1
|
Bachman NP, Ketelhut NB, Blomquist M, Terwoord JD. Rho-kinase inhibition reduces systolic blood pressure and forearm vascular resistance in healthy older adults: a double-blind, randomized, placebo-controlled pilot study. GeroScience 2024; 46:6317-6329. [PMID: 38888876 PMCID: PMC11494619 DOI: 10.1007/s11357-024-01240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Rho-kinase has been implicated in the development of hypertension in preclinical studies and may contribute to age-related blood pressure elevation. This study tested the hypothesis that Rho-kinase contributes to elevated systolic blood pressure (SBP) in healthy older adults. Young (18-30 years, 6F/6M) and older (60-80 years, 7F/6M) adults were enrolled in a double-blind, placebo-controlled crossover study using intravenous fasudil infusion to inhibit Rho-kinase. Fasudil lowered SBP in older adults compared to placebo (saline) (2-h post-infusion: 125 ± 4 vs. 133 ± 4 mmHg, P < 0.05), whereas fasudil had no impact on SBP in young adults. Immediately following fasudil infusion, there was a transient reduction in mean arterial pressure (MAP) in young adults that was no longer evident 1-h post-infusion. In older adults, MAP remained lower throughout the fasudil visit compared to placebo (2-h post-infusion: 93 ± 3 vs. 100 ± 3 mmHg, P < 0.05) such that age-related differences in SBP and MAP were abolished. Aortic stiffness (carotid-femoral pulse wave velocity) was not altered by fasudil when central MAP was included as a covariate in analyses. Fasudil reduced forearm vascular resistance in older (2-h post-infusion: 3.3 ± 0.4 vs. 4.8 ± 0.6 mmHg/ml/min, P < 0.05) but not young (4.0 ± 0.6 vs. 3.8 ± 0.5 mmHg/ml/min) adults, which was accompanied by an increase in brachial artery diameter only in older adults. Brachial artery flow-mediated dilation was not affected by fasudil in either group. These findings indicate that Rho-kinase inhibition reduces SBP in healthy older but not young adults, which is associated with a concomitant reduction in forearm vascular resistance.
Collapse
Affiliation(s)
- Nate P Bachman
- Department of Kinesiology, Colorado Mesa University, Grand Junction, CO, USA
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel B Ketelhut
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Michael Blomquist
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Biomedical Sciences Department, Rocky Vista University, 255 E. Center St., Ivins, UT, 84738, USA
| | - Janée D Terwoord
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
- Biomedical Sciences Department, Rocky Vista University, 255 E. Center St., Ivins, UT, 84738, USA.
| |
Collapse
|
2
|
Wait SO, Charkoudian N, Skinner JW, Smith CJ. Combining hypoxia with thermal stimuli in humans: physiological responses and potential sex differences. Am J Physiol Regul Integr Comp Physiol 2023; 324:R677-R690. [PMID: 36971421 PMCID: PMC10202487 DOI: 10.1152/ajpregu.00244.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Increasing prevalence of native lowlanders sojourning to high altitudes (>2,500 m) for recreational, occupational, military, and competitive reasons has generated increased interest in physiological responses to multistressor environments. Exposure to hypoxia poses recognized physiological challenges that are amplified during exercise and further complicated by environments that might include combinations of heat, cold, and high altitude. There is a sparsity of data examining integrated responses in varied combinations of environmental conditions, with even less known about potential sex differences. How this translates into performance, occupational, and health outcomes requires further investigation. Acute hypoxic exposure decreases arterial oxygen saturation, resulting in a reflex hypoxic ventilatory response and sympathoexcitation causing an increase in heart rate, myocardial contractility, and arterial blood pressure, to compensate for the decreased arterial oxygen saturation. Acute altitude exposure impairs exercise performance, for example, reduced time to exhaustion and slower time trials, largely owing to impairments in pulmonary gas exchange and peripheral delivery resulting in reduced V̇o2max. This exacerbates with increasing altitude, as does the risk of developing acute mountain sickness and more serious altitude-related illnesses, but modulation of those risks with additional stressors is unclear. This review aims to summarize and evaluate current literature regarding cardiovascular, autonomic, and thermoregulatory responses to acute hypoxia, and how these may be affected by simultaneous thermal environmental challenges. There is minimal available information regarding sex as a biological variable in integrative responses to hypoxia or multistressor environments; we highlight these areas as current knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Seaver O Wait
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jared W Skinner
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| | - Caroline J Smith
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| |
Collapse
|
3
|
Henderson M, Halsey L. The metabolic upper critical temperature of the human thermoneutral zone. J Therm Biol 2022; 110:103380. [DOI: 10.1016/j.jtherbio.2022.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 05/11/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
|
4
|
Ko Y, Seol SH, Kim GH, Yu HH, Lee JY. Effects of cold exposure discontinuation on finger cold-induced vasodilation of older retired Korean female divers 'Haenyeos'. J Therm Biol 2020; 91:102642. [PMID: 32716883 DOI: 10.1016/j.jtherbio.2020.102642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
The purpose of the present study was to investigate the effects of cold exposure discontinuation on local cold tolerance of older retired female haenyeos in Korea. A total of 30 older women participated in this study: older retired haenyeos (89 ± 4 y in age, N = 10), active haenyeos (current divers) (75 ± 4 y, N = 10), and age-matched non-divers (75 ± 6 y, N = 10). Our criterion for local cold tolerance was cold-induced vasodilation (CIVD) of the finger. Active haenyeos showed greater local cold tolerance in terms of higher minimum temperature of the left finger during immersion and recovery than the other two groups (P < 0.05). Furthermore, active haenyeos showed higher skin temperatures of the right finger and left foot as well (P < 0.05). Older retired haenyeos displayed the second best minimum finger temperature both during immersion and during recovery (15 min and 20 min), whereas their local cold tolerance was evaluated as inferior to active haenyeos and the age-matched non-divers in CIVD frequency, finger pain sensation, thermal comfort, and finger temperature during the earlier period of recovery (5 min and 10 min). These results suggested that older retired haenyeos' cold tolerance in their extremities disappeared in terms of finger temperature in their initial recovery periods, but that they might still retain cold adaptation in terms of minimum finger temperature or later recovery responses, even though the attributes were not marked as much as those of active haenyeos.
