1
|
Wang W, Yao J, Li W, Wu Y, Duan H, Xu C, Tian X, Li S, Tan Q, Zhang D. Epigenome-wide association study in Chinese monozygotic twins identifies DNA methylation loci associated with blood pressure. Clin Epigenetics 2023; 15:38. [PMID: 36869404 PMCID: PMC9985232 DOI: 10.1186/s13148-023-01457-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Hypertension is a crucial risk factor for developing cardiovascular disease and reducing life expectancy. We aimed to detect DNA methylation (DNAm) variants potentially related to systolic blood pressure (SBP) and diastolic blood pressure (DBP) by conducting epigenome-wide association studies in 60 and 59 Chinese monozygotic twin pairs, respectively. METHODS Genome-wide DNA methylation profiling in whole blood of twins was performed using Reduced Representation Bisulfite Sequencing, yielding 551,447 raw CpGs. Association between DNAm of single CpG and blood pressure was tested by applying generalized estimation equation. Differentially methylated regions (DMRs) were identified by comb-P approach. Inference about Causation through Examination of Familial Confounding was utilized to perform the causal inference. Ontology enrichment analysis was performed using Genomic Regions Enrichment of Annotations Tool. Candidate CpGs were quantified using Sequenom MassARRAY platform in a community population. Weighted gene co-expression network analysis (WGCNA) was conducted using gene expression data. RESULTS The median age of twins was 52 years (95% range 40, 66). For SBP, 31 top CpGs (p < 1 × 10-4) and 8 DMRs were identified, with several DMRs within NFATC1, CADM2, IRX1, COL5A1, and LRAT. For DBP, 43 top CpGs (p < 1 × 10-4) and 12 DMRs were identified, with several DMRs within WNT3A, CNOT10, and DAB2IP. Important pathways, such as Notch signaling pathway, p53 pathway by glucose deprivation, and Wnt signaling pathway, were significantly enriched for SBP and DBP. Causal inference analysis suggested that DNAm at top CpGs within NDE1, MYH11, SRRM1P2, and SMPD4 influenced SBP, while SBP influenced DNAm at CpGs within TNK2. DNAm at top CpGs within WNT3A influenced DBP, while DBP influenced DNAm at CpGs within GNA14. Three CpGs mapped to WNT3A and one CpG mapped to COL5A1 were validated in a community population, with a hypermethylated and hypomethylated direction in hypertension cases, respectively. Gene expression analysis by WGCNA further identified some common genes and enrichment terms. CONCLUSION We detect many DNAm variants that may be associated with blood pressure in whole blood, particularly the loci within WNT3A and COL5A1. Our findings provide new clues to the epigenetic modification underlying hypertension pathogenesis.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, Shandong, China
| | - Jie Yao
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, Shandong, China
- Jiangsu Health Development Research Center, Nanjing, Jiangsu, China
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, Shandong, China.
| |
Collapse
|
2
|
Psilopatis I, Vrettou K, Fleckenstein FN, Theocharis S. The Role of Peroxisome Proliferator-Activated Receptors in Preeclampsia. Cells 2023; 12:cells12040647. [PMID: 36831316 PMCID: PMC9954398 DOI: 10.3390/cells12040647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Preeclampsia is a common pregnancy-related hypertensive disorder. Often presenting as preexisting or new-onset hypertension complicated by proteinuria and/or end-organ dysfunction, preeclampsia significantly correlates with maternal and perinatal morbidity and mortality. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate gene expression. In order to investigate the role of PPARs in the pathophysiology of preeclampsia, we conducted a literature review using the MEDLINE and LIVIVO databases. The search terms "peroxisome proliferator-activated receptor", "PPAR", and "preeclampsia" were employed and we were able to identify 35 relevant studies published between 2002 and 2022. Different study groups reached contradictory conclusions in terms of PPAR expression in preeclamptic placentae. Interestingly, PPARγ agonists alone, or in combination with well-established pharmaceutical agents, were determined to represent novel, potent anti-preeclamptic treatment alternatives. In conclusion, PPARs seem to play a significant role in preeclampsia.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Florian Nima Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
- Correspondence: (F.N.F.); (S.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Correspondence: (F.N.F.); (S.T.)
