1
|
Trew ML, Sands GB, Yang Z, Ashton JL, Vigneshwaran V, Walton RD, Bernus O, Smaill BH. Image-Based Tools and Analysis for Human RVOT/RV Structures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083720 DOI: 10.1109/embc40787.2023.10340357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The right-ventricular (RV) outflow tract (RVOT) and the transition to the RV free wall are recognized sources of arrhythmia in human hearts. However, we do not fully understand myocardial tissue structures in this region. Human heart tissue was processed for optical clarity, labelled with wheat-germ agglutin (WGA) and anti-Cx43, and imaged on a custom-built line scanning confocal microscope. The 3D images were analyzed for myocyte gross structures and cell morphology. There were regions of high organization as well as rapid changes to more heterogeneous regions. Preliminary cell segmentations were used to estimate cell morphology. Observed RVOT/RV structure is consistent with known arrhythmic substrates.Clinical Relevance- New views of human tissue structure enable clearer clinical understanding of arrhythmogenic activation pathways and targets for invasive treatment such as RF ablation.
Collapse
|
2
|
Zenger B, Bergquist JA, Busatto A, Good WW, Rupp LC, Sharma V, MacLeod RS. Tipping the scales of understanding: An engineering approach to design and implement whole-body cardiac electrophysiology experimental models. Front Physiol 2023; 14:1100471. [PMID: 36744034 PMCID: PMC9893785 DOI: 10.3389/fphys.2023.1100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
The study of cardiac electrophysiology is built on experimental models that span all scales, from ion channels to whole-body preparations. Novel discoveries made at each scale have contributed to our fundamental understanding of human cardiac electrophysiology, which informs clinicians as they detect, diagnose, and treat complex cardiac pathologies. This expert review describes an engineering approach to developing experimental models that is applicable across scales. The review also outlines how we applied the approach to create a set of multiscale whole-body experimental models of cardiac electrophysiology, models that are driving new insights into the response of the myocardium to acute ischemia. Specifically, we propose that researchers must address three critical requirements to develop an effective experimental model: 1) how the experimental model replicates and maintains human physiological conditions, 2) how the interventions possible with the experimental model capture human pathophysiology, and 3) what signals need to be measured, at which levels of resolution and fidelity, and what are the resulting requirements of the measurement system and the access to the organs of interest. We will discuss these requirements in the context of two examples of whole-body experimental models, a closed chest in situ model of cardiac ischemia and an isolated-heart, torso-tank preparation, both of which we have developed over decades and used to gather valuable insights from hundreds of experiments.
Collapse
Affiliation(s)
- Brian Zenger
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Spencer Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Jake A. Bergquist
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, United States
| | - Anna Busatto
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, United States
| | | | - Lindsay C. Rupp
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, United States
| | - Vikas Sharma
- Spencer Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Rob S. MacLeod
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Khwaounjoo P, Sands GB, LeGrice IJ, Ramulgun G, Ashton JL, Montgomery JM, Gillis AM, Smaill BH, Trew ML. Multimodal imaging shows fibrosis architecture and action potential dispersion are predictors of arrhythmic risk in spontaneous hypertensive rats. J Physiol 2022; 600:4119-4135. [PMID: 35984854 PMCID: PMC9544618 DOI: 10.1113/jp282526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Hypertensive heart disease (HHD) increases risk of ventricular tachycardia (VT) and ventricular fibrillation (VF). The roles of structural vs. electrophysiological remodelling and age vs. disease progression are not fully understood. This cross-sectional study of cardiac alterations through HHD investigates mechanistic contributions to VT/VF risk. Risk was electrically assessed in Langendorff-perfused, spontaneously hypertensive rat hearts at 6, 12 and 18 months, and paced optical membrane voltage maps were acquired from the left ventricular (LV) free wall epicardium. Distributions of LV patchy fibrosis and 3D cellular architecture in representative anterior LV mid-wall regions were quantified from macroscopic and microscopic fluorescence images of optically cleared tissue. Imaging showed increased fibrosis from 6 months, particularly in the inner LV free wall. Myocyte cross-section increased at 12 months, while inter-myocyte connections reduced markedly with fibrosis. Conduction velocity decreased from 12 months, especially transverse to the myofibre direction, with rate-dependent anisotropy at 12 and 18 months, but not earlier. Action potential duration (APD) increased when clustered by age, as did APD dispersion at 12 and 18 months. Among 10 structural, functional and age variables, the most reliably linked were VT/VF risk, general LV fibrosis, a measure quantifying patchy fibrosis, and non-age clustered APD dispersion. VT/VF risk related to a quantified measure of patchy fibrosis, but age did not factor strongly. The findings are consistent with the notion that VT/VF risk is associated with rate-dependent repolarization heterogeneity caused by structural remodelling and reduced lateral electrical coupling between LV myocytes, providing a substrate for heterogeneous intramural activation as HHD progresses. KEY POINTS: There is heightened arrhythmic risk with progression of hypertensive heart disease. Risk is related to increasing left ventricular fibrosis, but the nature of this relationship has not been quantified. This study is a novel systematic characterization of changes in active electrical properties and fibrotic remodelling during progression of hypertensive heart disease in a well-established animal disease model. Arrhythmic risk is predicted by several left ventricular measures, in particular fibrosis quantity and structure, and epicardial action potential duration dispersion. Age alone is not a good predictor of risk. An improved understanding of links between arrhythmic risk and fibrotic architectures in progressive hypertensive heart disease aids better interpretation of late gadolinium-enhanced cardiac magnetic resonance imaging and electrical mapping signals.
