1
|
Luo T, Chang CX, Zhou X, Gu SK, Jiang TM, Li YM. Characterization of atrial histopathological and electrophysiological changes in a mouse model of aging. Int J Mol Med 2012; 31:138-46. [PMID: 23135407 DOI: 10.3892/ijmm.2012.1174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/04/2012] [Indexed: 11/06/2022] Open
Abstract
The detailed mechanisms of age-related atrial structural and electrophysiological changes remain elusive. Small animal models have recently been used for the investigation of atrial tachyarrhythmia. In this study, we investigated the hypothesis that atrial structural and electrical characterization with aging provides a substrate for atrial fibrillation using a mouse model of aging. Male Kunming mice aged 2 (young), 12 (middle-aged) and 24 months (aged) were used in this study. A surface electrocardiogram and sinus node recovery time (SNRT) were recorded at baseline. Atrial fibrillation (AF) inducibility and duration were measured by a transesophageal electrode catheter. Collagen content was assessed by the collagen volume fraction. Whole cell configuration using the patch clamp technique was performed for the transient outward potassium (Ito) and ultra-rapid delayed rectifier potassium (Ikur) currents. P-wave duration, SNRT and rate-corrected SNRT were longer in the aged group than in the remaining 2 groups, paralleled by inducibility significantly being increased in the aged group. The right atrium had significantly higher levels of fibrosis than the left atrium in all the groups (P<0.05), whereas the extent of fibrosis in the left atrium had a higher positive correlation with age relative to the right atrium (P<0.05). Moreover, in old age, the dispersion of left relative to right atrium repolarization and augmented Ito currents contributed to vulnerability to AF. Nevertheless, Ikur currents in the atrial myocytes showed no age-related changes. The present study demonstrates that in addition to the structural alterations, aging can also cause integrative and cellular electrophysiological changes in a mouse model of aging, facilitating AF initiation and maintenance.
Collapse
Affiliation(s)
- Tao Luo
- Graduate School of Medicine, Tianjin Medical University, Tianjin, PR China
| | | | | | | | | | | |
Collapse
|
2
|
Laszlo R, Bentz K, Konior A, Eick C, Schreiner B, Kettering K, Schreieck J. Effects of selective mineralocorticoid receptor antagonism on atrial ion currents and early ionic tachycardia-induced electrical remodelling in rabbits. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:347-56. [PMID: 20799026 DOI: 10.1007/s00210-010-0553-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/12/2010] [Indexed: 12/19/2022]
Abstract
Over the past years, the importance of the renin-angiotensin-aldosterone system in atrial fibrillation (AF) pathophysiology has been recognised. Lately, the role of aldosterone in AF pathophysiology and mineralocorticoid receptor (MR) antagonism in "upstream" AF treatment is discussed. Hypothesising that selective MR antagonism might also influence atrial ion currents (L-type calcium current [I (Ca,L)], transient outward potassium current [I (to)], sustained outward potassium current [I (sus)]) and their tachycardia-induced remodelling, the effects of an eplerenone treatment were studied in a rabbit model. Six groups each with four animals were built. Animals of the control group received atrial pacing leads, but in contrast to the pacing groups, no atrial tachypacing (600 per minute for 24 and 120 h immediately before heart removal) was applied. Animals of the eplerenone groups were instrumented/paced as the corresponding control/pacing groups, but were additionally treated with eplerenone (7 days before heart removal). Atrial tachypacing was associated with a reduction of I (Ca,L). I (to) was decreased after 24 h of tachypacing, but returned to control values after 120 h. In the absence of rapid atrial pacing, MR antagonism reduced I (Ca,L) to a similar extent as 120 h of tachypacing alone. Based on this lower "take-off level", I (Ca,L) was not further decreased by high-rate pacing. I (to) and its expected tachycardia-induced alterations were not influenced by MR antagonism. In our experiments, selective MR antagonism influenced atrial I (Ca,L) and its tachycardia-induced alterations. As changes of I (Ca,L) are closely linked with atrial calcium signalling, the relevance of these alterations in AF pathophysiology and, accordingly, AF treatment is likely and has to be further evaluated.
