1
|
Karamanova N, Morrow KT, Maerivoet A, Madine J, Li M, Migrino RQ. Medin Induces Pro-Inflammatory Activation of Human Brain Vascular Smooth Muscle Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613366. [PMID: 39345549 PMCID: PMC11429804 DOI: 10.1101/2024.09.16.613366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Medin is one of the most common amyloidogenic proteins and accumulates in the vasculature with aging. Vascular medin accumulation is associated with Alzheimer's disease, vascular dementia and aortic aneurysms. Medin impairs smooth muscle-dependent vasodilation in isolated human brain cerebral arteries. The role of medin in vascular smooth muscle (VSMC) activation is unknown. We aim to evaluate the effects of medin on human brain VSMC activation. Methods VSMCs were exposed to physiologic doses of medin (0.5, 1 and 5 µM) without or with small molecule nuclear factor-κB (NFκB) inhibitor RO106-9920 (10 µM) for 20 hours. Polymerase chain reaction, Western blot/enzyme-linked immunosorbent assay were used to quantify gene and protein expressions/secretions, respectively, of pro-inflammatory factors (interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1) and structural and enzyme proteins associated with VSMC phenotypic transformation (smooth muscle actin alpha 2 (ACTA2), myosin heavy chain 11 (MYH11) and NADPH oxidase 4 (NOX4)). Results Medin exposure increased VSMC gene expression and protein secretion of IL-6, IL-8 and MCP-1 (protein secretion 46.0±12.8x, 20.2±4.1x and 8.7±3.1x, respectively, medin 5 µM versus vehicle, all p<0.05). There was no change in gene or protein expressions of ACTA2, MYH11 and NOX4. Co-treatment with RO106-9920 reduced medin-induced increases in IL-6 and IL-8 and a trend towards reduced MCP-1 secretion. Conclusions Medin induced pro-inflammatory activation of human brain VSMCs that is mediated, at least in part, by NFκB. Acute medin treatment did not alter structural proteins involved in VSMC phenotypic transformation. The findings support medin as a potential novel mediator of and therapeutic target for vascular aging pathology.
Collapse
|
2
|
Zhang Y, Karamanova N, Morrow KT, Madine J, Truran S, Lozoya M, Weissig V, Li M, Nikkhah M, Park JG, Migrino RQ. Transcriptomic analyses reveal proinflammatory activation of human brain microvascular endothelial cells by aging-associated peptide medin and reversal by nanoliposomes. Sci Rep 2023; 13:18802. [PMID: 37914766 PMCID: PMC10620412 DOI: 10.1038/s41598-023-45959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Medin is a common vascular amyloidogenic peptide recently implicated in Alzheimer's disease (AD) and vascular dementia and its pathology remains unknown. We aim to identify changes in transcriptomic profiles and pathways in human brain microvascular endothelial cells (HBMVECs) exposed to medin, compare that to exposure to β-amyloid (Aβ) and evaluate protection by monosialoganglioside-containing nanoliposomes (NL). HBMVECs were exposed for 20 h to medin (5 µM) without or with Aβ(1-42) (2 µM) or NL (300 µg/mL), and RNA-seq with signaling pathway analyses were performed. Separately, reverse transcription polymerase chain reaction of select identified genes was done in HBMVECs treated with medin (5 µM) without or with NFκB inhibitor RO106-9920 (10 µM) or NL (300 µg/mL). Medin caused upregulation of pro-inflammatory genes that was not aggravated by Aβ42 co-treatment but reversed by NL. Pathway analysis on differentially expressed genes revealed multiple pro-inflammatory signaling pathways, such as the tumor necrosis factor (TNF) and the nuclear factor-κB (NFkB) signaling pathways, were affected specifically by medin treatment. RO106-9920 and NL reduced medin-induced pro-inflammatory activation. Medin induced endothelial cell pro-inflammatory signaling in part via NFκB that was reversed by NL. This could have potential implications in the pathogenesis and treatment of vascular aging, AD and vascular dementia.
Collapse
Affiliation(s)
- Yining Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nina Karamanova
- Phoenix Veterans Affairs Healthcare System, 650 E. Indian School Road, Phoenix, AZ, 85022, USA
| | - Kaleb T Morrow
- Phoenix Veterans Affairs Healthcare System, 650 E. Indian School Road, Phoenix, AZ, 85022, USA
| | | | - Seth Truran
- Phoenix Veterans Affairs Healthcare System, 650 E. Indian School Road, Phoenix, AZ, 85022, USA
| | | | | | - Ming Li
- Phoenix Veterans Affairs Healthcare System, 650 E. Indian School Road, Phoenix, AZ, 85022, USA
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Mehdi Nikkhah
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, USA
| | - Jin G Park
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Healthcare System, 650 E. Indian School Road, Phoenix, AZ, 85022, USA.