| |
Collapse
|
3
|
Feng J, Lu X, Li H, Wang S. The roles of hydrogen sulfide in renal physiology and disease states. Ren Fail 2022; 44:1289-1308. [PMID: 35930288 PMCID: PMC9359156 DOI: 10.1080/0886022x.2022.2107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signaling transmitter, has gained recognition for its physiological effects. In this review, we aim to summarize and discuss existing studies about the roles of H2S in renal functions and renal disease as well as the underlying mechanisms. H2S is mainly produced by four pathways, and the kidneys are major H2S–producing organs. Previous studies have shown that H2S can impact multiple signaling pathways via sulfhydration. In renal physiology, H2S promotes kidney excretion, regulates renin release and increases ATP production as a sensor for oxygen. H2S is also involved in the development of kidney disease. H2S has been implicated in renal ischemia/reperfusion and cisplatin–and sepsis–induced kidney disease. In chronic kidney diseases, especially diabetic nephropathy, hypertensive nephropathy and obstructive kidney disease, H2S attenuates disease progression by regulating oxidative stress, inflammation and the renin–angiotensin–aldosterone system. Despite accumulating evidence from experimental studies suggesting the potential roles of H2S donors in the treatment of kidney disease, these results need further clinical translation. Therefore, expanding the understanding of H2S can not only promote our further understanding of renal physiology but also lay a foundation for transforming H2S into a target for specific kidney diseases.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangxue Lu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Mitochondria-Mediated Cardiovascular Benefits of Sodium-Glucose Co-Transporter 2 Inhibitors. Int J Mol Sci 2022; 23:ijms23105371. [PMID: 35628174 PMCID: PMC9140946 DOI: 10.3390/ijms23105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Several recent cardiovascular trials of SGLT 2 (sodium-glucose cotransporter 2) inhibitors revealed that they could reduce adverse cardiovascular events in patients with T2DM (type 2 diabetes mellitus). However, the exact molecular mechanism underlying the beneficial effects that SGLT2 inhibitors have on the cardiovascular system is still unknown. In this review, we focus on the molecular mechanisms of the mitochondria-mediated beneficial effects of SGLT2 inhibitors on the cardiovascular system. The application of SGLT2 inhibitors ameliorates mitochondrial dysfunction, dynamics, bioenergetics, and ion homeostasis and reduces the production of mitochondrial reactive oxygen species, which results in cardioprotective effects. Herein, we present a comprehensive overview of the impact of SGLT2 inhibitors on mitochondria and highlight the potential application of these medications to treat both T2DM and cardiovascular diseases.
Collapse
|
5
|
Yang C, Xue L, Wu Y, Li S, Zhou S, Yang J, Jiang C, Ran J, Jiang Q. PPARβ down-regulation is involved in high glucose-induced endothelial injury via acceleration of nitrative stress. Microvasc Res 2022; 139:104272. [PMID: 34699845 DOI: 10.1016/j.mvr.2021.104272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury plays a vital role in vascular lesions from diabetes mellitus (DM). Therapeutic targets against endothelial damage may provide critical venues for the treatment of diabetic vascular diseases. Peroxisome proliferator-activated receptor β (PPARβ) is a crucial regulator in DM and its complications. However, the molecular signal mediating the roles of PPARβ in DM-induced endothelial dysfunction is not fully understood. The impaired endothelium-dependent relaxation and destruction of the endothelium structures appeared in high glucose incubated rat aortic rings. A high glucose level significantly decreased the expression of PPARβ and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels, and reduced the concentration of nitric oxide (NO), which occurred in parallel with an increase in the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine. The effect of high glucose was inhibited by GW0742, a PPARβ agonist. Both GSK0660 (PPARβ antagonist) and NG-nitro-l-arginine-methyl ester (NOS inhibitor) could reverse the protective effects of GW0742. These results suggest that the activation of nitrative stress may, at least in part, mediate the down-regulation of PPARβ in high glucose-impaired endothelial function in rat aorta. PPARβ-nitrative stress may hold potential in treating vascular complications from DM.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lai Xue
- Clinical Pharmacy, Jiangyou People's Hospital, Sichuan 621700, PR China
| | - Yang Wu
- Cardiovascular Center, the Seventh Affiliated Hospital of Sun Yat-sen University, Guangdong 518107, PR China
| | - Siman Li
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shangjun Zhou
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Junxia Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Chengyan Jiang
- Department of Endocrinology, the First People's Hospital of Zunyi, Guizhou 563000, PR China
| | - Jianhua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
6
|