Collapse
Affiliation(s)
- Yelin Ko
- College of Human Ecology, Seoul National University, Republic of Korea
| | - Seon-Hong Seol
- College of Human Ecology, Seoul National University, Republic of Korea
| | - Guk Hyeon Kim
- Korea Institute of Sports Science, Republic of Korea
| | - Hyeon Hui Yu
- College of Sports Sciences, Yong In University, Republic of Korea
| | - Joo-Young Lee
- College of Human Ecology, Seoul National University, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Republic of Korea.
| |
Collapse
|
5
|
Alba BK, Castellani JW, Charkoudian N. Cold‐induced cutaneous vasoconstriction in humans: Function, dysfunction and the distinctly counterproductive. Exp Physiol 2019; 104:1202-1214. [DOI: 10.1113/ep087718] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Billie K. Alba
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
- Oak Ridge Institute of Science and Education Belcamp MD USA
| | - John W. Castellani
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
| | - Nisha Charkoudian
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
| |
Collapse
|
6
|
Martini R, Bagno A. The wavelet analysis for the assessment of microvascular function with the laser Doppler fluxmetry over the last 20 years. Looking for hidden informations. Clin Hemorheol Microcirc 2018; 70:213-229. [DOI: 10.3233/ch-189903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Romeo Martini
- Department of Cardio-Thorax and Vascular Sciences, Unit of Angiology, Azienda Ospedaliera Universitaria di Padova, Italy
| | - Andrea Bagno
- Department of Industrial Engineering, Università di Padova, Italy
| |
Collapse
|
7
|
Johnson JM, Kellogg DL. Skin vasoconstriction as a heat conservation thermoeffector. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:175-192. [PMID: 30454589 DOI: 10.1016/b978-0-444-63912-7.00011-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cold exposure stimulates heat production and conservation to protect internal temperature. Heat conservation is brought about via reductions in skin blood flow. The focus, here, is an exploration of the mechanisms, particularly in humans, leading to that cutaneous vasoconstriction. Local skin cooling has several effects: (1) reduction of tonic nitric oxide formation by inhibiting nitric oxide synthase and element(s) downstream of the enzyme, which removes tonic vasodilator effects, yielding a relative vasoconstriction; (2) translocation of intracellular alpha-2c adrenoceptors to the vascular smooth-muscle cell membrane, enhancing adrenergic vasoconstriction; (3) increased norepinephrine release from vasoconstrictor nerves; and (4) cold-induced vasodilation, seen more clearly in anastomoses-rich glabrous skin. Cold-induced vasodilation occurs in nonglabrous skin when nitric oxide synthase or sympathetic function is blocked. Reflex responses to general body cooling complement these local effects. Sympathetic excitation leads to the increased release of norepinephrine and its cotransmitter neuropeptide Y, each of which contributes significantly to the vasoconstriction. The contributions of these two transmitters vary with aging, disease and, in women, reproductive hormone status. Interaction between local and reflex mechanisms is in part through effects on baseline and in part through removal of the inhibitory effects of nitric oxide on adrenergic vasoconstriction.
Collapse
Affiliation(s)
- John M Johnson
- Department of Physiology, University of Texas Health Center at San Antonio, San Antonio, TX, United States.
| | - Dean L Kellogg
- Department of Physiology, University of Texas Health Center at San Antonio, San Antonio, TX, United States; Department of Medicine, University of Texas Health Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
8
|
Abstract
Rho kinases (ROCKs) are the first discovered RhoA effectors that are now widely known for their effects on actin organization. Recent studies have shown that ROCKs play important roles in cardiac physiology. Abnormal activation of ROCKs participate in multiple cardiovascular pathological processes, including cardiac hypertrophy, apoptosis, fibrosis, systemic hypertension, and pulmonary hypertension. ROCK inhibitors, fasudil and statins, have shown beneficial cardiovascular effects in many animal studies, clinical trials, and applications. Here, we mainly discuss the current understanding of the physiological roles of Rho kinase signaling in the heart, and briefly summarize the roles of ROCKs in cardiac-related vascular dysfunctions. We will also discuss the clinical application of ROCK inhibitors.
Collapse
Affiliation(s)
- Yuan Dai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Weijia Luo
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Jiang Chang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| |
Collapse
|
9
|
Christmas KM, Patik JC, Khoshnevis S, Diller KR, Brothers RM. Pronounced and sustained cutaneous vasoconstriction during and following cyrotherapy treatment: Role of neurotransmitters released from sympathetic nerves. Microvasc Res 2017; 115:52-57. [PMID: 28842183 DOI: 10.1016/j.mvr.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/13/2017] [Accepted: 08/19/2017] [Indexed: 11/28/2022]
Abstract
Cryotherapy is a therapeutic technique using ice or cold water applied to the skin to manage soft tissue trauma and injury. While beneficial, there are some potentially detrimental side effects, such as pronounced vasoconstriction and tissue ischemia that are sustained for hours post-treatment. This study tested the hypothesis that this vasoconstriction is mediated by 1) activation of post-synaptic α-adrenergic receptors and/or 2) activation of post-synaptic neuropeptide Y1 (NPY Y1) receptors. 8 subjects were fitted with a commercially available cryotherapy unit with a water perfused bladder on the lateral portion of the right calf. Participants were instrumented with four intradermal microdialysis probes beneath the bladder. The following conditions were applied at the four treatment sites: 1) control (Ringer solution), 2) combined post-synaptic β-adrenergic receptors and neuropeptide (NPY) Y1 receptors blockade (P+B site), 3) combined post-synaptic α-adrenergic receptor, β-adrenergic receptor, and NPY Y1 receptor blockade (Y+P+B site), and 4) blockade of pre-synaptic release of all neurotransmitters from the sympathetic nerves (BT site). Following thermoneutral baseline data collection, 1°C water was perfused through the bladder for 30min, followed by passive rewarming for 60min. Skin temperature (Tskin) fell from ~34°C to ~18.5°C during active cooling across all sites and there was no difference between sites (P>0.05 vs. control for each site). During passive rewarming Tskin rose to a similar degree in all sites (P>0.05 relative to the end of cooling). In the first 20min of cooling %CVC was reduced at all sites however, this response was blunted in the BT and the Y+P+B sites (P>0.05 for all comparisons). By the end of cooling the degree of vasoconstriction was similar between sites with the exception that the reduction in %CVC in the Y+B+P site was less relative to the reduction in the control site. %CVC was unchanged in any of the sites during passive rewarming such that each remained similar to values obtained at the end of active cooling. These findings indicate that the initial vasoconstriction (i.e. within the 1st 20min) that occurs during cryotherapy induced local cooling is achieved via activation of post-synaptic α-adrenergic receptors; whereas nonadrenergic mechanisms predominate as the duration of cooling continues. The sustained vasoconstriction that occurs following cessation of the cooling stimulus does not appear to be related to activation of post-synaptic α-adrenergic receptors or NPY Y1 receptor.