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
3
|
Madine J, Davies HA, Migrino RQ, Ruotsalainen SE, Wagner J, Neher JJ. Medin amyloid may drive arterial aging and disease in the periphery and brain. NATURE AGING 2023; 3:1039-1041. [PMID: 37620584 DOI: 10.1038/s43587-023-00481-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Affiliation(s)
- Jillian Madine
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hannah A Davies
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System and University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jessica Wagner
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany.
| |
Collapse
|
4
|
Milk Fat Globule Epidermal Growth Factor VIII Fragment Medin in Age-Associated Arterial Adverse Remodeling and Arterial Disease. Cells 2023; 12:cells12020253. [PMID: 36672188 PMCID: PMC9857039 DOI: 10.3390/cells12020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Medin, a small 50-amino acid peptide, is an internal cleaved product from the second discoidin domain of milk fat globule epidermal growth factor VIII (MFG-E8) protein. Medin has been reported as the most common amylogenic protein in the upper part of the arterial system, including aortic, temporal, and cerebral arterial walls in the elderly. Medin has a high affinity to elastic fibers and is closely associated with arterial degenerative inflammation, elastic fiber fragmentation, calcification, and amyloidosis. In vitro, treating with the medin peptide promotes the inflammatory phenotypic shift of both endothelial cells and vascular smooth muscle cells. In vitro, ex vivo, and in vivo studies demonstrate that medin enhances the abundance of reactive oxygen species and reactive nitrogen species produced by both endothelial cells and vascular smooth muscle cells and promotes vascular endothelial dysfunction and arterial stiffening. Immunostaining and immunoblotting analyses of human samples indicate that the levels of medin are increased in the pathogenesis of aortic aneurysm/dissection, temporal arteritis, and cerebrovascular dementia. Thus, medin peptide could be targeted as a biomarker diagnostic tool or as a potential molecular approach to curbing the arterial degenerative inflammatory remodeling that accompanies aging and disease.
Collapse
|
5
|
Griffiths DR, Matthew Law L, Young C, Fuentes A, Truran S, Karamanova N, Bell LC, Turner G, Emerson H, Mastroeni D, Gonzales RJ, Reaven PD, Chad Quarles C, Migrino RQ, Lifshitz J. Chronic Cognitive and Cerebrovascular Function after Mild Traumatic Brain Injury in Rats. J Neurotrauma 2022; 39:1429-1441. [PMID: 35593008 PMCID: PMC10870816 DOI: 10.1089/neu.2022.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe traumatic brain injury (TBI) results in cognitive dysfunction in part due to vascular perturbations. In contrast, the long-term vasculo-cognitive pathophysiology of mild TBI (mTBI) remains unknown. We evaluated mTBI effects on chronic cognitive and cerebrovascular function and assessed their interrelationships. Sprague-Dawley rats received midline fluid percussion injury (n = 20) or sham (n = 21). Cognitive function was assessed (3- and 6-month novel object recognition [NOR], novel object location [NOL], and temporal order object recognition [TOR]). Six-month cerebral blood flow (CBF) and cerebral blood volume (CBV) using contrast magnetic resonance imaging (MRI) and ex vivo circle of Willis artery endothelial and smooth muscle-dependent function were measured. mTBI rats showed significantly impaired NOR, with similar trends (non-significant) in NOL/TOR. Regional CBF and CBV were similar in sham and mTBI. NOR correlated with CBF in lateral hippocampus, medial hippocampus, and primary somatosensory barrel cortex, whereas it inversely correlated with arterial smooth muscle-dependent dilation. Six-month baseline endothelial and smooth muscle-dependent arterial function were similar among mTBI and sham, but post-angiotensin 2 stimulation, mTBI showed no change in smooth muscle-dependent dilation from baseline response, unlike the reduction in sham. mTBI led to chronic cognitive dysfunction and altered angiotensin 2-stimulated smooth muscle-dependent vasoreactivity. The findings of persistent pathophysiological consequences of mTBI in this animal model add to the broader understanding of chronic pathophysiological sequelae in human mild TBI.