Collapse
Affiliation(s)
- Roman Laszlo
- Kardiologie und Kreislauferkrankungen, Eberhard Karls Universität Tuebingen, Otfried-Mueller-Straße 10, 72076, Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
3
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2009; 48:12-25. [PMID: 19619557 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
4
|
Michael G, Xiao L, Qi XY, Dobrev D, Nattel S. Remodelling of cardiac repolarization: how homeostatic responses can lead to arrhythmogenesis. Cardiovasc Res 2008; 81:491-9. [PMID: 18826964 DOI: 10.1093/cvr/cvn266] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiac action potentials (APs) are driven by ionic currents flowing through specific channels and exchangers across cardiomyocyte membranes. Once initiated by rapid Na(+) entry during phase 0, the AP time course is determined by the balance between inward depolarizing currents, carried mainly by Na(+) and Ca(2+), and outward repolarizing currents carried mainly by K(+). K(+) currents play a major role in repolarization. The loss of a K(+) current can impair repolarization, but there is a redundancy of K(+) currents so that when one K(+) current is dysfunctional, other K(+) currents increase to compensate, a phenomenon called 'repolarization reserve'. Repolarization reserve protects repolarization under conditions that increase inward current or reduce outward current, threatening the balance that governs AP duration. This protection comes at the expense of reduced repolarization reserve, potentially resulting in unexpectedly large AP prolongation and arrhythmogenesis, when an additional repolarization-suppressing intervention is superimposed. The critical role of appropriate repolarization is such that cardiac rhythm stability can be impaired with either abnormally slow or excessively rapid repolarization. In cardiac disease states such as heart failure and atrial fibrillation (AF), changes in ion channel properties appear as part of an adaptive response to maintain function in the face of disease-related stress on the cardiovascular system. However, if the stress is maintained the adaptive ion channel changes may themselves lead to dysfunction, in particular cardiac arrhythmias. The present article reviews ionic remodelling of cardiac repolarization, and focuses on how potentially adaptive repolarization changes with congestive heart failure and AF can have arrhythmogenic consequences.
Collapse
Affiliation(s)
- Georghia Michael
- Department of Medicine, Montreal Heart Institute, 5000 Belanger Street East, Montreal, Quebec, Canada H1T 1C8
| | | | | | | | | |
Collapse
|
5
|
Abstract
Abnormalities in heart rhythm continue to cause high rates of illness and death. Better treatment could be provided by solving two main challenges: the early identification of patients who are at risk, and the characterization of molecular pathways that culminate in arrhythmias. By analysing mechanisms that increase susceptibility to arrhythmia in individuals with genetic syndromes, it might be possible to improve current therapies and to develop new ways to treat and prevent common arrhythmias.
Collapse
|
6
|
Duffy HS, Wit AL. Is there a role for remodeled connexins in AF? No simple answers. J Mol Cell Cardiol 2007; 44:4-13. [PMID: 17935733 DOI: 10.1016/j.yjmcc.2007.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 01/19/2023]
Abstract
Gap junctions provide direct cytoplasmic continuity between cells forming a low resistivity barrier to electrical propagation. As such, aberrant regulation of these low resistive conduits has been blamed for electrical conduction disorders in diseased myocardium. While there is a plethora of evidence that abnormalities in gap junctional communication underlie many forms of ventricular arrhythmias, the role of gap junctions in atrial conduction disorders has been less well studied. The atria are the most heterogeneous cardiac structures in terms of the gap junction proteins, connexins (Cx), which are present. Cx40 is the primary, or most abundant, gap junction protein in atria although Cx43 is also abundantly expressed. Cx45 is also expressed in atria, although at low levels. This heterogeneity in connexins leads to a complexity that makes understanding the role of cell coupling in conduction disorders and arrhythmogenesis difficult. In this review we focus on what is known about atrial connexins and their role in atrial fibrillation but also on the challenges presented in understanding the complex interplay between the individual connexin isoforms.
