
|
Durrant LM, Khorram O, Buchholz JN, Pearce WJ. Maternal food restriction modulates cerebrovascular structure and contractility in adult rat offspring: effects of metyrapone. Am J Physiol Regul Integr Comp Physiol 2014; 306:R401-10. [PMID: 24477541 DOI: 10.1152/ajpregu.00436.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the effects of prenatal undernutrition on adult cardiovascular health have been well studied, its effects on the cerebrovascular structure and function remain unknown. We used a pair-fed rat model of 50% caloric restriction from day 11 of gestation to term, with ad libitum feeding after birth. We validated that maternal food restriction (MFR) stress is mediated by glucocorticoids by administering metyrapone, a corticosterone synthesis inhibitor, to MFR mothers at day 11 of gestation. At age 8 mo, offspring from Control, MFR, and MFR + Metyrapone groups were killed, and middle cerebral artery (MCA) segments were studied using vessel-bath myography and confocal microscopy. Colocalization of smooth muscle α-actin (SMαA) with nonmuscle (NM), SM1 and SM2 myosin heavy-chain (MHC) isoforms was used to assess smooth muscle phenotype. Our results indicate that artery stiffness and wall thickness were increased, pressure-evoked myogenic reactivity was depressed, and myofilament Ca(2+) sensitivity was decreased in offspring of MFR compared with Control rats. MCA from MFR offspring exhibited a significantly greater SMαA/NM colocalization, suggesting that the smooth muscle cells had been altered toward a noncontractile phenotype. MET significantly reversed the effects of MFR on stiffness but not myogenic reactivity, lowered SMαA/NM colocalization, and increased SMαA/SM2 colocalization. Together, our data suggest that MFR alters cerebrovascular contractility via both glucocorticoid-dependent and glucocorticoid-independent mechanisms.
Collapse
Affiliation(s)
- Lara M Durrant
- Center for Perinatal Biology, Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California; and
| | | | | | | |
Collapse
|
7
|
Butler SM, Abrassart JM, Hubbell MC, Adeoye O, Semotiuk A, Williams JM, Mata-Greenwood E, Khorram O, Pearce WJ. Contributions of VEGF to age-dependent transmural gradients in contractile protein expression in ovine carotid arteries. Am J Physiol Cell Physiol 2011; 301:C653-66. [PMID: 21653901 DOI: 10.1152/ajpcell.00413.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study explores the hypothesis that arterial smooth muscle cells are organized into layers with similar phenotypic characteristics that vary with the relative position between the lumen and the adventitia due to transmural gradients in vasotrophic factors. A corollary hypothesis is that vascular endothelial growth factor (VEGF) is a factor that helps establish transmural variations in smooth muscle phenotype. Organ culture of endothelium-denuded ovine carotid arteries with 3 ng/ml VEGF-A(165) for 24 h differentially and significantly influenced potassium-induced (55% increase) and stretch-induced (36% decrease) stress-strain relations in adult (n = 18) but not term fetal (n = 21) arteries, suggesting that smooth muscle reactivity to VEGF is acquired during postnatal maturation. Because inclusion of fetal bovine serum significantly inhibited all contractile effects of VEGF (adult: n = 11; fetus: n = 11), it was excluded in all cultures. When assessed in relation to the distance between the lumen and the adventitia in immunohistochemically stained coronal artery sections, expression of smooth muscle α-actin (SMαA), myosin light chain kinase (MLCK), and 20-kDa regulatory myosin light chain exhibited distinct protein-dependent and age-dependent gradients across the artery wall. VEGF depressed regional SMαA abundance up to 15% in adult (n = 6) but not in fetal (n = 6) arteries, increased regional MLCK abundance up to 140% in fetal (n = 8) but not in adult (n = 10) arteries, and increased regional MLC(20) abundance up to 28% in fetal arteries (n = 7) but decreased it by 17% in adult arteries (n = 9). Measurements of mRNA levels verified that VEGF receptor transcripts for both Flt-1 and kinase insert domain receptor (KDR) were expressed in both fetal and adult arteries. Overall, the present data support the unique hypothesis that smooth muscle cells are organized into lamina of similar phenotype with characteristics that depend on the relative position between the lumen and the adventitia and involve the direct effects of growth factors such as VEGF, which acts independently of the vascular endothelium in an age-dependent manner.
Collapse
Affiliation(s)
- Stacy M Butler
- Divisions of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sandoval RJ, Injeti ER, Gerthoffer WT, Pearce WJ. Postnatal maturation modulates relationships among cytosolic Ca2+, myosin light chain phosphorylation, and contractile tone in ovine cerebral arteries. Am J Physiol Heart Circ Physiol 2007; 293:H2183-92. [PMID: 17660392 DOI: 10.1152/ajpheart.00647.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tests the hypothesis that age-related changes in patterns of agonist-induced myofilament Ca(2+) sensitization involve corresponding differences in the relative contributions of thick- and thin-filament regulation to overall myofilament Ca(2+) sensitivity. Posterior communicating cerebral arteries from term fetal and nonpregnant adult sheep were used in measurements of cytosolic Ca(2+), myosin light chain (MLC) phosphorylation, and contractile tensions induced by varying concentrations of K(+) or serotonin [5-hydroxytryptamine (5-HT)]. The results were used to assess the relative contributions of the relationships between cytosolic Ca(2+) and MLC phosphorylation (thick-filament reactivity), along with the relationships between MLC phosphorylation and contractile tension (thin-filament reactivity), to overall myofilament Ca(2+) sensitivity. For K(+)-induced contractions, both fetal and adult arteries exhibited similar basal myofilament Ca(2+) sensitivity. Despite this similarity, thick-filament reactivity was greater in fetal arteries, whereas thin-filament reactivity was greater in adult arteries. In contrast, 5-HT-induced contractions exhibited increased myofilament Ca(2+) sensitivity compared with K(+)-induced contractions for both fetal and adult cerebral arteries, and the magnitude of this effect was greater in fetal compared with adult arteries. When interpreted together with our previous studies of 5-HT-induced myofilament Ca(2+) sensitization, we attributed the present effects to agonist enhancement of thick-filament reactivity in fetal arteries mediated by G protein receptor activation of a PKC-independent but RhoA-dependent pathway. In adult arteries, agonist stimulation enhanced thin-filament reactivity was also probably mediated through G protein-coupled activation of RhoA-dependent and PKC-independent mechanisms. Overall, the present data demonstrate that agonist-enhanced myofilament Ca(2+) sensitivity can be partitioned into separate thick- and thin-filament effects, the magnitudes of which are different between fetal and adult cerebral arteries.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/metabolism
- Aging/metabolism
- Animals
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cerebral Arteries/drug effects
- Cerebral Arteries/enzymology
- Cerebral Arteries/growth & development
- Cerebral Arteries/metabolism
- Cytosol/metabolism
- Dose-Response Relationship, Drug
- Fetus/blood supply
- Heat-Shock Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/metabolism
- Myosin Light Chains/metabolism
- Myosin-Light-Chain Kinase/metabolism
- Myosin-Light-Chain Phosphatase/metabolism
- Phosphorylation
- Potassium/metabolism
- Protein Kinase C/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Serotonin/pharmacology
- Sheep
- Tissue Culture Techniques
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/metabolism
- Vasoconstrictor Agents/pharmacology
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Renan J Sandoval
- Department of Physiology and Pharmacology, Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, California 92354, USA
| | | | | | | |
Collapse
|