Collapse
Affiliation(s)
- Daniel R. Griffiths
- Phoenix VA Health Care System, Phoenix, Arizona, USA
- University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - L. Matthew Law
- Phoenix VA Health Care System, Phoenix, Arizona, USA
- University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Conor Young
- University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
| | | | - Seth Truran
- Phoenix VA Health Care System, Phoenix, Arizona, USA
| | | | - Laura C. Bell
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | | | - Rayna J. Gonzales
- University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
| | - Peter D. Reaven
- Phoenix VA Health Care System, Phoenix, Arizona, USA
- University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
| | | | - Raymond Q. Migrino
- Phoenix VA Health Care System, Phoenix, Arizona, USA
- University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
| | - Jonathan Lifshitz
- Phoenix VA Health Care System, Phoenix, Arizona, USA
- University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Martins-Filho RK, Zotin MC, Rodrigues G, Pontes-Neto O. Biomarkers Related to Endothelial Dysfunction and Vascular Cognitive Impairment: A Systematic Review. Dement Geriatr Cogn Disord 2021; 49:365-374. [PMID: 33045717 DOI: 10.1159/000510053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The damage in the endothelium and the neurovascular unit appears to play a key role in the pathogenesis of vascular cognitive impairment (VCI). Although there have been many advances in understanding the physiopathology of this disease, several questions remain unanswered. The association with other degenerative diseases and the heterogeneity of its clinical spectrum establish a diagnostic problem, compromising a better comprehension of the pathology and halting the development of effective treatments. The investigation of biomarkers is an important movement to the development of novel explicative models and treatment targets involved in VCI. METHODS We searched MEDLINE considering the original research based on VCI biomarkers in the past 20 years, following prespecified selection criteria, data extraction, and qualitative synthesis. RESULTS We reviewed 42 articles: 16 investigated plasma markers, 17 analyzed neuropathological markers, 4 studied CSF markers, 4 evaluated neuroimaging markers (ultrasound and MRI), and 1 used peripheral Doppler perfusion imaging. CONCLUSIONS The biomarkers in these studies suggest an intrinsic relationship between endothelial dysfunction and VCI. Nonetheless, there is still a need for identification of a distinctive set of markers that can integrate the clinical approach of VCI, improve diagnostic accuracy, and support the discovery of alternative therapies.
Collapse
Affiliation(s)
- Rui Kleber Martins-Filho
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,
| | - Maria Clara Zotin
- Department of Internal Medicine, Radiology Division, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Rodrigues
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Octavio Pontes-Neto
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Migrino RQ, Karamanova N, Truran S, Serrano GE, Davies HA, Madine J, Beach TG. Cerebrovascular medin is associated with Alzheimer's disease and vascular dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12072. [PMID: 32875054 PMCID: PMC7447901 DOI: 10.1002/dad2.12072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Medin, an aging-associated amyloidogenic protein, induces cerebrovascular dysfunction and inflammation. We investigated the relationship between cerebrovascular medin and Alzheimer's disease (AD) and vascular dementia (VaD). METHODS Cerebral arteriole medin was quantified from 91 brain donors with no dementia (ND), AD, VaD, or combined AD and VaD. Correlation analyses evaluated the relationship between arteriole medin, and plaques, tangles, or white matter lesions (WML). Receiver operating characteristic and regression analyses assessed whether medin is predictive of AD or VaD versus other cerebrovascular pathologies (circle of Willis [CoW] atherosclerosis and cerebral amyloid angiopathy [CAA]). RESULTS Arteriole medin was higher in those with AD, VaD, or combined AD/VaD versus ND (P < .05), and correlated with tangle, plaque, and WML, but not CAA or CoW atherosclerosis. Among cerebrovascular pathologies, medin was the strongest predictor of AD diagnosis, whereas CoW atherosclerosis and arteriole medin were predictors of VaD. DISCUSSION Cerebral arteriole medin is associated with and could be a potential novel risk factor or biomarker for AD and VaD.
Collapse
Affiliation(s)
- Raymond Q. Migrino
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
- University of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Nina Karamanova
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
| | - Seth Truran
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
| | | | | | | | | |
Collapse
|
8
|
Younger S, Jang H, Davies HA, Niemiec MJ, Garcia JGN, Nussinov R, Migrino RQ, Madine J, Arce FT. Medin Oligomer Membrane Pore Formation: A Potential Mechanism of Vascular Dysfunction. Biophys J 2020; 118:2769-2782. [PMID: 32402244 PMCID: PMC7264854 DOI: 10.1016/j.bpj.2020.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Medin, a 50-amino-acid cleavage product of the milk fat globule-EGF factor 8 protein, is one of the most common forms of localized amyloid found in the vasculature of individuals older than 50 years. Medin induces endothelial dysfunction and vascular inflammation, yet despite its prevalence in the human aorta and multiple arterial beds, little is known about the nature of its pathology. Medin oligomers have been implicated in the pathology of aortic aneurysm, aortic dissection, and more recently, vascular dementia. Recent in vitro biomechanical measurements found increased oligomer levels in aneurysm patients with altered aortic wall integrity. Our results suggest an oligomer-mediated toxicity mechanism for medin pathology. Using lipid bilayer electrophysiology, we show that medin oligomers induce ionic membrane permeability by pore formation. Pore activity was primarily observed for preaggregated medin species from the growth-phase and rarely for lag-phase species. Atomic force microscopy (AFM) imaging of medin aggregates at different stages of aggregation revealed the gradual formation of flat domains resembling the morphology of supported lipid bilayers. Transmission electron microscopy images showed the coexistence of compact oligomers, largely consistent with the AFM data, and larger protofibrillar structures. Circular dichroism spectroscopy revealed the presence of largely disordered species and suggested the presence of β-sheets. This observation and the significantly lower thioflavin T fluorescence emitted by medin aggregates compared to amyloid-β fibrils, along with the absence of amyloid fibers in the AFM and transmission electron microscopy images, suggest that medin aggregation into pores follows a nonamyloidogenic pathway. In silico modeling by molecular dynamics simulations provides atomic-level structural detail of medin pores with the CNpNC barrel topology and diameters comparable to values estimated from experimental pore conductances.