Collapse
Affiliation(s)
- Kevin M Christmas
- Environmental and Autonomic Physiology Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Jordan C Patik
- Environmental and Autonomic Physiology Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States; Integrative Vascular Physiology Laboratory, Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Sepideh Khoshnevis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Kenneth R Diller
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - R Matthew Brothers
- Environmental and Autonomic Physiology Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States; Integrative Vascular Physiology Laboratory, Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
10
|
Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 2017; 109:33-47. [PMID: 28274817 PMCID: PMC5482368 DOI: 10.1016/j.freeradbiomed.2017.02.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
The systemic and cerebral microcirculation contribute critically to regulation of local and global blood flow and perfusion pressure. Microvascular dysfunction, commonly seen in numerous cardiovascular pathologies, is associated with alterations in the oxidative environment including potentiated production of reactive oxygen species (ROS) and subsequent activation of redox signaling pathways. NADPH oxidases (Noxs) are a primary source of ROS in the vascular system and play a central role in cardiovascular health and disease. In this review, we focus on the roles of Noxs in ROS generation in resistance arterioles and capillaries, and summarize their contributions to microvascular physiology and pathophysiology in both systemic and cerebral microcirculation. In light of the accumulating evidence that Noxs are pivotal players in vascular dysfunction of resistance arterioles, selectively targeting Nox isozymes could emerge as a novel and effective therapeutic strategy for preventing and treating microvascular diseases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Fujii N, Amano T, Halili L, Louie JC, Zhang SY, McNeely BD, Kenny GP. Intradermal administration of endothelin-1 attenuates endothelium-dependent and -independent cutaneous vasodilation via Rho kinase in young adults. Am J Physiol Regul Integr Comp Physiol 2016; 312:R23-R30. [PMID: 27881399 DOI: 10.1152/ajpregu.00368.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
We recently showed that intradermal administration of endothelin-1 diminished endothelium-dependent and -independent cutaneous vasodilation. We evaluated the hypothesis that Rho kinase may be a mediator of this response. We also sought to evaluate if endothelin-1 increases sweating. In 12 adults (25 ± 6 yr), we measured cutaneous vascular conductance (CVC) and sweating during 1) endothelium-dependent vasodilation induced via administration of incremental doses of methacholine (0.25, 5, 100, and 2,000 mM each for 25 min) and 2) endothelium-independent vasodilation induced via administration of 50 mM sodium nitroprusside (20-25 min). Responses were evaluated at four skin sites treated with either 1) lactated Ringer solution (Control), 2) 400 nM endothelin-1, 3) 3 mM HA-1077 (Rho kinase inhibitor), or 4) endothelin-1+HA-1077. Pharmacological agents were intradermally administered via microdialysis. Relative to the Control site, endothelin-1 attenuated endothelium-dependent vasodilation (CVC at 2,000 mM methacholine, 80 ± 10 vs. 56 ± 15%max, P < 0.01); however, this response was not detected when the Rho kinase inhibitor was simultaneously administered (CVC at 2,000 mM methacholine for Rho kinase inhibitor vs. endothelin-1 + Rho kinase inhibitor sites: 73 ± 9 vs. 72 ± 11%max, P > 0.05). Endothelium-independent vasodilation was attenuated by endothelin-1 compared with the Control site (CVC, 92 ± 13 vs. 70 ± 14%max, P < 0.01). However, in the presence of Rho kinase inhibition, endothelin-1 did not affect endothelium-independent vasodilation (CVC at Rho kinase inhibitor vs. endothelin-1+Rho kinase inhibitor sites: 81 ± 9 vs. 86 ± 10%max, P > 0.05). There was no between-site difference in sweating throughout (P > 0.05). We show that in young adults, Rho kinase is an important mediator of the endothelin-1-mediated attenuation of endothelium-dependent and -independent cutaneous vasodilation, and that endothelin-1 does not increase sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| |
Collapse
|
12
|
Affiliation(s)
- Fredrick M Wigley
- From the Division of Rheumatology (F.M.W.) and the Department of Anesthesiology and Critical Care Medicine (N.A.F.), Johns Hopkins University School of Medicine, Baltimore
| | - Nicholas A Flavahan
- From the Division of Rheumatology (F.M.W.) and the Department of Anesthesiology and Critical Care Medicine (N.A.F.), Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
13
|
Christmas KM, Patik JC, Khoshnevis S, Diller KR, Brothers RM. Sustained cutaneous vasoconstriction during and following cyrotherapy treatment: Role of oxidative stress and Rho kinase. Microvasc Res 2016; 106:96-100. [PMID: 27089823 DOI: 10.1016/j.mvr.2016.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/25/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Cryotherapy is a therapeutic technique using ice or cold water applied to the skin to reduce bleeding, inflammation, pain, and swelling following soft tissue trauma and injury. While beneficial, there are some side effects such as pronounced vasoconstriction and tissue ischemia that are sustained for hours post-treatment. This study tested the hypothesis that this vasoconstriction is mediated by 1) the Rho-kinase pathway and/or 2) elevated oxidative stress. 9 subjects were fitted with a commercially available cryotherapy unit with a water perfused bladder on the lateral portion of the right calf. Participants were instrumented with three microdialysis probes underneath the bladder. One site received lactated ringers (control site), one received the Rho-Kinase inhibitor Fasudil, and one received Ascorbic Acid. Skin temperature (Tskin) and cutaneous vascular conductance (CVC) was measured at each site. Subjects had 1°C water perfused through the bladder for 30min, followed by passive rewarming for 90min. Tskin fell from ~34°C to ~18.0°C during active cooling across all sites and this response was similar for all sites (P>0.05 for all comparisons). During passive rewarming Tskin rose to a similar degree in all sites (P>0.05 relative to the end of cooling). %CVC was reduced during active cooling in all sites; however, the magnitude of this response was blunted in the Fasudil site relative to control (P<0.001 for all comparisons) and min 25 and 30 of cooling in the Ascorbic Acid site (P<0.05). During passive rewarming %CVC at the control and Ascorbic Acid sites did not change such that values were similar to the end of cooling (P>0.05 for each comparison). %CVC at the Fasudil site remained elevated during passive rewarming such that values were higher compared to the control and Ascorbic Acid sites throughout the 90min of passive rewarming (P<0.001 main effect of Fasudil). These findings indicate that the Rho-kinase pathway contributes to pronounced vasoconstriction during cryotherapy as well as the sustained vasoconstriction during the subsequent rewarming period post treatment.
Collapse
Affiliation(s)
- Kevin M Christmas
- Environmental and Autonomic Physiology Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Jordan C Patik
- Environmental and Autonomic Physiology Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States; Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Sepideh Khoshnevis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Kenneth R Diller
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - R Matthew Brothers
- Environmental and Autonomic Physiology Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States; Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
14
|
Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton Neurosci 2016; 196:63-74. [DOI: 10.1016/j.autneu.2016.02.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
|
15
|
Lang JA, Kolb KE. Angiotensin II type I receptor blockade attenuates reflex cutaneous vasoconstriction in aged but not young skin. Am J Physiol Heart Circ Physiol 2015; 308:H1215-20. [DOI: 10.1152/ajpheart.00017.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/10/2015] [Indexed: 11/22/2022]
Abstract
Stimulation of angiotensin II type I receptors (AT1R) elicits vasoconstriction (VC) that may be occurring through the activation of a pathogenic vascular pathway such as Rho kinase (ROCK). We hypothesize that reflex cutaneous VC to whole body cooling (mean skin temperature = 30.5°C) in older humans relies in part on AT1R activation, which may explain greater ROCK activity attendant with aging. Two microdialysis (MD) fibers were placed in the forearm skin of 10 young (Y; 24 ± 1 yr) and 10 older (O; 70 ± 2 yr) individuals for infusion of 1) lactated Ringer's solution (switched to fasudil, a ROCK antagonist, after cooling); and 2) AT1R blockade with losartan. Laser Doppler flux (LDF) was measured over each MD site and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/mean arterial pressure) and expressed as percent change from baseline (%ΔCVCBASELINE). In older individuals the VC response to whole body cooling was blunted (Y = −34 ± 2, O = −17 ± 3%ΔCVC) and was further attenuated at the losartan site (Y = −34 ± 3, O = −9 ± 3%ΔCVC; P < 0.05). The VC response to an exogenous 10-μM dose of angiotensin II (Y = −27 ± 3, O = −42 ± 5%ΔCVC) was completely blocked in sites pretreated with losartan or with fasudil. These data suggest that AT1R activation contributes to the reflex VC response in aged but not young skin. Furthermore, the angiotensin II component of the VC response appears to occur primarily through a ROCK-mediated mechanism.
Collapse
Affiliation(s)
- James A. Lang
- Department of Physical Therapy, Des Moines University, Des Moines, Iowa
| | - Kelsey E. Kolb
- Department of Physical Therapy, Des Moines University, Des Moines, Iowa
| |
Collapse
|
16
|
Abstract
Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview.