Xu L, Wu J, Liu Y, Chen G, Ma C, Zhang H. Peroxisome proliferator‑activated receptor β/δ regulates cerebral vasospasm after subarachnoid hemorrhage via modulating vascular smooth muscle cells phenotypic conversion. Mol Med Rep 2021; 24:860. [PMID: 34664679 PMCID: PMC8548938 DOI: 10.3892/mmr.2021.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022] Open
Abstract
Cerebral vasospasm (CVS) is a common complication of subarachnoid hemorrhage (SAH) with high deformity rates and cerebral vascular smooth muscle cells (VSMCs) phenotypic switch is considered to be involved in the regulation of CVS. However, to the best of the authors' knowledge, its underlying molecular mechanism remains to be elucidated. Peroxisome proliferator‑activated receptor β/δ (PPARβ/δ) has been demonstrated to be involved in the modulation of vascular cells proliferation and maintains the autoregulation function of blood vessels. The present study investigated the potential effect of PPARβ/δ on CVS following SAH. A model of SAH was established by endovascular perforation on male adult Sprague‑Dawley rats, and the adenovirus PPARβ/δ (Ad‑PPARβ/δ) was injected via intracerebroventricular administration prior to SAH. The expression levels of phenotypic markers α‑smooth muscle actin and embryonic smooth muscle myosin heavy chain were measured via western blotting or immunofluorescence staining. The basilar artery diameter and vessel wall thickness were evaluated under fluorescence microscopy. SAH grade, neurological scores, brain water content and brain swelling were measured to study the mechanisms of PPARβ/δ on vascular smooth muscle phenotypic transformation. It was revealed that the expression levels of synthetic proteins were upregulated in rats with SAH and this was accompanied by CVS. Activation of PPARβ/δ using Ad‑PPARβ/δ markedly upregulated the contractile proteins elevation, restrained the synthetic proteins expression and attenuated SAH‑induced CVS by regulating the phenotypic switch in VSMCs at 72 h following SAH. Furthermore, the preliminary study demonstrated that PPARβ/δ downregulated ERK activity and decreased the expression of phosphorylated (p‑)ETS domain‑containing protein Elk‑1 and p‑p90 ribosomal S6 kinase, which have been demonstrated to serve an important role in VSMC phenotypic change. Additionally, it was revealed that Ad‑PPARβ/δ could positively improve CVS by ameliorating the diameter of the basilar artery and mitigating the thickness of the vascular wall. Furthermore, subsequent experiments demonstrated that Ad‑PPARβ/δ markedly reduced the brain water content and brain swelling and improved the neurological outcome. Taken together, the present study identified PPARβ/δ as a useful regulator for the VSMCs phenotypic switch and attenuating CVS following SAH, thereby providing novel insights into the therapeutic strategies of delayed cerebral ischemia.
Collapse
Affiliation(s)
- Li Xu
- Intensive Care Unit of Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215026, P.R. China
| | - Jiang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215026, P.R. China
| | - Yuan Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215026, P.R. China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215026, P.R. China
| | - Chao Ma
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215026, P.R. China
| | - Hongrong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215026, P.R. China
| |
Collapse
|
7
|
da Cruz BO, Cardozo LFMD, Coutinho-Wolino KS, Mesquita CT, Leal VO, Mafra D, Stockler-Pinto MB. Brazil Nut Supplementation Does Not Regulate PPARβ/δ Signaling Pathway in Peripheral Blood Mononuclear Cells from Coronary Artery Disease Patients. J Am Coll Nutr 2021; 41:780-787. [PMID: 34516363 DOI: 10.1080/07315724.2021.1963882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor (PPAR)β/δ activation is a potential target for modulation of inflammation in cardiovascular disease. PPARβ/δ activation depends on the presence of a ligand, which may be pharmacological or natural, such as bioactive compounds and nutrients. Due to its composition, rich in selenium and unsaturated fatty acids, Brazil nuts have been related to reduced oxidative stress and inflammation in chronic non-communicable diseases and could regulate PPARβ/δ. This study aimed to evaluate the effects of Brazil nut supplementation on PPARβ/δ mRNA expression in patients with Coronary Artery Disease (CAD). METHODS A secondary analysis of a randomized controlled clinical trial was performed with 36 CAD patients. Patients were randomly assigned to either the Supplementation group or the control group and followed up for three months. The Supplementation group consumed 1 Brazil nut/day; the control group did not receive any intervention. At the baseline and after three months, analysis of gene expression and biochemical parameters linked to inflammatory biomarkers and oxidative stress was carried out. RESULTS In the supplementation group, no significant change was observed in PPARβ/δ (0.9 ± 0.5 vs 1.2 ± 0.6; p = 0.178) and NF-κB (1.6 ± 1.5 vs 0.8 ± 0.30, p = 0.554) mRNA expression. There were no significant changes in both groups concerning all the other biochemical parameters. CONCLUSION One Brazil nut per day for three months was not able to increase the PPARβ/δ expression in CAD patients.
