1
|
Spiteri RJ, Reimer J, Klenk K. Automated strength-interval curve generation using actors. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 267:108784. [PMID: 40311440 DOI: 10.1016/j.cmpb.2025.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/24/2025] [Accepted: 04/14/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND AND OBJECTIVE Strength-interval (SI) curves are used by physiologists to quantify the response of excitable tissue as a function of the strength and timing of an electrical stimulus. In the context of cardiac electrophysiology, SI curves characterize the refractoriness of cardiac tissue as a function of inter-stimulus interval length. Although conventionally collected experimentally, this type of information can now more conveniently be obtained through computational simulation. Nevertheless, the computational generation of SI curves can be labor-intensive and time-consuming due to its iterative nature, the number and size of computations required, and the amount of manual researcher intervention involved. The objective of this study is to use the Actor Model of concurrent computation to automate the process of SI curve generation, relieving much of the burden from the researcher while maximizing the use of available computational resources. METHODS The C++ Actor Framework is used to create an automated tool for controlling the openCARP simulation platform. An SI curve is generated for the bidomain model of electrophysiology through the use of sophisticated parallelization techniques, e.g., dynamic information passing between parallel simulations, facilitated by the use of actors. Computational resource management is optimized by the dynamic monitoring, assessment, and reallocation based on each actor's current simulation state in relation to all other actors. RESULTS A bidomain SI curve with 31 data points that takes 27.5 h to compute conventionally using 80 CPU cores is now generated in 15.4 h. This is over 40% faster than using conventional parallel programming techniques with MPI. Furthermore, it requires no researcher intervention, which can add significantly to the time to solution. CONCLUSION Novel parallelization techniques enabled via the Actor Model significantly improve the efficiency of computational SI curve generation, both from the viewpoints of computation and labor intensiveness. This improvement in efficiency has implications for future studies involving cardiac refractory tissue, along with other types of excitable tissue, including the rapid generation of both general and patient-specific SI curves and the use of these curves for design and in silico testing of new therapeutic tools such as personalized pacemakers.
Collapse
Affiliation(s)
- Raymond J Spiteri
- Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon, S7N 5C9, Saskatchewan, Canada.
| | - Joyce Reimer
- Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon, S7N 5C9, Saskatchewan, Canada
| | - Kyle Klenk
- Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon, S7N 5C9, Saskatchewan, Canada
| |
Collapse
|
2
|
Choi YH, Leng J, Fan J, Ramirez RJ, Cho HC. Tissue elasticity modulates cardiac pacemaker cell automaticity. Am J Physiol Heart Circ Physiol 2025; 328:H978-H990. [PMID: 40080390 DOI: 10.1152/ajpheart.00813.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Tissue elasticity is essential to a broad spectrum of cell biology and organ function including the heart. Routine cell culture models on rigid polystyrene dishes are limited in studying the impact of tissue elasticity in distinct regions of the myocardium such as the cardiac conduction system. Gelatin, a derivative of collagen, is a simple and tunable platform for modeling tissue elasticity. We sought to study the effects of increasing tissue stiffness on cardiac pacemaker cell function by using transcription factor-reprogrammed pacemaker cells cultured on gelatin hydrogels with specific elasticity. Our data indicate that automaticity of the pacemaker cells, measured in rhythmic contractions and oscillating intracellular Ca2+ transients, was enhanced when cultured on a stiffer matrix of 14 kPa. This was accompanied by increased expression of cardiac pacemaker ion channel, Hcn4, and a reciprocal decrease in Cx43 expression compared with control conditions. Propagation of Ca2+ transients was slower in the pacemaker cell monolayers compared with control, which recapitulates a hallmark feature in the native pacemaker tissue. Ca2+ transient propagation of pacemaker cell monolayer was slower on stiffer than on softer hydrogel, and this was dependent on enhanced proliferation of cardiac fibroblasts rather than differences in gap junctional coupling. Culturing the pacemaker cells on rigid plastic plates led to irregular or loss of synchronous contractions as well as unusually long Ca2+ transient durations. Taken together, our data demonstrate that automaticity of pacemaker cells is augmented by stiffer extracellular matrix substrates within the elasticity range of the healthy myocardium. This simple approach presents a physiological in vitro model to study mechanoelectric feedback of cardiomyocytes including the conduction system cells.NEW & NOTEWORTHY The major achievement of this work is development of a robust and straightforward approach to model cardiac conduction system cells with a range of cardiac tissue elasticity with a goal to understand the impact of tissue stiffness on cardiac pacing. Our data provide a framework for further investigation of the heart rhythm in health and disease in the context of fibrosis.