Collapse
Affiliation(s)
- Xiaojiang Xu
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | |
Collapse
|
17
|
Abstract
During exposure to cold, our bodies attempt to maintain normal core temperature by restricting heat loss through cutaneous vasoconstriction, and by increasing heat production through shivering and nonshivering thermogenesis. In selected areas of human skin (including on the fingers and toes), the vascular system has specialized structural and functional features that enable it to contribute to thermoregulation. These features include arteriovenous anastomoses, which directly connect the arterial and venous systems and bypass the nutritional capillaries supplying blood to the skin tissue. Of note, Raynaud phenomenon predominantly affects the arterial territories supplying these specialized areas of skin. Indeed, Raynaud phenomenon can be considered a disorder of vascular thermoregulatory control. This Review presents an understanding of Raynaud phenomenon in the context of vascular and thermoregulatory control mechanisms, including the role of unique thermosensitive vascular structural and functional specialization, and describes the potential role of thermogenesis in this disorder. This new approach provides remarkable insight into the disease process and builds a framework to critically appraise the existing knowledge base. This paradigm also explains the deficiencies in some current therapeutic approaches, and highlights new areas of potential relevance to the pathogenesis and treatment of Raynaud phenomenon that should be expanded and explored.
Collapse
|
18
|
Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol 2014; 4:33-89. [PMID: 24692134 DOI: 10.1002/cphy.c130015] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this review, we focus on significant developments in our understanding of the mechanisms that control the cutaneous vasculature in humans, with emphasis on the literature of the last half-century. To provide a background for subsequent sections, we review methods of measurement and techniques of importance in elucidating control mechanisms for studying skin blood flow. In addition, the anatomy of the skin relevant to its thermoregulatory function is outlined. The mechanisms by which sympathetic nerves mediate cutaneous active vasodilation during whole body heating and cutaneous vasoconstriction during whole body cooling are reviewed, including discussions of mechanisms involving cotransmission, NO, and other effectors. Current concepts for the mechanisms that effect local cutaneous vascular responses to local skin warming and cooling are examined, including the roles of temperature sensitive afferent neurons as well as NO and other mediators. Factors that can modulate control mechanisms of the cutaneous vasculature, such as gender, aging, and clinical conditions, are discussed, as are nonthermoregulatory reflex modifiers of thermoregulatory cutaneous vascular responses.
Collapse
Affiliation(s)
- John M Johnson
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | |
Collapse
|
19
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
20
|
Smith CJ, Santhanam L, Alexander LM. Rho-Kinase activity and cutaneous vasoconstriction is upregulated in essential hypertensive humans. Microvasc Res 2013; 87:58-64. [PMID: 23481864 DOI: 10.1016/j.mvr.2013.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/16/2013] [Accepted: 02/14/2013] [Indexed: 01/01/2023]
Abstract
Essential hypertension (HT) is associated with endothelial dysfunction augmented vasoconstriction (VC) which may be secondary to increased Rho/Rho-Kinase (ROCK)-dependent mechanisms. Our aim was to assess the in vivo magnitude of cutaneous VC to local cooling as a ROCK specific stimulus, and in vitro evaluate ROCK activity in the skin from HT humans. Four microdialysis fibers were placed in the forearm of 9 pre- to stage I hypertensive (MAP: 106±3 mm Hg) and 11 normotensive (NT; 86±1 mm Hg) men and women: Ringers (control), 3mM fasudil (ROCK inhibited), 5mM yohimbine+1mM proprananol (α- and β-adrenoceptor inhibited; Y+P), Y+P+3mM fasudil (ROCK and adrenocepor inhibited). Skin blood flow was measured during local cooling (Tskl 24°C) and ROCK activity in the skin biopsy samples was determined with western blot. In vitro phosphorylated myosin phosphatase target subunit 1 (pMYPT-1)/ROCK was increased in the HT skin samples (p=0.0018). Functionally, no difference in basal vasomotor tone (Tskl 34°C) was observed between the groups (HT: 0.36±0.07 vs. NT: 0.31±0.07 CVC), nor at the control site during local cooling. Pre- to stage 1 hypertensives show greater ROCK-mediated vasoconstriction at early (1-5 min; HT: -0.8±0.2 versus NT: -0.3±0.2 ΔCVC baseline 1; P<0.0001) and late (36-40 min; HT: -0.9±0.1 versus NT: -0.5±0.2 ΔCVC baseline 1; P<0.0001) phases of local cooling. These data suggest that the magnitude of cutaneous vasoconstriction to local cooling does not differ in normotensive and pre- to stage I essential hypertensive humans; however, ROCK activity is increased and functional vasoconstriction is increasingly dependent upon Rho/ROCK mechanisms with essential hypertension.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
21
|
Tew GA, Saxton JM, Hodges GJ. Exercise training and the control of skin blood flow in older adults. J Nutr Health Aging 2012; 16:237-41. [PMID: 22456779 DOI: 10.1007/s12603-011-0156-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ability to control skin blood flow decreases with primary aging, making older adults less able to adequately thermoregulate and repair cutaneous wounds. Lifestyle factors such as physical activity, diet, and smoking might interact with the aging process to modulate "normal" age-associated changes in the cutaneous microcirculation. The main focus of this brief review is the effects of exercise training on the control of skin blood flow in older adults.
Collapse
Affiliation(s)
- G A Tew
- Centre for Sport and Exercise Science, Sheffield Hallam University, UK.
| | | | | |
Collapse
|
22
|
Mahé G, Humeau-Heurtier A, Durand S, Leftheriotis G, Abraham P. Assessment of Skin Microvascular Function and Dysfunction With Laser Speckle Contrast Imaging. Circ Cardiovasc Imaging 2012; 5:155-63. [DOI: 10.1161/circimaging.111.970418] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guillaume Mahé
- From the Laboratory of Vascular Investigations, University Hospital of Angers and Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI)-Unité mixte UMR CNRS 6214/INSERM 771, Faculté de Médecine, Angers, France (G.M., G.L., P.A.); Laboratoire d'Ingénierie des Systèmes Automatisés (LISA), Université d'Angers, Angers, France (A.H.-H.); and Laboratory “Motricité, Interactions, Performance” EA 4334, University of Le Mans, Faculty of Sport Sciences, Le Mans, France (S.D.)
| | - Anne Humeau-Heurtier
- From the Laboratory of Vascular Investigations, University Hospital of Angers and Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI)-Unité mixte UMR CNRS 6214/INSERM 771, Faculté de Médecine, Angers, France (G.M., G.L., P.A.); Laboratoire d'Ingénierie des Systèmes Automatisés (LISA), Université d'Angers, Angers, France (A.H.-H.); and Laboratory “Motricité, Interactions, Performance” EA 4334, University of Le Mans, Faculty of Sport Sciences, Le Mans, France (S.D.)
| | - Sylvain Durand
- From the Laboratory of Vascular Investigations, University Hospital of Angers and Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI)-Unité mixte UMR CNRS 6214/INSERM 771, Faculté de Médecine, Angers, France (G.M., G.L., P.A.); Laboratoire d'Ingénierie des Systèmes Automatisés (LISA), Université d'Angers, Angers, France (A.H.-H.); and Laboratory “Motricité, Interactions, Performance” EA 4334, University of Le Mans, Faculty of Sport Sciences, Le Mans, France (S.D.)