Collapse
Affiliation(s)
- Beatriz Oliveira da Cruz
- Graduate Program in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil.,Clinical Research Unit, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil
| | - Ludmila Ferreira Medeiros de Cardozo
- Graduate Program in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil.,Clinical Research Unit, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil
| | - Karen Salve Coutinho-Wolino
- Clinical Research Unit, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil.,Graduate Program in Nutrition Sciences, Universidade Federal Fluminense, Niterói, Brazil
| | - Claudio Tinoco Mesquita
- Graduate Program in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil.,Hospital Universitário Antonio Pedro - EBSERH-UFF, Niterói, Brazil
| | - Viviane Oliveira Leal
- Hospital Universitário Pedro Ernesto, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil.,Clinical Research Unit, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil.,Graduate Program in Nutrition Sciences, Universidade Federal Fluminense, Niterói, Brazil.,Graduate Program in Medical Sciences, Universidade Federal Fluminense, Niterói, Brazil
| | - Milena Barcza Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil.,Clinical Research Unit, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil.,Graduate Program in Nutrition Sciences, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
8
|
Gong K, Song K, Zhu Z, Xiang Q, Wang K, Shi J. SWIM domain protein ZSWIM4 is required for JAK2 inhibition resistance in breast cancer. Life Sci 2021; 279:119696. [PMID: 34102191 DOI: 10.1016/j.lfs.2021.119696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
AIMS Janus kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling plays a critical role in the progression of breast cancer. However, a small part of tumor cells survived from the killing effect of JAK2 inhibitor. We aimed to find out the mechanism of drug resistance in breast cancer cells and develop new therapeutic strategies. MATERIALS AND METHODS The anti-tumor effect of TG101209 in breast cancer cells was confirmed by cell counting kit 8 and flow cytometry. Western blotting was used to determine the up-regulation of zinc finger SWIM-type containing 4 (ZSWIM4) induced by TG101209. In vitro and in vivo experiments were performed to evaluate the role of ZSWIM4 in the resistance of breast cancer cells to TG101209. Through the determination and analysis of 50% inhibiting concentration (IC50) curves, the effect of combination therapy was confirmed. KEY FINDINGS Our data indicate that the elevated expression of ZSWIM4 contributes to JAK2 inhibition resistance, as knockdown of ZSWIM4 significantly enhances the sensitivity of breast cancer cells to TG101209 and over-expression of this gene mitigates the killing effect. Furthermore, the expression of vitamin D receptor (VDR) and utilization of 1α,25-(OH)2VD3 is decreased in ZSWIM4-knockdown breast cancer cells. VDR-silencing or GW0742-mediated blockade of VDR activity can partially reverse the JAK2 inhibition resistance. SIGNIFICANCE Our data implicated that ZSWIM4 might be an inducible resistance gene of JAK2 inhibition in breast cancer cells. The combination of JAK2 inhibitor and VDR inhibitor may achieve better coordinated therapeutic effect in breast cancer.
Collapse
Affiliation(s)
- Kunxiang Gong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kai Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhenyun Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qin Xiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Jian Shi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
9
|
Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res 2021; 128:1021-1039. [PMID: 33793338 DOI: 10.1161/circresaha.120.318062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee.,Department of Neuroscience and Pharmacology, University of Iowa (S.F.)
| | - M Christine Livergood
- Department of Obstetrics and Gynecology (M.C.L.), Medical College of Wisconsin, Milwaukee
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Jing Wu
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
10
|
Strosznajder AK, Wójtowicz S, Jeżyna MJ, Sun GY, Strosznajder JB. Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy. Neuromolecular Med 2020; 23:86-98. [PMID: 33210212 PMCID: PMC7929960 DOI: 10.1007/s12017-020-08629-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) β/δ belongs to the family of hormone and lipid-activated nuclear receptors, which are involved in metabolism of long-chain fatty acids, cholesterol, and sphingolipids. Similar to PPAR-α and PPAR-γ, PPAR-β/δ also acts as a transcription factor activated by dietary lipids and endogenous ligands, such as long-chain saturated and polyunsaturated fatty acids, and selected lipid metabolic products, such as eicosanoids, leukotrienes, lipoxins, and hydroxyeicosatetraenoic acids. Together with other PPARs, PPAR-β/δ displays transcriptional activity through interaction with retinoid X receptor (RXR). In general, PPARs have been shown to regulate cell differentiation, proliferation, and development and significantly modulate glucose, lipid metabolism, mitochondrial function, and biogenesis. PPAR-β/δ appears to play a special role in inflammatory processes and due to its proangiogenic and anti-/pro-carcinogenic properties, this receptor has been considered as a therapeutic target for treating metabolic syndrome, dyslipidemia, carcinogenesis, and diabetes. Until now, most studies were carried out in the peripheral organs, and despite of its presence in brain cells and in different brain regions, its role in neurodegeneration and neuroinflammation remains poorly understood. This review is intended to describe recent insights on the impact of PPAR-β/δ and its novel agonists on neuroinflammation and neurodegenerative disorders, including Alzheimer’s and Parkinson’s, Huntington’s diseases, multiple sclerosis, stroke, and traumatic injury. An important goal is to obtain new insights to better understand the dietary and pharmacological regulations of PPAR-β/δ and to find promising therapeutic strategies that could mitigate these neurological disorders.
Collapse
Affiliation(s)
- Anna K Strosznajder
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Sylwia Wójtowicz
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland
| | - Mieszko J Jeżyna
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - Joanna B Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland.
| |
Collapse
|
11
|
da Cruz BO, Cardozo LFMDF, Magliano DC, Stockler-Pinto MB. Nutritional strategies to modulate inflammation pathways via regulation of peroxisome proliferator-activated receptor β/δ. Nutr Rev 2020; 78:207-214. [PMID: 31584650 DOI: 10.1093/nutrit/nuz058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) β/δ has an important role in multiple inflammatory conditions, including obesity, hypertension, cancer, cardiovascular disease, diabetes mellitus, and autoimmune diseases. PPARβ/δ forms a heterodimer with the retinoic acid receptor and binds to peroxisome proliferator response elements to initiate transcription of its target genes. PPARβ/δ is also able to suppress the activities of several transcription factors, including nuclear factor κB, and activator protein 1, thus regulating anti-inflammatory cellular responses and playing a protective role in several diseases. Recent studies have shown that nutritional compounds, including nutrients and bioactive compounds, can regulate PPARβ/δ expression. This review discusses key nutritional compounds that are known to modulate PPARβ/δ and are likely to affect human health.