Collapse
Affiliation(s)
- Young Hwan Choi
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Jing Leng
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Jinqi Fan
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Rafael J Ramirez
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Hee Cheol Cho
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins Children's Center, Baltimore, Maryland, United States
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, Maryland, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Bai X, Huang X, Yi J, Yan X, Hu T, Wang L, Wang Z, Gao H. Cardiac Fibroblasts Enhance MMP2 Activity to Suppress Gap Junction Function in Cardiomyocytes. Appl Biochem Biotechnol 2024; 196:8493-8512. [PMID: 38878160 DOI: 10.1007/s12010-024-04986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 01/04/2025]
Abstract
Although it is crucial to promptly restore blood perfusion to revive the ischemic myocardium, reperfusion itself can paradoxically contribute to the electrical instability and arrhythmias of the myocardium. Several studies have revealed that cardiac fibroblasts can impact cardiac electrophysiology through various mechanisms including the deposition of extracellular matrix, release of chemical mediators, and direct electrical coupling with myocytes. Previously, we have shown that hypoxia/reoxygenation (H/R)-treated rat fibroblasts conditional medium (H/R-FCM) could decrease the spontaneous beating frequency of rat neonatal cardiomyocytes and downregulate the expression of gap junction proteins. However, the specific mechanism by which H/R-FCM affects the gap junctions requires further investigation. H/R-FCM was obtained by culturing confluent rat cardiac fibroblasts (RCF) for 4 h under hypoxic conditions. Gap junction function, hemichannel activity, and expression of Cx43 were examined upon treatment with H/R-FCM. Gelatin zymography was performed to detect matrix metalloproteinase (MMP) activity in the conditioned medium. The effect of H/R-FCM and MMP2 inhibitors on cardiac electrophysiology and arrhythmias was investigated with an isolated rat ischemia/reperfusion (I/R) model. H/R-FCM treatment impaired gap junction function, downregulated Cx43 expression, and increased hemichannel activity in rat cardiomyocytes (H9c2). The adverse effect of H/R-FCM on gap junction, which was confirmed by the cardiomyocyte H/R model, was involved in the activation of MMP2. MMP2 inhibition could partially attenuate the detrimental effects of I/R on myocardial electrophysiological indices and arrhythmia susceptibility. Our study indicates that inhibition of MMP2 may be a promising therapeutic target for the treatment of reperfusion arrhythmia.
Collapse
Affiliation(s)
- Xue Bai
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiang Huang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jing Yi
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xu Yan
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tingju Hu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lu Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guiyang Maternal and Child Health Hospital, Guiyang, 550004, Guizhou, China
| | - Zijun Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Department of Anesthesiology, Guiyang Second People's Hospital, Guiyang, 550081, Guizhou, China
| | - Hong Gao
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
Wolfson DW, Kim NK, Lee KH, Beyersdorf JP, Langberg JJ, Fernandez N, Choi D, Zureick N, Kim TY, Bae S, Gu JM, Kirschman JL, Fan J, Sheng CY, Gottlieb Sen D, Mettler B, Sung JH, Yoon YS, Park SJ, Santangelo PJ, Cho HC. Transient pacing in pigs with complete heart block via myocardial injection of mRNA coding for the T-box transcription factor 18. Nat Biomed Eng 2024; 8:1124-1141. [PMID: 38698155 PMCID: PMC11410671 DOI: 10.1038/s41551-024-01211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
The adenovirus-mediated somatic transfer of the embryonic T-box transcription factor 18 (TBX18) gene can convert chamber cardiomyocytes into induced pacemaker cells. However, the translation of therapeutic TBX18-induced cardiac pacing faces safety challenges. Here we show that the myocardial expression of synthetic TBX18 mRNA in animals generates de novo pacing and limits innate and inflammatory immune responses. In rats, intramyocardially injected mRNA remained localized, whereas direct myocardial injection of an adenovirus carrying a reporter gene resulted in diffuse expression and in substantial spillover to the liver, spleen and lungs. Transient expression of TBX18 mRNA in rats led to de novo automaticity and pacemaker properties and, compared with the injection of adenovirus, to substantial reductions in the expression of inflammatory genes and in activated macrophage populations. In rodent and clinically relevant porcine models of complete heart block, intramyocardially injected TBX18 mRNA provided rate-adaptive cardiac pacing for one month that strongly correlated with the animal's sinus rhythm and physical activity. TBX18 mRNA may aid the development of biological pacemakers.