Collapse
Affiliation(s)
| | - Gregory B. Sands
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Ian J. LeGrice
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand,Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Girish Ramulgun
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand,IHU‐LirycUniversity of BordeauxBordeauxFrance
| | - Jesse L. Ashton
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand,Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | | | - Anne M. Gillis
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
| | - Bruce H. Smaill
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Mark L. Trew
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
4
|
Han B, Trew ML, Zgierski-Johnston CM. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis. Cells 2021; 10:cells10112923. [PMID: 34831145 PMCID: PMC8616078 DOI: 10.3390/cells10112923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac electrophysiological disorders, in particular arrhythmias, are a key cause of morbidity and mortality throughout the world. There are two basic requirements for arrhythmogenesis: an underlying substrate and a trigger. Altered conduction velocity (CV) provides a key substrate for arrhythmogenesis, with slowed CV increasing the probability of re-entrant arrhythmias by reducing the length scale over which re-entry can occur. In this review, we examine methods to measure cardiac CV in vivo and ex vivo, discuss underlying determinants of CV, and address how pathological variations alter CV, potentially increasing arrhythmogenic risk. Finally, we will highlight future directions both for methodologies to measure CV and for possible treatments to restore normal CV.
Collapse
Affiliation(s)
- Bo Han
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Department of Cardiovascular Surgery, The Fourth People’s Hospital of Jinan, 250031 Jinan, China
| | - Mark L. Trew
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand;
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
5
|
Zenger B, Bergquist JA, Good WW, Steadman B, MacLeod RS. High-Capacity Cardiac Signal Acquisition System for Flexible, Simultaneous, Multidomain Acquisition. COMPUTING IN CARDIOLOGY 2021; 47. [PMID: 33969144 DOI: 10.22489/cinc.2020.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Capturing cardiac electrical propagation or electrocardiographic images demands simultaneous, multidomain recordings of electrocardiographic signals with adequate spatial and temporal resolution. Available systems can be cost-prohibitive or lack the necessary flexibility to capture signals from the heart and torso. We have designed and constructed a system that leverages affordable commercial products (Intantech, CA, USA) to create a complete, cardiac signal acquisition system that includes a flexible front end, analog signal conditioning, and defibrillation protection. The design specifications for this project were to (1) record up to 1024 channels simultaneously at a minimum of 1 kHz, (2) capture signals within the range of ± 30 mV with a resolution of 1 μV, and (3) provide a flexible interface for custom electrode inputs.We integrated the Intantech A/D conversion circuits to create a novel system, which meets all the required specifications. The system connects to a standard laptop computer under control of open-source software (Intantech). To test the system, we recorded electrograms from within the myocardium, on the heart surface, and on the body surface simultaneously from a porcine experimental preparation. Noise levels were comparable to both our existing, custom acquisition system and a commercial competitor. The cost per channel was $32 USD, totaling $33,800 USD for a complete system.