Collapse
Affiliation(s)
- Beatriz O da Cruz
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - Ludmila F M de França Cardozo
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - D'Angelo C Magliano
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil.,D.C. Magliano is with Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - Milena B Stockler-Pinto
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil.,M.B. Stockler-Pinto is with the Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| |
Collapse
|
12
|
Barbosa JE, Stockler-Pinto MB, da Cruz BO, da Silva ACT, Anjos JS, Mesquita CT, Mafra D, Cardozo LFMF. Nrf2, NF-κB and PPARβ/δ mRNA Expression Profile in Patients with Coronary Artery Disease. Arq Bras Cardiol 2019; 113:1121-1127. [PMID: 31340238 PMCID: PMC7021271 DOI: 10.5935/abc.20190125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oxidative stress and inflammation are present in coronary artery disease (CAD) and are linked to the activation of the transcription nuclear factor kappa B (NF-κB). To attenuate these complications, transcription factors like nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) can be activated to inhibit NF-κB. However, the available data on expression of NF-κB, Nrf2 and PPARβ/δ in CAD patients are limited. OBJECTIVE To evaluate the expression of the transcription factors NF-κB and Nrf2 and PPAR𝛽/𝛿 in CAD patients. METHODS Thirty-five patients (17 men, mean age 62.4 ? 7.55 years) with CAD and twelve patients (5 men, mean age 63.50 ? 11.46 years) without CAD were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and processed for mRNA expression of Nrf2, NF-κB, NADPH: quinone oxidoreductase 1 (NQO1) and PPARβ/δ mRNAs using quantitative real-time polymerase chain reaction (qPCR). p < 0.05 was considered statistically significant. RESULTS There was no difference in the mRNA expressions of Nrf2 (1.35 ? 0.57), NF-κB (1.08 ? 0.50) or in the antioxidant enzyme NQO1 (1.05 ? 0.88) in the CAD group compared to the group without CAD (1.16 ? 0.76, 0.95 ? 0.33, 0.81 ? 0.55, respectively). However, PPARβ/δ was highest expressed in the CAD group (1.17 ? 0.86 vs. 0.56 ? 0.34, p = 0.008). CONCLUSION The main finding of this study was the PPARβ/δ being more expressed in the PBMC of patients with CAD compared to the control group, whereas no differences were observed in Nrf2 or NF-κB mRNA expressions.
Collapse
Affiliation(s)
- Jaqueline Ermida Barbosa
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | | | - Beatriz Oliveira da Cruz
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Ana Carla Tavares da Silva
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Juliana Saraiva Anjos
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Claudio Tinoco Mesquita
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Denise Mafra
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Ludmila F. M. F. Cardozo
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| |
Collapse
|
13
|
Chen Y, Chen D, Liu S, Yuan T, Guo J, Fang L, Du G. Systematic Elucidation of the Mechanism of Genistein against Pulmonary Hypertension via Network Pharmacology Approach. Int J Mol Sci 2019; 20:ijms20225569. [PMID: 31703458 PMCID: PMC6888439 DOI: 10.3390/ijms20225569] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have shown that genistein has a good therapeutic effect on pulmonary hypertension (PH). However, there has been no systematic research performed yet to elucidate its exact mechanism of action in relation to PH. In this study, a systemic pharmacology approach was employed to analyze the anti-PH effect of genistein. Firstly, the preliminary predicted targets of genistein against PH were obtained through database mining, and then the correlation of these targets with PH was analyzed. After that, the protein-protein interaction network was constructed, and the functional annotation and cluster analysis were performed to obtain the core targets and key pathways involved in exerting the anti-PH effect of genistein. Finally, the mechanism was further analyzed via molecular docking of genistein with peroxisome proliferator-activated receptor γ (PPARγ). The results showed that the anti-PH effect of genistein may be closely related to PPARγ, apoptotic signaling pathway, and the nitric oxide synthesis process. This study not only provides new insights into the mechanism of genistein against PH, but also provides novel ideas for network approaches for PH-related research.
Collapse
Affiliation(s)
- Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (S.L.)
| | - Di Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.); (T.Y.)
| | - Sijia Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (S.L.)
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.); (T.Y.)
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (S.L.)
- Correspondence: (J.G.); (L.F.); (G.D.)
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.); (T.Y.)
- Correspondence: (J.G.); (L.F.); (G.D.)
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.); (T.Y.)