Collapse
Affiliation(s)
- David W Wolfson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nam Kyun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ki Hong Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Chonnam National University Medical School, Gwangju, South Korea
| | - Jared P Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jonathan J Langberg
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Natasha Fernandez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dahim Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nadine Zureick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Tae Yun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Seongho Bae
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jin-Mo Gu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jinqi Fan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christina Y Sheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Danielle Gottlieb Sen
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bret Mettler
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jung Hoon Sung
- Department of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Young-Sup Yoon
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sung-Jin Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Hee Cheol Cho
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, The Johns Hopkins Children's Center, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA.
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Komosa ER, Wolfson DW, Bressan M, Cho HC, Ogle BM. Implementing Biological Pacemakers: Design Criteria for Successful. Circ Arrhythm Electrophysiol 2021; 14:e009957. [PMID: 34592837 PMCID: PMC8530973 DOI: 10.1161/circep.121.009957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Each heartbeat that pumps blood throughout the body is initiated by an electrical impulse generated in the sinoatrial node (SAN). However, a number of disease conditions can hamper the ability of the SAN's pacemaker cells to generate consistent action potentials and maintain an orderly conduction path, leading to arrhythmias. For symptomatic patients, current treatments rely on implantation of an electronic pacing device. However, complications inherent to the indwelling hardware give pause to categorical use of device therapy for a subset of populations, including pediatric patients or those with temporary pacing needs. Cellular-based biological pacemakers, derived in vitro or in situ, could function as a therapeutic alternative to current electronic pacemakers. Understanding how biological pacemakers measure up to the SAN would facilitate defining and demonstrating its advantages over current treatments. In this review, we discuss recent approaches to creating biological pacemakers and delineate design criteria to guide future progress based on insights from basic biology of the SAN. We emphasize the need for long-term efficacy in vivo via maintenance of relevant proteins, source-sink balance, a niche reflective of the native SAN microenvironment, and chronotropic competence. With a focus on such criteria, combined with delivery methods tailored for disease indications, clinical implementation will be attainable.
Collapse
Affiliation(s)
- Elizabeth R Komosa
- Department of Biomedical Engineering (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Stem Cell Institute (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - David W Wolfson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (D.W.W., H.C.C.)
| | - Michael Bressan
- Department of Cell Biology and Physiology (M.B.), University of North Carolina-Chapel Hill
- McAllister Heart Institute (M.B.), University of North Carolina-Chapel Hill
| | - Hee Cheol Cho
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (D.W.W., H.C.C.)
- Department of Pediatrics, Emory University, Atlanta, GA (H.C.C.)
| | - Brenda M Ogle
- Department of Biomedical Engineering (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Stem Cell Institute (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Department of Pediatrics (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Lillehei Heart Institute (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Institute for Engineering in Medicine (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Masonic Cancer Center (B.M.O), University of Minnesota-Twin Cities, Minneapolis
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to review present knowledge regarding biological pacemakers created by somatic reprogramming as a platform for mechanistic and metabolic understanding of the rare subpopulation of pacemaker cells, with the ultimate goal of creating biological alternatives to electronic pacing devices. RECENT FINDINGS Somatic reprogramming of cardiomyocytes by reexpression of embryonic transcription factor T-box 18 (TBX18) converts them into pacemaker-like. Recent studies take advantage of this model to gain insight into the electromechanical, metabolic, and architectural intricacies of the cardiac pacemaker cell across various models, including a surgical model of complete atrioventricular block (CAVB) in adult rats. The studies reviewed here reinforce the potential utility of TBX18-induced pacemaker myocytes (iPMS) as a minimally invasive treatment for heart block. Several challenges which must be overcome to develop a viable therapeutic intervention based on these observations are discussed.