| | - Georges Leftheriotis
- From the Laboratory of Vascular Investigations, University Hospital of Angers and Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI)-Unité mixte UMR CNRS 6214/INSERM 771, Faculté de Médecine, Angers, France (G.M., G.L., P.A.); Laboratoire d'Ingénierie des Systèmes Automatisés (LISA), Université d'Angers, Angers, France (A.H.-H.); and Laboratory “Motricité, Interactions, Performance” EA 4334, University of Le Mans, Faculty of Sport Sciences, Le Mans, France (S.D.)
| | - Pierre Abraham
- From the Laboratory of Vascular Investigations, University Hospital of Angers and Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI)-Unité mixte UMR CNRS 6214/INSERM 771, Faculté de Médecine, Angers, France (G.M., G.L., P.A.); Laboratoire d'Ingénierie des Systèmes Automatisés (LISA), Université d'Angers, Angers, France (A.H.-H.); and Laboratory “Motricité, Interactions, Performance” EA 4334, University of Le Mans, Faculty of Sport Sciences, Le Mans, France (S.D.)
| |
Collapse
|
23
|
Holowatz LA, Kenney WL. Acute localized administration of tetrahydrobiopterin and chronic systemic atorvastatin treatment restore cutaneous microvascular function in hypercholesterolaemic humans. J Physiol 2011; 589:4787-97. [PMID: 21807618 PMCID: PMC3213424 DOI: 10.1113/jphysiol.2011.212100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/29/2011] [Indexed: 11/08/2022] Open
Abstract
Elevated oxidized low-density lipoproteins (LDL) are associated with vascular dysfunction in the cutaneous microvasculature, induced in part by upregulated arginase activity and increased globalized oxidant stress. Since tetrahydrobiopterin (BH(4)) is an essential cofactor for endothelial nitric oxide synthase (NOS3), decreased bioavailability of the substrate l-arginine and/or BH(4) may contribute to decreased NO production with hypercholesterolaemia. We hypothesized that (1) localized administration of BH(4) would augment NO-dependent vasodilatation in hypercholesterolaemic human skin, which would be further increased when combined with arginase inhibition and (2) the improvement induced by localized BH(4) would be attenuated after a 3 month oral atorvastatin intervention (10 mg). Four microdialysis fibres were placed in the skin of nine normocholesterolaemic (NC: LDL = 95 ± 4 mg dl(-1)) and nine hypercholesterolaemic (HC: LDL = 177 ± 6 mg dl(-1)) men and women before and after 3 months of systemic atorvastatin. Sites served as control, NOS inhibited, BH(4), and arginase inhibited + BH(4) (combo). Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilatation. After the established plateau l-NAME was perfused in all sites to quantify NO-dependent vasodilatation (NO). Data were normalized to maximum cutaneous vascular conductance (CVC). Vasodilatation at the plateau and NO-dependent vasodilatation were reduced in HC subjects (plateau HC: 70 ± 5% CVC(max) vs. NC: 95 ± 2% CVC(max); NO HC: 45 ± 5% CVC(max) vs. NC: 64 ± 5% CVC(max); both P < 0.001). Localized BH(4) alone or combo augmented the plateau (BH(4): 93 ± 3% CVC(max); combo 89 ± 3% CVC(max), both P < 0.001) and NO-dependent vasodilatation in HC (BH(4): 74 ± 3% CVC(max); combo 76 ± 3% CVC(max), both P < 0.001), but there was no effect in NC subjects (plateau BH(4): 90 ± 2% CVC(max); combo 95 ± 3% CVC(max); NO-dependent vasodilatation BH(4): 68 ± 3% CVC(max); combo 58 ± 4% CVC(max), all P > 0.05 vs. control site). After the atorvastatin intervention (LDL = 98 ± mg * dl(-1)) there was an increase in the plateau in HC (96 ± 4% CVC(max), P < 0.001) and NO-dependent vasodilatation (68 ± 3% CVC(max), P < 0.001). Localized BH(4) alone or combo was less effective at increasing NO-dependent vasodilatation after the drug intervention (BH(4): 60 ± 5% CVC(max); combo 58 ± 2% CVC(max), both P < 0.001). These data suggest that decreased BH(4) bioavailability contributes in part to cutaneous microvascular dysfunction in hypercholesterolaemic humans and that atorvastatin is an effective systemic treatment for improving NOS coupling mechanisms in the microvasculature.
Collapse
Affiliation(s)
- Lacy A Holowatz
- Department of Kinesiology and Intercollege Program in Physiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
24
|
Smith CJ, Santhanam L, Bruning RS, Stanhewicz A, Berkowitz DE, Holowatz LA. Upregulation of inducible nitric oxide synthase contributes to attenuated cutaneous vasodilation in essential hypertensive humans. Hypertension 2011; 58:935-42. [PMID: 21931069 DOI: 10.1161/hypertensionaha.111.178129] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Essential hypertension is a proinflammatory, proconstrictor disease coinciding with endothelial dysfunction and inward vessel remodeling. Using the skin circulation, our aim was to determine whether inducible NO synthase (iNOS) upregulation attenuates NO-dependent cutaneous vasodilation in hypertensive humans. We hypothesized that, with hypertension, localized iNOS inhibition would restore vasodilation in response to NO-dependent stimuli, and iNOS expression would be increased and phosphorylated vasodilator-stimulated phosphoprotein would be decreased. For, in vivo protocols, 4 intradermal microdialysis fibers were placed in 9 hypertensive and 10 normotensive men and women (systolic blood pressure: 146±4 versus 113±2 mm Hg; P<0.001). Microdialysis fibers served as control, iNOS inhibited (1400 W), neuronal NO synthase inhibited (N(ω)-propyl-l-arginine), and nonselective NOS inhibited (N(G)-nitro-l-arginine methyl ester). Cutaneous vascular conductance was calculated (percentage of sodium nitroprusside) during standardized local heating (42°C) and acetylcholine dose-response protocols (0.01, 0.10, 1.00, 5.00, 10.00, 50.00, 100.00 mmol/L). The NO-dependent local heating response was attenuated at control (95±2% versus 76±2% cutaneous vascular conductance; P<0.05) and neuronal NO synthase-inhibited sites (94±4% versus 77±3% cutaneous vascular conductance; P<0.01) in hypertensives. iNOS inhibition augmented the NO-dependent local heating response (93±2% versus 89±10% cutaneous vascular conductance). Acetylcholine-induced vasodilation was attenuated in control sites at doses ≥0.1 mmol/L of acetylcholine in hypertensives and was restored with iNOS inhibition (0.1 mmol/L, P<0.05; 1, 5, and 10 mmol/L, P<0.001; 50 and 100 mmol/L, P<0.01). In vitro iNOS expression was increased (P=0.006) and phosphorylated vasodilator-stimulated phosphoprotein was decreased in skin from hypertensive humans (P=0.04). These data suggest that iNOS is upregulated in essential hypertensive humans and contributes to reduced NO-dependent cutaneous vasodilation.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Medow MS, Bamji N, Clarke D, Ocon AJ, Stewart JM. Reactive oxygen species (ROS) from NADPH and xanthine oxidase modulate the cutaneous local heating response in healthy humans. J Appl Physiol (1985) 2011; 111:20-6. [PMID: 21436462 DOI: 10.1152/japplphysiol.01448.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Local cutaneous heating produces vasodilation that is largely nitric oxide (NO) dependent. We showed that angiotensin II (ANG II) attenuates this by an ANG II receptor, type 1 (AT1R)-dependent mechanism that is reversible with the antioxidant ascorbate, indicating oxidative stress. Reactive oxygen species (ROS) produced by ANG II employ NADPH and xanthine oxidase pathways. To determine whether these mechanisms pertain to skin, we measured cutaneous local heating with 10 μM ANG II, using apocynin to inhibit NADPH oxidase and allopurinol to inhibit xanthine oxidase. We also inhibited superoxide with tempol, and H(2)O(2) with ebselen. We heated the skin of the calf in 8 healthy volunteers (24.5-29.9 yr old) to 42°C and measured local blood flow to assess the percentage of maximum cutaneous vascular conductance. We remeasured while perfusing allopurinol, apocynin, ebselen, and tempol through individual microdialysis catheters. This was then repeated with ANG II combined with antioxidant drugs. tempol and apocynin alone had no effect on the heat response. Allopurinol enhanced the entire response (125% of heat alone), while ebselen suppressed the heat plateau (76% of heat alone). ANG II alone caused significant attenuation of the entire heat response (52%). When added to ANG II, Allopurinol partially reversed the ANG II attenuation. Heat with ebselen and ANG II were similar to heat and ANG II; ebselen only partially reversed the ANG II attenuation. Apocynin and tempol each partially reversed the attenuation caused by ANG II. This suggests that ROS, produced by ANG II via NADPH and xanthine oxidase pathways, modulates the response of skin to the application of heat, and thus contributes to the control of local cutaneous blood flow.