- Correspondence: (J.G.); (L.F.); (G.D.)
| |
Collapse
|
14
|
Khaddaj Mallat R, Mathew John C, Mishra RC, Kendrick DJ, Braun AP. Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat. Int J Mol Sci 2019; 20:ijms20143481. [PMID: 31315169 PMCID: PMC6678254 DOI: 10.3390/ijms20143481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Systemic hypertension is a major risk factor for the development of cardiovascular disease and is often associated with endothelial dysfunction. KCa2.3 and KCa3.1 channels are expressed in the vascular endothelium and contribute to stimulus-evoked vasodilation. We hypothesized that acute treatment with SKA-31, a selective activator of KCa2.x and KCa3.1 channels, would improve endothelium-dependent vasodilation and transiently lower mean arterial pressure (MAP) in male, spontaneously hypertensive rats (SHRs). Isolated vascular preparations exhibited impaired vasodilation in response to bradykinin (i.e., endothelial dysfunction) compared with Wistar controls, which was associated with decreased bradykinin receptor expression in mesenteric arteries. In contrast, similar levels of endothelial KCa channel expression were observed, and SKA-31 evoked vasodilation was comparable in vascular preparations from both strains. Addition of a low concentration of SKA-31 (i.e., 0.2–0.3 μM) failed to augment bradykinin-induced vasodilation in arteries from SHRs. However, responses to acetylcholine were enhanced. Surprisingly, acute bolus administration of SKA-31 in vivo (30 mg/kg, i.p. injection) modestly elevated MAP compared with vehicle injection. In summary, pharmacological targeting of endothelial KCa channels in SHRs did not readily reverse endothelial dysfunction in situ, or lower MAP in vivo. SHRs thus appear to be less responsive to endothelial KCa channel activators, which may be related to their vascular pathology.
Collapse
Affiliation(s)
- Rayan Khaddaj Mallat
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Cini Mathew John
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Dylan J Kendrick
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Andrew P Braun
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
15
|
Mitchell JA, Kirkby NS. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 2019; 176:1038-1050. [PMID: 29468666 PMCID: PMC6451069 DOI: 10.1111/bph.14167] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022] Open
Abstract
Eicosanoids represent a diverse family of lipid mediators with fundamental roles in physiology and disease. Within the eicosanoid superfamily are prostanoids, which are specifically derived from arachidonic acid by the enzyme cyclooxygenase (COX). COX has two isoforms; COX-1 and COX-2. COX-2 is the therapeutic target for the nonsteroidal anti-inflammatory drug (NSAID) class of pain medications. Of the prostanoids, prostacyclin, first discovered by Sir John Vane in 1976, remains amongst the best studied and retains an impressive pedigree as one of the fundamental cardiovascular protective pathways. Since this time, we have learnt much about how eicosanoids, COX enzymes and prostacyclin function in the cardiovascular system, knowledge that has allowed us, for example, to harness the power of prostacyclin as therapy to treat pulmonary arterial hypertension and peripheral vascular disease. However, there remain many unanswered questions in our basic understanding of the pathways, and how they can be used to improve human health. Perhaps, the most important and controversial outstanding question in the field remains; 'how do NSAIDs produce their much publicized cardiovascular side-effects?' This review summarizes the history, biology and cardiovascular function of key eicosanoids with particular focus on prostacyclin and other COX products and discusses how our knowledge of these pathways can applied in future drug discovery and be used to explain the cardiovascular side-effects of NSAIDs. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
- Jane A Mitchell
- Cardiothoracic PharmacologyNational Heart and Lung InstituteLondonUK
| | - Nicholas S Kirkby
- Cardiothoracic PharmacologyNational Heart and Lung InstituteLondonUK
| |
Collapse
|
16
|
Kang ES, Hwang JS, Lee WJ, Lee GH, Choi MJ, Paek KS, Lim DS, Seo HG. Ligand-activated PPARδ inhibits angiotensin II-stimulated hypertrophy of vascular smooth muscle cells by targeting ROS. PLoS One 2019; 14:e0210482. [PMID: 30620754 PMCID: PMC6324793 DOI: 10.1371/journal.pone.0210482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/25/2018] [Indexed: 11/19/2022] Open
Abstract
We investigated the effect of peroxisome proliferator-activated receptor δ (PPARδ) on angiotensin II (Ang II)-triggered hypertrophy of vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly inhibited Ang II-stimulated protein synthesis in a concentration-dependent manner, as determined by [3H]-leucine incorporation. GW501516-activated PPARδ also suppressed Ang II-induced generation of reactive oxygen species (ROS) in VSMCs. Transfection of small interfering RNA (siRNA) against PPARδ significantly reversed the effects of GW501516 on [3H]-leucine incorporation and ROS generation, indicating that PPARδ is involved in these effects. By contrast, these GW501516-mediated actions were potentiated in VSMCs transfected with siRNA against NADPH oxidase (NOX) 1 or 4, suggesting that ligand-activated PPARδ elicits these effects by modulating NOX-mediated ROS generation. The phosphatidylinositol 3-kinase inhibitor LY294002 also inhibited Ang II-stimulated [3H]-leucine incorporation and ROS generation by preventing membrane translocation of Rac1. These observations suggest that PPARδ is an endogenous modulator of Ang II-triggered hypertrophy of VSMCs, and is thus a potential target to treat vascular diseases associated with hypertrophic changes of VSMCs.