Collapse
Affiliation(s)
- Scott Younger
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Hannah A Davies
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Martin J Niemiec
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raymond Q Migrino
- Office of Research, Phoenix Veterans Affairs Health Care System, Phoenix, Arizona; Department of Medicine, University of Arizona College of Medicine-Phoenix, Arizona
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Fernando T Arce
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; Department of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
9
|
Karamanova N, Truran S, Serrano GE, Beach TG, Madine J, Weissig V, Davies HA, Veldhuizen J, Nikkhah M, Hansen M, Zhang W, D'Souza K, Franco DA, Migrino RQ. Endothelial Immune Activation by Medin: Potential Role in Cerebrovascular Disease and Reversal by Monosialoganglioside-Containing Nanoliposomes. J Am Heart Assoc 2020; 9:e014810. [PMID: 31928157 PMCID: PMC7033828 DOI: 10.1161/jaha.119.014810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The function of medin, one of the most common human amyloid proteins that accumulates in the vasculature with aging, remains unknown. We aim to probe medin's role in cerebrovascular disease by comparing cerebral arterial medin content between cognitively normal and vascular dementia (VaD) patients and studying its effects on endothelial cell (EC) immune activation and neuroinflammation. We also tested whether monosialoganglioside‐containing nanoliposomes could reverse medin's adverse effects. Methods and Results Cerebral artery medin and astrocyte activation were measured and compared between VaD and cognitively normal elderly brain donors. ECs were exposed to physiologic dose of medin (5 μmol/L), and viability and immune activation (interleukin‐8, interleukin‐6, intercellular adhesion molecule‐1, and plasminogen activator inhibitor‐1) were measured without or with monosialoganglioside‐containing nanoliposomes (300 μg/mL). Astrocytes were exposed to vehicle, medin, medin‐treated ECs, or their conditioned media, and interleukin‐8 production was compared. Cerebral collateral arterial and parenchymal arteriole medin, white matter lesion scores, and astrocyte activation were higher in VaD versus cognitively normal donors. Medin induced EC immune activation (increased interleukin‐8, interleukin‐6, intercellular adhesion molecule‐1, and plasminogen activator inhibitor‐1) and reduced EC viability, which were reversed by monosialoganglioside‐containing nanoliposomes. Interleukin‐8 production was augmented when astrocytes were exposed to medin‐treated ECs or their conditioned media. Conclusions Cerebral arterial medin is higher in VaD compared with cognitively normal patients. Medin induces EC immune activation that modulates astrocyte activation, and its effects are reversed by monosialoganglioside‐containing nanoliposomes. Medin is a candidate novel risk factor for aging‐related cerebrovascular disease and VaD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mehdi Nikkhah
- Phoenix Veterans Affairs Phoenix AZ.,Arizona State University Tempe AZ
| | | | | | | | | | - Raymond Q Migrino
- Phoenix Veterans Affairs Phoenix AZ.,University of Arizona College of Medicine-Phoenix Phoenix AZ
| |
Collapse
|
10
|
Toth P, Tarantini S, Rutkai I, Ungvari Z. Assessment of endothelial function in leptomeningeal arterioles derived from patients with Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2018; 315:H790-H793. [PMID: 29932773 DOI: 10.1152/ajpheart.00367.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs , Pecs , Hungary.,Institute for Translational Medicine, Medical School, University of Pecs , Pecs , Hungary.,MTA-PTE Clinical Neuroscience MR Research Group of the Hungarian Academy of Sciences , Pecs , Hungary.,Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University, School of Medicine, New Orleans, Louisana
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|