Collapse
|
7
|
Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic Ion-Channel Remodeling in the Heart: Heart Failure, Myocardial Infarction, and Atrial Fibrillation. Physiol Rev 2007; 87:425-56. [PMID: 17429037 DOI: 10.1152/physrev.00014.2006] [Citation(s) in RCA: 623] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rhythmic and effective cardiac contraction depends on appropriately timed generation and spread of cardiac electrical activity. The basic cellular unit of such activity is the action potential, which is shaped by specialized proteins (channels and transporters) that control the movement of ions across cardiac cell membranes in a highly regulated fashion. Cardiac disease modifies the operation of ion channels and transporters in a way that promotes the occurrence of cardiac rhythm disturbances, a process called “arrhythmogenic remodeling.” Arrhythmogenic remodeling involves alterations in ion channel and transporter expression, regulation and association with important protein partners, and has important pathophysiological implications that contribute in major ways to cardiac morbidity and mortality. We review the changes in ion channel and transporter properties associated with three important clinical and experimental paradigms: congestive heart failure, myocardial infarction, and atrial fibrillation. We pay particular attention to K+, Na+, and Ca2+channels; Ca2+transporters; connexins; and hyperpolarization-activated nonselective cation channels and discuss the mechanisms through which changes in ion handling processes lead to cardiac arrhythmias. We highlight areas of future investigation, as well as important opportunities for improved therapeutic approaches that are being opened by an improved understanding of the mechanisms of arrhythmogenic remodeling.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|
8
|
Dun W, Ozgen N, Hirose M, Sosunov EA, Anyukhovsky EP, Rosen MR, Boyden PA. Ionic mechanisms underlying region-specific remodeling of rabbit atrial action potentials caused by intermittent burst stimulation. Heart Rhythm 2006; 4:499-507. [PMID: 17399641 PMCID: PMC2040063 DOI: 10.1016/j.hrthm.2006.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 12/13/2006] [Indexed: 09/30/2022]
Abstract
BACKGROUND Pulmonary veins (PVs) and the coronary sinus (CS) play pivotal roles in triggering some episodes of atrial fibrillation. In isolated rabbit right or left atrial preparations, a 3-hour intermittent burst pacing protocol shortens action potential duration (APD) in CS and PV, but not in sinus node (SN) and left Bachmann bundle (BB) regions. OBJECTIVE The purpose of this study was to use patch clamp techniques to study the rapidly inactivating (I(to)) and sustained (I(sus)) K(+) currents as well as Ca(2+) currents (I(Ca)) in cells dispersed from intermittent burst pacing and sham PV, BB, CS, and SN regions to determine whether changes in these currents contributed to APD shortening. METHODS Real-time polymerase chain reaction was performed for transient outward K(+) and Ca(2+) channel subunit mRNAs to determine if intermittent burst pacing affected expression levels. RESULTS I(to) densities were unaffected by intermittent burst pacing in PV and Bachmann bundle cells. mRNA levels of K(V)4.3, K(V)4.2, K(V)1.4, and KChIP2 subunits of I(to) in both regions were stable. In CS cells, I(to) densities in intermittent burst pacing were greater than in sham (P <.05), but there were no parallel mRNA changes. I(Ca) density of PV cells was reduced from 14.27 +/- 2.08 pA/pF (at -5 mV) in sham to 7.52 +/- 1.65 pA/pF in intermittent burst pacing PV cells (P <.05) due to a significant shift in voltage dependence of activation. These results were seen in the absence of mRNA changes in alpha(1C) and alpha(1D) Ca(2+) channel subunits. In contrast, intermittent burst pacing had no effect on Ca(2+) current densities and kinetics of CS cells, but decreased alpha(1)C and alpha(1)D mRNA levels. CONCLUSION There is region-specific remodeling of I(to) and I(Ca) by intermittent burst pacing protocols in rabbit atrium. Increased I(to) in CS cells could account for the APD shortening observed with intermittent burst pacing, whereas an intermittent burst pacing-induced shift in voltage dependence of activation may contribute to APD shortening in PV cells.