Collapse
Affiliation(s)
- Marvin S Medow
- Department of Pediatrics, New York Medical College, The Center for Hypotension, 19 Bradhurst Ave., Suite 1600S, Hawthorne, NY 10532, USA.
| | | | | | | | | |
Collapse
|
26
|
Holowatz LA, Santhanam L, Webb A, Berkowitz DE, Kenney WL. Oral atorvastatin therapy restores cutaneous microvascular function by decreasing arginase activity in hypercholesterolaemic humans. J Physiol 2011; 589:2093-103. [PMID: 21486801 DOI: 10.1113/jphysiol.2010.203935] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Elevated low-density lipoproteins (LDLs) are associated with vascular dysfunction evident in the cutaneous microvasculature. We hypothesized that uncoupled endothelial nitric oxide synthase (NOS3) through upregulated arginase contributes to cutaneous microvascular dysfunction in hyperocholesterolaemic (HC) humans and that a statin intervention would decrease arginase activity. Five microdialysis fibres were placed in the skin of nine normocholesterolaemic (NC: LDL level 95±4 mg dl⁻¹) and nine hypercholesterolaemic (HC: LDL: 177±6 mg dl⁻¹) men and women before and after 3 months of systemic atrovastatin. Sites served as control, NOS inhibited, arginase inhibited, L-arginine supplemented and arginase inhibited plus L-arginine supplemented. Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilatation. L-NAME was infused after the established plateau in all sites to quantify NO-dependent vasodilatation. Data were normalized to maximum cutaneous vascular conductance (CVC(max)). Skin samples were obtained to measure total arginase activity and arginase I and arginase II protein. Vasodilatation was reduced in hyperocholesterolaemic subjects (HC: 76±2 vs. NC: 94±3%CVC(max), P < 0.001) as was NO-dependent vasodilatation (HC: 43±5 vs. NC: 62±4%CVC(max), P < 0.001). The plateau and NO-dependent vasodilatation were augmented in HC with arginase inhibition (92±2, 67±2%CVC(max), P < 0.001), L-arginine (93±2, 71±5%CVC(max), P < 0.001) and combined treatments (94±4, 65±5%CVC(max), P < 0.001) but not in NC. After statin intervention (LDL: 98±5 mg dl⁻¹) there was no longer a difference between control sites (88±4, 61±5%CVC(max)) and localized microdialysis treatment sites (all P > 0.05). Arginase activity and protein were increased in HC skin (P < 0.05 vs. NC) and activity decreased with atrovastatin treatment (P < 0.05). Reduced NOS3 substrate availability through upregulated arginase contributes to cutaneous microvascular dysfunction in hyperocholesterolaemic humans, which is corrected with atorvastatin therapy.
Collapse
Affiliation(s)
- Lacy A Holowatz
- Department of Kinesiology and Intercollege Program in Physiology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
27
|
Lang JA, Holowatz LA, Kenney WL. Tetrahydrobiopterin does not affect end-organ responsiveness to norepinephrine-mediated vasoconstriction in aged skin. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1651-5. [PMID: 20926766 PMCID: PMC3007192 DOI: 10.1152/ajpregu.00138.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 09/30/2010] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that tetrahydrobiopterin (BH(4)) augments reflex vasoconstriction (VC) in aged skin. Although this appears to occur through its role in norepinephrine (NE) biosynthesis, the extent with which vascular mechanisms are affected are unknown. We hypothesized that localized BH(4) supplementation would not affect the VC response to exogenous NE when sympathetic nerves were blocked. Two microdialysis fibers were placed in bretylium tosylate pretreated (presynaptically blocks neurotransmitter release from sympathetic adrenergic nerve terminals; iontophoresis, 200 μA for 20 min) 3-cm(2) forearm skin of 10 young (Y) and 10 older (O) subjects for perfusion of 1) Ringer (control) and 2) 5 mM BH(4). While local skin temperature was clamped at 34°C, six concentrations of NE (10(-12), 10(-10), 10(-8), 10(-6), 10(-4), 10(-2) M) were infused at each drug-treated site. Cutaneous vascular conductance (CVC) was calculated (CVC = laser Doppler flux/mean arterial pressure) and normalized to baseline (%ΔCVC(base)). Despite prejunctional adrenergic blockade, NE-mediated VC was blunted in aged skin at each NE dose (10(-12): -12 ± 2 vs. -21 ± 2; 10(-10): -15 ± 2 vs. -27 ± 1; 10(-8): -22 ± 2 vs. -32 ± 2; 10(-6): -27 ± 2 vs. -38 ± 1; 10(-4): -52 ± 3 vs. -66 ± 5; 10(-2): -62 ± 3 vs. -75 ± 4%ΔCVC(base); P < 0.01), and this response was not affected by pretreatment with BH(4) (P > 0.05). Localized BH(4) did not affect end-organ responsiveness to exogenous NE, suggesting that the effects of BH(4) on cutaneous VC are primarily isolated to the NE biosynthetic pathway.