Collapse
|
7
|
Grijalva SI, Gu J, Li J, Fernandez N, Fan J, Sung JH, Lee SY, Herndon C, Buckley EM, Park S, Fenton FH, Cho HC. Engineered Cardiac Pacemaker Nodes Created by TBX18 Gene Transfer Overcome Source-Sink Mismatch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901099. [PMID: 31763140 PMCID: PMC6864514 DOI: 10.1002/advs.201901099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Every heartbeat originates from a tiny tissue in the heart called the sinoatrial node (SAN). The SAN harbors only ≈10 000 cardiac pacemaker cells, initiating an electrical impulse that captures the entire heart, consisting of billions of cardiomyocytes for each cardiac contraction. How these rare cardiac pacemaker cells (the electrical source) can overcome the electrically hyperpolarizing and quiescent myocardium (the electrical sink) is incompletely understood. Due to the scarcity of native pacemaker cells, this concept of source-sink mismatch cannot be tested directly with live cardiac tissue constructs. By exploiting TBX18 induced pacemaker cells by somatic gene transfer, 3D cardiac pacemaker spheroids can be tissue-engineered. The TBX18 induced pacemakers (sphTBX18) pace autonomously and drive the contraction of neighboring myocardium in vitro. TBX18 spheroids demonstrate the need for reduced electrical coupling and physical separation from the neighboring ventricular myocytes, successfully recapitulating a key design principle of the native SAN. β-Adrenergic stimulation as well as electrical uncoupling significantly increase sphTBX18s' ability to pace-and-drive the neighboring myocardium. This model represents the first platform to test design principles of the SAN for mechanistic understanding and to better engineer biological pacemakers for therapeutic translation.
Collapse
Affiliation(s)
- Sandra I. Grijalva
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Jin‐mo Gu
- Department of PediatricsEmory UniversityAtlantaGA30322USA
| | - Jun Li
- Department of PediatricsEmory UniversityAtlantaGA30322USA
| | | | - Jinqi Fan
- Department of PediatricsEmory UniversityAtlantaGA30322USA
| | - Jung Hoon Sung
- Department of PediatricsEmory UniversityAtlantaGA30322USA
- Department of Internal MedicineCHA Bundang Medical CenterSeoul13557South Korea
| | - Seung Yup Lee
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Conner Herndon
- Department of PhysicsGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Erin M. Buckley
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Sung‐Jin Park
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Flavio H. Fenton
- Department of PhysicsGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Hee Cheol Cho
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- Department of PediatricsEmory UniversityAtlantaGA30322USA
| |
Collapse
|
8
|
Induced cardiac pacemaker cells survive metabolic stress owing to their low metabolic demand. Exp Mol Med 2019; 51:1-12. [PMID: 31519870 PMCID: PMC6802647 DOI: 10.1038/s12276-019-0303-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 11/29/2022] Open
Abstract
Cardiac pacemaker cells of the sinoatrial node initiate each and every heartbeat. Compared with our understanding of the constituents of their electrical excitation, little is known about the metabolic underpinnings that drive the automaticity of pacemaker myocytes. This lack is largely owing to the scarcity of native cardiac pacemaker myocytes. Here, we take advantage of induced pacemaker myocytes generated by TBX18-mediated reprogramming (TBX18-iPMs) to investigate comparative differences in the metabolic program between pacemaker myocytes and working cardiomyocytes. TBX18-iPMs were more resistant to metabolic stresses, exhibiting higher cell viability upon oxidative stress. TBX18-induced pacemaker myocytes (iPMs) expensed a lower degree of oxidative phosphorylation and displayed a smaller capacity for glycolysis compared with control ventricular myocytes. Furthermore, the mitochondria were smaller in TBX18-iPMs than in the control. We reasoned that a shift in the balance between mitochondrial fusion and fission was responsible for the smaller mitochondria observed in TBX18-iPMs. We identified a mitochondrial inner membrane fusion protein, Opa1, as one of the key mediators of this process and demonstrated that the suppression of Opa1 expression increases the rate of synchronous automaticity in TBX18-iPMs. Taken together, our data demonstrate that TBX18-iPMs exhibit a low metabolic demand that matches their mitochondrial morphology and ability to withstand metabolic insult. The heart’s pacemaker cells contain mitochondria that are smaller than average and require less energy than other heart cells, properties that help make them naturally resilient to stress. Cardiac pacemaker cells constitute a tiny proportion of the heart’s cells, yet play a critical role in maintaining a steady heartbeat. However, quite how pacemaker cells maintain their automatic rhythm is unclear because their scarcity makes them difficult to study. To examine the cells’ metabolic state further, Hee Cheol Cho at Emory University, Atlanta, and Brian Foster at Johns Hopkins University School of Medicine, Baltimore, and co-workers therefore induced pacemaker cells by adding an embryonic protein to heart muscle cells. The induced pacemaker cells survived well under oxidative stress. The team identified a protein in the pacemakers’ mitochondrial membranes, the expression of which directly influences rhythm responses.
Collapse
|