Collapse
Affiliation(s)
- Wen Dun
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhao ZH, Zhang HC, Xu Y, Zhang P, Li XB, Liu YS, Guo JH. Inositol-1,4,5-Trisphosphate and Ryanodine-Dependent Ca 2+ Signaling in a Chronic Dog Model of Atrial Fibrillation. Cardiology 2006; 107:269-76. [PMID: 16954684 DOI: 10.1159/000095517] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 06/12/2006] [Indexed: 01/21/2023]
Abstract
Ca2+ signaling regulation plays an important role in triggering and/or maintaining atrial fibrillation (AF). Little is known about the relationship of the inositol-1,4,5-triphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs) in left atrium to chronic AF. In this study, we investigated the expression and function of InsP3R1, InsP3R2 and RyR2 in a chronic dog model of AF. AF was induced in 6 dogs by rapid right atrial pacing for 24 weeks, and a sham procedure was performed in 5 dogs (control group). The intact left atrial myocytes were used to examine the expression and function of InsP3Rs, RyRs by BODIPY(O,R) TR-X ryanodine, heparin-fluorescein conjugate, and were stimulated by caffeine, ATP to release Ca2+ through RyRs, InsP3Rs separately. We also assessed the molecular components of left atrial tissue underlying the amount of RyR2, InsP3R1 and InsP3R2 determined by RT-PCR, immunohistochemistry and Western blot analysis. In the chronic AF group, the Ca2+ released through RyRs is not altered, but the Ca2+ released through InsP3Rs increased significantly. RyR2 distributed in cytosol of myocytes, cellular membrane; its expression significantly decreased in AF group compared to controls. InsP3R1 distributed in cytosol, InsP3R2 distributed not only in cytosol, cellular membrane, but also in nuclear envelope and intercalated discs. The InsP3R1 and InsP3R2 expression significantly increased in chronic AF group compared to controls. These results indicated that in a chronic dog model of AF, the expression and function of RyR2 down-regulated; on the contrary, the expression and function of InsP3R1, InsP3R2 up-regulated, and InsP3R2 may be the major InsP3Rs, which regulate intracellular or even intercellular Ca2+ signal transmission.
Collapse
Affiliation(s)
- Zhi-Hong Zhao
- Electrophysiology Group, Department of Cardiology, People's Hospital, Peking University, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Shimoni Y, Hunt D, Chen K, Emmett T, Kargacin G. Differential autocrine modulation of atrial and ventricular potassium currents and of oxidative stress in diabetic rats. Am J Physiol Heart Circ Physiol 2005; 290:H1879-88. [PMID: 16339825 DOI: 10.1152/ajpheart.01045.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The autocrine modulation of cardiac K(+) currents was compared in ventricular and atrial cells (V and A cells, respectively) from Type 1 diabetic rats. K(+) currents were measured by using whole cell voltage clamp. ANG II was measured by ELISA and immunofluorescent labeling. Oxidative stress was assessed by immunofluorescent labeling with dihydroethidium, a measure of superoxide ions. In V cells, K(+) currents are attenuated after activation of the renin-angiotensin system (RAS) and the resulting ANG II-mediated oxidative stress. In striking contrast, these currents are not attenuated in A cells. Inhibition of the angiotensin-converting enzyme (ACE) also has no effect, in contrast to current augmentation in V cells. ANG II levels are enhanced in V, but not in A, cells. However, the high basal ANG II levels in A cells suggest that in these cells, ANG II-mediated pathways are suppressed, rather than ANG II formation. Concordantly, superoxide ion levels are lower in diabetic A than in V cells. Several findings indicate that high atrial natriuretic peptide (ANP) levels in A cells inhibit RAS activation. In male diabetic V cells, in vitro ANP (300 nM-1 muM, >5 h) decreases oxidative stress and augments K(+) currents, but not when excess ANG II is present. ANP has no effect on ventricular K(+) currents when the RAS is not activated, as in control males, in diabetic males treated with ACE inhibitor and in diabetic females. In conclusion, the modulation of K(+) currents and oxidative stress is significantly different in A and V cells in diabetic rat hearts. The evidence suggests that this is largely due to inhibition of RAS activation and/or action by ANP in A cells. These results may underlie chamber-specific arrhythmogenic mechanisms.
Collapse
Affiliation(s)
- Yakhin Shimoni
- Department of Physiology and Biophysics, Health Sciences Centre, University of Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | |
Collapse
|
11
|
Chandra P, Rosen TS, Herweg B, Plotnikov AN, Danilo P, Rosen MR. Atrial gradient as a potential predictor of atrial fibrillation. Heart Rhythm 2005; 2:404-10. [PMID: 15851344 DOI: 10.1016/j.hrthm.2004.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 12/29/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVES We tested the utility and comparability of the atrial gradient and atrial ERP as early markers of electrical remodeling and a propensity to atrial fibrillation (AF). BACKGROUND Pacing at physiologic rates from the left atrium alters the atrial gradient and is associated with atrial tachyarrhythmias. At these physiologic rates, there is no change in the atrial effective refractory period (ERP). METHODS Sixty-one chronically instrumented mongrel dogs in complete heart block were paced from the left or right atrium at 400 to 900 bpm for 46 +/- 3 days. Dogs were monitored weekly and electrophysiologic studies conducted to determine changes in the atrial gradient, ERP, and rhythm. RESULTS Rapid atrial pacing was associated with concordant decreases in atrial gradient, ERP, and occurrence of AF. Incidence of AF increased with increasing pacing rate. Although there ultimately was an equal incidence of AF with left atrial and right atrial pacing, the onset of AF occurred earlier with left atrial pacing. As expected, ERP decreased in both atria. Animals with long control ERP did not fibrillate. CONCLUSIONS Rapid pacing induces changes in atrial gradient, which can be used as a noninvasive marker of electrical remodeling. AF is accompanied by decreases in atrial gradient and ERP, and the incidence is highest in dogs with short control ERP.