Collapse
Affiliation(s)
- James A Lang
- Pennsylvania State University, Noll Laboratory, Department of Kinesiology, University Park, Pennsylvania, USA.
| | | | | |
Collapse
|
28
|
Cutaneous sympathetic neural responses to body cooling in type 2 diabetes mellitus. Auton Neurosci 2010; 159:15-9. [PMID: 20659817 DOI: 10.1016/j.autneu.2010.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/07/2010] [Accepted: 06/30/2010] [Indexed: 11/23/2022]
Abstract
In humans, sympathetic vasoconstrictor nerves in the skin contribute to resting vascular tone and mediate reflex vasoconstrictor responses to body cooling. Although it is well recognized that type 2 diabetes mellitus (T2DM) is associated with peripheral neurovascular changes, it is unclear to what extent the thermal responsiveness of the cutaneous vasoconstrictor system is altered in individuals with relatively uncomplicated T2DM. We tested the hypothesis that skin sympathetic nerve activity (SSNA) is decreased at baseline and during body cooling in individuals with T2DM compared to healthy controls (C) of similar age and body size. We measured SSNA (microneurography) and skin blood flow (laser-Doppler flowmetry) in the innervated area in 8 T2DM and 12 C subjects at baseline and during 3-4min of rapid whole body cooling via a water-perfused suit. SSNA (total integrated activity) increased, and cutaneous vascular conductance decreased in both groups during body cooling (P<0.01 for both). However, SSNA was not different between groups during either baseline or body cooling conditions (P=NS). The deltas in SSNA between baseline and body cooling were similar between groups: T2DM: 55±27 and C: 57±12 units (P=NS). We conclude that reflex cutaneous sympathetic and vascular responses to rapid whole body cooling are preserved in relatively healthy individuals with T2DM.
Collapse
|
29
|
Zerpa H, Berhane Y, Woodcock H, Elliott J, Bailey SR. Rho kinase activation and ROS production contributes to the cooling enhanced contraction in cutaneous equine digital veins. J Appl Physiol (1985) 2010; 109:11-8. [DOI: 10.1152/japplphysiol.01301.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A decrease in environmental temperature can directly affect the contractility of cutaneous vasculature, mediated in part by α2-adrenoceptors. Most of the cellular mechanisms underlying the cooling-enhanced contractility to α2-adrenoceptor agonists have been reported in cutaneous arteries but little information is available on cutaneous veins. To investigate the cellular mechanisms associated with the cooling-enhanced contraction to UK-14304 (α2-adrenoceptor agonist), isolated equine digital veins (EDVs) were studied at 30°C and 22°C. The effects of inhibitors were studied on the contractile response to UK-14304 (0.1 μM). The cooling-enhanced responses were inhibited by Rho kinase inhibitors [maximum response to UK-14304 95.2 ± 8% of response to depolarizing Krebs solution (DKS) in control vessels cooled to 22°C, compared with 31.4 ± 6% in the presence of fasudil 1 μM and 75.8 ± 6% with Y-27632 0.1 μM] and the effects of these inhibitors were considerably less at 30°C (control response 56.4 ± 5% of DKS; 34.9 ± 6% with fasudil 1 μM and 50.6 ± 9% with Y-27632 0.1 μM). Furthermore, Western blotting showed that one of the downstream targets for Rho kinase activity, ezrin/radixin/moesin, was phosphorylated after cooling and reduced by fasudil (1 μM) only at 22°C. The activation of protein kinase C contributed to the contractile response, but predominantly at 30°C (maximum response 82.3 ± 9% of DKS for control; 57.7 ± 10% in the presence of chelerythrine 10 μM) with no significant effect at 22°C. The reduction of the response at 22°C by antioxidants, rotenone (14% reduction), and tempol (21% reduction) suggested the contribution of reactive oxygen species (ROS). No evidence was obtained to support the participation of tyrosine kinase. These data demonstrate that Rho kinase activation and the production of ROS contributes to the cooling-enhanced contraction in these cutaneous digital veins.
Collapse
Affiliation(s)
- H. Zerpa
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Y. Berhane
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - H. Woodcock
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - J. Elliott
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - S. R. Bailey
- Faculty of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Johnson JM, Kellogg DL. Local thermal control of the human cutaneous circulation. J Appl Physiol (1985) 2010; 109:1229-38. [PMID: 20522732 DOI: 10.1152/japplphysiol.00407.2010] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The level of skin blood flow is subject to both reflex thermoregulatory control and influences from the direct effects of warming and cooling the skin. The effects of local changes in temperature are capable of maximally vasoconstricting or vasodilating the skin. They are brought about by a combination of mechanisms involving endothelial, adrenergic, and sensory systems. Local warming initiates a transient vasodilation through an axon reflex, succeeded by a plateau phase due largely to nitric oxide. Both phases are supported by sympathetic transmitters. The plateau phase is followed by the die-away phenomenon, a slow reversal of the vasodilation that is dependent on intact sympathetic vasoconstrictor nerves. The vasoconstriction with local skin cooling is brought about, in part, by a postsynaptic upregulation of α(2c)-adrenoceptors and, in part, by inhibition of the nitric oxide system at at least two points. There is also an early vasodilator response to local cooling, dependent on the rate of cooling. The mechanism for that transient vasodilation is not known, but it is inhibited by intact sympathetic vasoconstrictor nerve function and by intact sensory nerve function.
Collapse
Affiliation(s)
- John M Johnson
- Dept. of Physiology, Univ. of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio TX 78231, USA.
| | | |
Collapse
|
31
|
Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age. Eur J Appl Physiol 2010; 109:915-21. [PMID: 20300768 PMCID: PMC2892071 DOI: 10.1007/s00421-010-1414-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2010] [Indexed: 11/21/2022]
Abstract
During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18–28 years) and 16 elderly (E: 68–78 years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33°C. Next, local temperature was reduced to 24°C. After 15 min of local cooling, noradrenalin (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: −76 ± 3 vs. E: −60 ± 5 (P < 0.01), dorsal hand Y: −74 ± 4 vs. E: −72 ± 4 (n.s.), ventral hand Y: −80 ± 7 vs. E: −70 ± 11 (n.s.)]. In conclusion, in contrast to results from the ventral forearm, elderly did not show a blunted response to local cooling and noradrenalin at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age.
Collapse
|
32
|
Hodges GJ, Johnson JM. Adrenergic control of the human cutaneous circulation. Appl Physiol Nutr Metab 2009; 34:829-39. [DOI: 10.1139/h09-076] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cutaneous circulation is influenced by a variety of thermoregulatory (skin and internal temperature-driven) and nonthermoregulatory (e.g., baroreflex, exercise-associated reflexes) challenges. The responses to these stimuli are brought about through vasoconstrictor nerves, vasodilator nerves, and changes in the local temperature of the vessels themselves. In this review, we examine how thermoregulatory influences mediate changes in skin blood flow through the sympathetic nervous system. We discuss cutaneous vascular responses to both local and whole-body heating and cooling and the mechanisms underlying these responses, with the overarching conclusion that sympathetic function plays significant roles in reflex vasoconstriction and vasodilatation and in the responses to both local cooling and local heating of the skin.