Collapse
Affiliation(s)
- Brian Zenger
- Scientific Computing and Imaging Institute, SLC, USA.,Nora Eccles Cardiovascular Research and Training Institute, SLC, USA.,School of Medicine, University of Utah, SLC, USA.,Department of Biomedical Engineering, University of Utah, SLC, USA
| | - Jake A Bergquist
- Scientific Computing and Imaging Institute, SLC, USA.,Nora Eccles Cardiovascular Research and Training Institute, SLC, USA.,Department of Biomedical Engineering, University of Utah, SLC, USA
| | - Wilson W Good
- Scientific Computing and Imaging Institute, SLC, USA.,Nora Eccles Cardiovascular Research and Training Institute, SLC, USA.,Department of Biomedical Engineering, University of Utah, SLC, USA
| | - Bruce Steadman
- Nora Eccles Cardiovascular Research and Training Institute, SLC, USA
| | - Rob S MacLeod
- Scientific Computing and Imaging Institute, SLC, USA.,Nora Eccles Cardiovascular Research and Training Institute, SLC, USA.,School of Medicine, University of Utah, SLC, USA.,Department of Biomedical Engineering, University of Utah, SLC, USA
| |
Collapse
|
6
|
Wan Ab Naim WN, Mokhtarudin MJM, Lim E, Chan BT, Ahmad Bakir A, Nik Mohamed NA. The study of border zone formation in ischemic heart using electro-chemical coupled computational model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3398. [PMID: 32857480 DOI: 10.1002/cnm.3398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Myocardial infarction (MI) is the most common cause of a heart failure, which occurs due to myocardial ischemia leading to left ventricular (LV) remodeling. LV remodeling particularly occurs at the ischemic area and the region surrounds it, known as the border zone. The role of the border zone in initiating LV remodeling process urges the investigation on the correlation between early border zone changes and remodeling outcome. Thus, this study aims to simulate a preliminary conceptual work of the border zone formation and evolution during onset of MI and its effect towards early LV remodeling processes by incorporating the oxygen concentration effect on the electrophysiology of an idealized three-dimensional LV through electro-chemical coupled mathematical model. The simulation result shows that the region of border zone, represented by the distribution of electrical conductivities, keeps expanding over time. Based on this result, the border zone is also proposed to consist of three sub-regions, namely mildly, moderately, and seriously impaired conductivity regions, which each region categorized depending on its electrical conductivities. This division could be used as a biomarker for classification of reversible and irreversible myocardial injury and will help to identify the different risks for the survival of patient. Larger ischemic size and complete occlusion of the coronary artery can be associated with an increased risk of developing irreversible injury, in particular if the reperfusion treatment is delayed. Increased irreversible injury area can be related with cardiovascular events and will further deteriorate the LV function over time.
Collapse
Affiliation(s)
- Wan N Wan Ab Naim
- Faculty of Mechanical and Automotive Engineering Technology, University Malaysia Pahang, Pekan, Malaysia
| | - Mohd J Mohamed Mokhtarudin
- Department of Mechanical Engineering, College of Engineering, University Malaysia Pahang, Kuantan, Malaysia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Bee T Chan
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham, Semenyih, Malaysia
| | - Azam Ahmad Bakir
- University of Southampton Malaysia Campus, Iskandar Puteri, Malaysia
| | - Nik A Nik Mohamed
- Faculty of Mechanical and Automotive Engineering Technology, University Malaysia Pahang, Pekan, Malaysia
| |
Collapse
|
7
|
Lebert J, Christoph J. Synchronization-based reconstruction of electromechanical wave dynamics in elastic excitable media. CHAOS (WOODBURY, N.Y.) 2019; 29:093117. [PMID: 31575136 DOI: 10.1063/1.5101041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The heart is an elastic excitable medium, in which mechanical contraction is triggered by nonlinear waves of electrical excitation, which diffuse rapidly through the heart tissue and subsequently activate the cardiac muscle cells to contract. These highly dynamic excitation wave phenomena have yet to be fully observed within the depths of the heart muscle, as imaging technology is unable to penetrate the tissue and provide panoramic, three-dimensional visualizations necessary for adequate study. As a result, the electrophysiological mechanisms that are associated with the onset and progression of severe heart rhythm disorders such as atrial or ventricular fibrillation remain insufficiently understood. Here, we present a novel synchronization-based data assimilation approach with which it is possible to reconstruct excitation wave dynamics within the volume of elastic excitable media by observing spatiotemporal deformation patterns, which occur in response to excitation. The mechanical data are assimilated in a numerical replication of the measured elastic excitable system, and within this replication, the data drive the intrinsic excitable dynamics, which then coevolve and correspond to a reconstruction of the original dynamics. We provide a numerical proof-of-principle and demonstrate the performance of the approach by recovering even complicated three-dimensional scroll wave patterns, including vortex filaments of electrical excitation from within a deformable bulk tissue with fiber anisotropy. In the future, the reconstruction approach could be combined with high-speed imaging of the heart's mechanical contractions to estimate its electrophysiological activity for diagnostic purposes.
Collapse
Affiliation(s)
- Jan Lebert
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 42a-Heart Research Building, 37075 Göttingen, Germany
| | - Jan Christoph
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 42a-Heart Research Building, 37075 Göttingen, Germany
| |
Collapse
|