Collapse
Affiliation(s)
- Eun Sil Kang
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Gyeong Hee Lee
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Mi-Jung Choi
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | | | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Bundang-gu, Seongnam, Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|
17
|
Abstract
The nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) can transcriptionally regulate target genes. PPARδ exerts essential regulatory functions in the heart, which requires constant energy supply. PPARδ plays a key role in energy metabolism, controlling not only fatty acid (FA) and glucose oxidation, but also redox homeostasis, mitochondrial biogenesis, inflammation, and cardiomyocyte proliferation. PPARδ signaling is impaired in the heart under various pathological conditions, such as pathological cardiac hypertrophy, myocardial ischemia/reperfusion, doxorubicin cardiotoxicity and diabetic cardiomyopathy. PPARδ deficiency in the heart leads to cardiac dysfunction, myocardial lipid accumulation, cardiac hypertrophy/remodeling and heart failure. This article provides an up-today overview of this research area and discusses the role of PPARδ in the heart in light of the complex mechanisms of its transcriptional regulation and its potential as a translatable therapeutic target for the treatment of cardiac disorders.
Collapse
Affiliation(s)
- Qinglin Yang
- Cardiovascular Center of Excellence, LSU Healther Science Center, 533 Bolivar St, New Orleans, LA 70112, USA
| | - Qinqiang Long
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|
18
|
PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci 2018; 19:ijms19072013. [PMID: 29996502 PMCID: PMC6073704 DOI: 10.3390/ijms19072013] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
In contrast to the general belief that regeneration is a rare event, mainly occurring in simple organisms, the ability of regeneration is widely distributed in the animal kingdom. Yet, the efficiency and extent of regeneration varies greatly. Humans can recover from blood loss as well as damage to tissues like bone and liver. Yet damage to the heart and brain cannot be reversed, resulting in scaring. Thus, there is a great interest in understanding the molecular mechanisms of naturally occurring regeneration and to apply this knowledge to repair human organs. During regeneration, injury-activated immune cells induce wound healing, extracellular matrix remodeling, migration, dedifferentiation and/or proliferation with subsequent differentiation of somatic or stem cells. An anti-inflammatory response stops the regenerative process, which ends with tissue remodeling to achieve the original functional state. Notably, many of these processes are associated with enhanced glycolysis. Therefore, peroxisome proliferator-activated receptor (PPAR) β/δ—which is known to be involved for example in lipid catabolism, glucose homeostasis, inflammation, survival, proliferation, differentiation, as well as mammalian regeneration of the skin, bone and liver—appears to be a promising target to promote mammalian regeneration. This review summarizes our current knowledge of PPARβ/δ in processes associated with wound healing and regeneration.
Collapse
|
19
|
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2017; 28:35-52. [PMID: 29222605 DOI: 10.1007/s10286-017-0488-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cardiovascular disease is now recognized as the number one cause of death in the world, and the size of the population at risk continues to increase rapidly. The dysregulation of the endocannabinoid (eCB) system plays a central role in a wide variety of conditions including cardiovascular disorders. Cannabinoid receptors, their endogenous ligands, as well as enzymes conferring their synthesis and degradation, exhibit overlapping distributions in the cardiovascular system. Furthermore, the pharmacological manipulation of the eCB system has effects on blood pressure, cardiac contractility, and endothelial vasomotor control. Growing evidence from animal studies supports the significance of the eCB system in cardiovascular disorders. OBJECTIVE To summarize the literature surrounding the eCB system in cardiovascular function and disease and the new compounds that may potentially extend the range of available interventions. RESULTS Drugs targeting CB1R, CB2R, TRPV1 and PPARs are proven effective in animal models mimicking cardiovascular disorders such as hypertension, atherosclerosis and myocardial infarction. Despite the setback of two clinical trials that exhibited unexpected harmful side-effects, preclinical studies are accelerating the development of more selective drugs with promising results devoid of adverse effects. CONCLUSION Over the last years, increasing evidence from basic and clinical research supports the role of the eCB system in cardiovascular function. Whereas new discoveries are paving the way for the identification of novel drugs and therapeutic targets, the close cooperation of researchers, clinicians and pharmaceutical companies is needed to achieve successful outcomes.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Physiology and Biophysics, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Natasha Luquin
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Judith Navarro-Otano