Collapse
Affiliation(s)
- Parag Chandra
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
12
|
Dun W, Boyden PA. Diverse phenotypes of outward currents in cells that have survived in the 5-day-infarcted heart. Am J Physiol Heart Circ Physiol 2005; 289:H667-73. [PMID: 15821036 PMCID: PMC3410671 DOI: 10.1152/ajpheart.00180.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown reduced density and altered kinetics in slowly activating K+ currents (I(Ks)) in epicardial border zone (EBZ) cells (IZs) of the 5-day-infarcted canine heart (Jiang M, Cabo, C, Yao J-A, Boyden PA, and Tseng G-N. Cardiovasc Res 48: 34-43, 2000). beta-Adrenergic stimulation with isoproterenol increases I(Ks) in normal cells (NZs). In this study, we used a voltage-clamp protocol with an external solution to isolate I(Ks) from contaminating currents to determine the effects of 1 muM isoproterenol on I(Ks) in IZs and NZs. Under our recording conditions, 10 microM azimilide-sensitive currents were stimulated with isoproterenol to compare responsiveness of I(Ks) to isoproterenol in the two cell groups. I(Ks) tail density was reduced 67% in IZs (group I, n = 26) compared with NZs (n = 24, P < 0.05). Isoproterenol-stimulated azimilide-sensitive tail currents were increased 1.72 +/- 0.2-fold in NZs and 2.2 +/- 0.3-fold in IZs (P > 0.05). In 33% of IZs (group II, n = 13), native currents showed no tail currents; however, isoproterenol-stimulated azimilide-sensitive currents were voltage dependent, fast activating, and large in amplitude compared with group I IZs, similar to "lone" KCNQ1 currents. Using short clamp pulses, we also found an increase in sustained currents sensitive to tetraethylammonium chloride (TEA) and no change in C-9356-sensitive currents in IZs with little or no transient outward current. In some IZs where I(Ks) is downregulated, the effect of isoproterenol on I(Ks) was similar to that on I(Ks) in NZs. In others, the existence of lone KCNQ1-type currents, which are sensitive to beta-adrenergic stimulation, is consistent with our findings of an increased KCNQ1-to-KCNE1 mRNA ratio (Jiang et al.). Accompanying altered I(Ks) in IZs are an enhanced TEA-sensitive current and a normal C-9356-sensitive current.
Collapse
Affiliation(s)
- Wen Dun
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York, NY, USA
| | | |
Collapse
|
13
|
Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels. Physiol Rev 2004; 84:803-33. [PMID: 15269337 DOI: 10.1152/physrev.00039.2003] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shal-type (Kv4.x) K(+) channels are expressed in a variety of tissue, with particularly high levels in the brain and heart. These channels are the primary subunits that contribute to transient, voltage-dependent K(+) currents in the nervous system (A currents) and the heart (transient outward current). Recent studies have revealed an enormous degree of complexity in the regulation of these channels. In this review, we describe the surprisingly large number of ancillary subunits and scaffolding proteins that can interact with the primary subunits, resulting in alterations in channel trafficking and kinetic properties. Furthermore, we discuss posttranslational modification of Kv4.x channel function with an emphasis on the role of kinase modulation of these channels in regulating membrane properties. This concept is especially intriguing as Kv4.2 channels may integrate a variety of intracellular signaling cascades into a coordinated output that dynamically modulates membrane excitability. Finally, the pathophysiology that may arise from dysregulation of these channels is also reviewed.
Collapse
Affiliation(s)
- Shari G Birnbaum
- Div. of Neuroscience, S607, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|