Collapse
Affiliation(s)
- Gary J. Hodges
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - John M. Johnson
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
33
|
Lang JA, Jennings JD, Holowatz LA, Kenney WL. Reflex vasoconstriction in aged human skin increasingly relies on Rho kinase-dependent mechanisms during whole body cooling. Am J Physiol Heart Circ Physiol 2009; 297:H1792-7. [PMID: 19717729 DOI: 10.1152/ajpheart.00509.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary human aging may be associated with augmented Rho kinase (ROCK)-mediated contraction of vascular smooth muscle and ROCK-mediated inhibition of nitric oxide synthase (NOS). We hypothesized that the contribution of ROCK to reflex vasoconstriction (VC) is greater in aged skin. Cutaneous VC was elicited by 1) whole body cooling [mean skin temperature (T(sk)) = 30.5 degrees C] and 2) local norepinephrine (NE) infusion (1 x 10(-6) M). Four microdialysis fibers were placed in the forearm skin of eight young (Y) and eight older (O) subjects for infusion of 1) Ringer solution (control), 2) 3 mM fasudil (ROCK inhibition), 3) 20 mM N(G)-nitro-l-arginine methyl ester (NOS inhibition), and 4) both ROCK + NOS inhibitors. Red cell flux was measured by laser-Doppler flowmetry over each site. Cutaneous vascular conductance (CVC) was calculated as flux/mean arterial pressure and normalized to baseline CVC (%DeltaCVC(baseline)). VC was reduced at the control site in O during cooling (Y, -34 + or - 3; and O, -18 + or - 3%DeltaCVC(baseline); P < 0.001) and NE infusion (Y, -53 + or - 4, and O, -41 + or - 9%DeltaCVC(baseline); P = 0.006). Fasudil attenuated VC in both age groups during mild cooling; however, this reduction remained only in O but not in Y skin during moderate cooling (Y, -30 + or - 5; and O, -7 + or - 1%DeltaCVC(baseline); P = 0.016) and was not altered by NOS inhibition. Fasudil blunted NE-mediated VC in both age groups (Y, -23 + or - 4; and O, -7 + or - 3%DeltaCVC(baseline); P < 0.01). Cumulatively, these data indicate that reflex VC is more reliant on ROCK in aged skin such that approximately half of the total VC response to whole body cooling is ROCK dependent.
Collapse
Affiliation(s)
- James A Lang
- Department of Kinesiology, The Pennsylvania State Univ., 229 Noll Lab., University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
Human exposure to cold stimulates cutaneous vasoconstriction by activating both sympathetic reflex and locally mediated pathways. Older humans are vulnerable to hypothermia because primary aging impairs thermoregulatory cutaneous vasoconstriction. This article highlights recent findings discussing how age-related decrements in sympathetic neurotransmission contribute directly to thermoregulatory impairment, whereas changes in local cold-induced intracellular signaling suggest a more generalized age-associated vascular dysfunction.
Collapse
|
35
|
Holowatz LA. Human cutaneous microvascular ageing: potential insights into underlying physiological mechanisms of endothelial function and dysfunction. J Physiol 2008; 586:3301. [PMID: 18625801 PMCID: PMC2538821 DOI: 10.1113/jphysiol.2008.157594] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Lacy A Holowatz
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
36
|
Flavahan NA. Regulation of vascular reactivity in scleroderma: new insights into Raynaud's phenomenon. Rheum Dis Clin North Am 2008; 34:81-7; vii. [PMID: 18329534 DOI: 10.1016/j.rdc.2007.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Because of the role of the RhoA/Rho kinase (ROCK) pathway in regulating numerous pathologic processes including vasoconstriction, vascular remodeling, and fibrosis, ROCK inhibitors may be especially beneficial in treating Raynaud's phenomenon and scleroderma.
Collapse
Affiliation(s)
- Nicholas A Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Ross Research Building R370, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Wissler EH. A quantitative assessment of skin blood flow in humans. Eur J Appl Physiol 2008; 104:145-57. [PMID: 18301912 DOI: 10.1007/s00421-008-0697-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2008] [Indexed: 11/29/2022]
Abstract
Various aspects of skin blood flow (SkBF) in human beings have been studied experimentally for more than seven decades. While reasonably complete phenomenological descriptions of individual factors have emerged from those investigations, little effort has been devoted to assembling the component parts into a coherent description of the entire system. This paper describes an effort to do that. Although the result is essentially a mathematical model of human SkBF, the model is firmly based on empirical data and not merely an abstract theoretical construct. We found that experimental data for human forearm blood flow (FBF) from many sources are well represented by an equation in which the rate of cutaneous blood flow (q (s)) is defined by the equation q (s) = q (s,r) AVD x CVCM x CVCL x CVCE. The coefficient q (s,r) is the perfusion rate at a reference state, and the four component factors are defined as follows: AVD defines centrally mediated active vasodilation as a function of central temperature (T (c)), mean skin temperature (T(s))d intensity of exercise (V(o)(2)) CVCM defines reflexly mediated cutaneous vasoconstriction as a function of (T(s)) CVCL defines locally mediated cutaneous vasoconstriction as a function of local skin temperature (T (s)); and CVCE defines the effect of exercise on cutaneous vasoconstriction and mean arterial pressure. The definition of each component function is based on experimental data. Two conclusions are particularly significant. One is that the study provides a rational explanation, based on the role of (T(s)), for previously disparate opinions about the non-thermal effect of exercise on active cutaneous vasodilation. The other is that it establishes that the four factors combine multiplicatively, and not additively, as previous investigators have suggested.
Collapse
Affiliation(s)
- Eugene H Wissler
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712-1062, USA.
| |
Collapse
|
38
|
Holowatz LA, Thompson-Torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol (1985) 2007; 105:370-2. [PMID: 17932300 DOI: 10.1152/japplphysiol.00858.2007] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Lacy A Holowatz
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | |
Collapse
|
39
|
Zerpa H, Berhane Y, Elliott J, Bailey SR. Cooling augments vasoconstriction mediated by 5-HT1 and alpha2-adrenoceptors in the isolated equine digital vein: involvement of Rho kinase. Eur J Pharmacol 2007; 569:212-21. [PMID: 17560569 DOI: 10.1016/j.ejphar.2007.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/26/2022]
Abstract
The vasculature of the equine digit fulfils an important role in thermoregulation. In other species, it has been found that cooling may enhance the response of cutaneous vessels to 5-hydroxytryptamine (5-HT) and alpha(2)-adrenoceptor agonists. Translocation of alpha(2)-adrenoceptors to the smooth muscle cell membrane, mediated by Rho kinase, is thought to be involved in the cooling-enhanced response in mouse tail arteries. However, little is known about the effect of cooling on 5-HT receptor function. The present investigation compared the response of 5-bromo-6-(2-imidazolin-2-ylamino) quinoxaline (UK14304:1 nM to 30 microM), methoxamine (0.1 nM to 30 microM; in the presence of yohimbine 0.1 microM), 5-carboxamidotryptamine (5-CT; 0.1 nM to 10 microM) and alpha-methyl 5-HT (0.1 nM to 10 microM) in the isolated equine digital vein at 30 degrees C and 22 degrees C. The effect of the Rho kinase inhibitor, fasudil (1 microM), and the recovery of the response after the irreversible blockade of surface receptors with phenoxybenzamine (10 microM) or 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ;10 microM), was established. Moderate cooling significantly increased the maximum response to alpha-methyl 5-HT, 5-CT and UK14304 and shifted their response curves to the left. Cooling also augmented the phenoxybenzamine- and EEDQ-resistant response to UK14304 and 5-CT, respectively. Fasudil had no effect on the contractile response at 30 degrees C, but completely abrogated the effect of cooling on the response to 5-CT and UK14304. The response to methoxamine was not significantly affected by cooling. These results suggest that Rho kinase plays an important role in the cooling-enhanced response mediated by 5-HT(1B/D) receptors and alpha(2)-adrenoceptors. The exact mechanism by which Rho/Rho kinase enhances the functional responses mediated by these receptors in these vessels has yet to be determined.
Collapse
Affiliation(s)
- Hector Zerpa
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | | | | | | |
Collapse
|