- Neurology Service, Electromyography, Motor Control and Neuropathic Pain Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Toral M, Jiménez R, Romero M, Robles-Vera I, Sánchez M, Salaices M, Sabio JM, Duarte J. Role of endoplasmic reticulum stress in the protective effects of PPARβ/δ activation on endothelial dysfunction induced by plasma from patients with lupus. Arthritis Res Ther 2017; 19:268. [PMID: 29208022 PMCID: PMC5717848 DOI: 10.1186/s13075-017-1478-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Background We tested whether GW0742, a peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) agonist, improves endothelial dysfunction induced by plasma from patients with systemic lupus erythematosus (SLE) involving the inhibition of endoplasmic reticulum (ER) stress. Methods A total of 12 non-pregnant women with lupus and 5 non-pregnant healthy women (controls) participated in the study. Cytokines and double-stranded DNA autoantibodies (anti-dsDNA) were tested in plasma samples. Endothelial cells, isolated from human umbilical cord veins (HUVECs), were used to measure nitric oxide (NO), intracellular reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and ER stress markers. Results Interferon-γ, interleukin-6, and interleukin-12 levels were significantly increased in plasma from patients with SLE with active nephritis (AN), as compared to both patients with SLE with inactive nephritis (IN) and the control group. The NO production stimulated by both the calcium ionophore A23187 and insulin was significantly reduced in HUVECs incubated with plasma from patients with AN-SLE as compared with the control group. Plasma from patients with IN-SLE did not modify A23187-stimulated NO production. Increased ROS production and NADPH oxidase activity were found in HUVECs incubated with plasma from patients with AN-SLE, which were suppressed by the ER stress inhibitor 4-PBA and the NADPH oxidase inhibitors, apocynin and VAS2870. GW0742 incubation restored the impaired NO production, the increased ROS levels, and the increased ER stress markers induced by plasma from patients with AN-SLE. These protective effects were abolished by the PPARβ/δ antagonist GSK0660 and by silencing PPARβ/δ. Conclusions PPARβ/δ activation may be an important target to control endothelial dysfunction in patients with SLE.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBER of cardiovascular diseases (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBER of cardiovascular diseases (CIBERCV), Madrid, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Mercedes Salaices
- CIBER of cardiovascular diseases (CIBERCV), Madrid, Spain.,Department of Pharmacology, School of Medicine, Autonomous University of Madrid, Research Institute Universitary Hospital La Paz (IdiPAZ), 28029, Madrid, Spain
| | - José Mario Sabio
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,Department of Internal Medicine, Virgen de las Nieves Universitary Hospital, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain. .,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain. .,CIBER of cardiovascular diseases (CIBERCV), Madrid, Spain.
| |
Collapse
|
21
|
Sun Y, Han M, Shen Z, Huang H, Miao X. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats. Saudi J Biol Sci 2017; 25:213-219. [PMID: 29472767 PMCID: PMC5816011 DOI: 10.1016/j.sjbs.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/01/2023] Open
Abstract
Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL), which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs). We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.
Collapse
Affiliation(s)
- Yanru Sun
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Mingfeng Han
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Zhenhuang Shen
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Haibo Huang
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Xiaoqing Miao
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China.,National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| |
Collapse
|
22
|
Wang Y, Zhang Y, Ding G, May HI, Xu J, Gillette TG, Wang H, Wang ZV. Temporal dynamics of cardiac hypertrophic growth in response to pressure overload. Am J Physiol Heart Circ Physiol 2017; 313:H1119-H1129. [PMID: 28822967 DOI: 10.1152/ajpheart.00284.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 01/20/2023]
Abstract
Hypertension is one of the most important risk factors of heart failure. In response to high blood pressure, the left ventricle manifests hypertrophic growth to ameliorate wall stress, which may progress into decompensation and trigger pathological cardiac remodeling. Despite the clinical importance, the temporal dynamics of pathological cardiac growth remain elusive. Here, we took advantage of the puromycin labeling approach to measure the relative rates of protein synthesis as a way to delineate the temporal regulation of cardiac hypertrophic growth. We first identified the optimal treatment conditions for puromycin in neonatal rat ventricular myocyte culture. We went on to demonstrate that myocyte growth reached its peak rate after 8-10 h of growth stimulation. At the in vivo level, with the use of an acute surgical model of pressure-overload stress, we observed the maximal growth rate to occur at day 7 after surgery. Moreover, RNA sequencing analysis supports that the most profound transcriptomic changes occur during the early phase of hypertrophic growth. Our results therefore suggest that cardiac myocytes mount an immediate growth response in reply to pressure overload followed by a gradual return to basal levels of protein synthesis, highlighting the temporal dynamics of pathological cardiac hypertrophic growth.NEW & NOTEWORTHY We determined the optimal conditions of puromycin incorporation in cardiac myocyte culture. We took advantage of this approach to identify the growth dynamics of cardiac myocytes in vitro. We went further to discover the protein synthesis rate in vivo, which provides novel insights about cardiac temporal growth dynamics in response to pressure overload.
Collapse
Affiliation(s)
- Yuan Wang
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas.,State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, China; and
| | - Yuannyu Zhang
- Department of Pediatrics, Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Guanqiao Ding
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Herman I May
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Xu
- Department of Pediatrics, Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, China; and
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|