1
|
Roshchevskaya IM, Suslonova OV, Smirnova SL, Ionova EO, Vititnova MB, Tsorin IB, Kryzhanovskii SA. Correlation of the Left Ventricular Systolic Dysfunction and Ventricular Depolarization in a Post-Infarction Model of Chronic Heart Failure. Bull Exp Biol Med 2024; 176:428-432. [PMID: 38488960 DOI: 10.1007/s10517-024-06040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 03/17/2024]
Abstract
The body surface potential mapping of the heart during the period of ventricular depolarization and the inotropic function of the ventricles were studied in rats under conditions of a translational model of post-infarction chronic heart failure developed by us. We revealed a statistically significant (p<0.001) correlation between the left-ventricular ejection fraction and the values of the maximum positive and negative extrema of the cardioelectric field on the body surface of rats with post-infarction chronic heart failure caused by anterior transmural myocardial infarction. The calculated linear regression equations have high predictive efficiency, which makes it possible to use the amplitude characteristics of the heart cardioelectric field as a marker of the development of chronic heart failure.
Collapse
Affiliation(s)
| | - O V Suslonova
- Department of Comparative Cardiology, Federal Research Center Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - S L Smirnova
- Department of Comparative Cardiology, Federal Research Center Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - E O Ionova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - M B Vititnova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - I B Tsorin
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | | |
Collapse
|
2
|
Repp ML, Chinyere IR. Opportunities and Challenges in Catheter-Based Irreversible Electroporation for Ventricular Tachycardia. PATHOPHYSIOLOGY 2024; 31:32-43. [PMID: 38251047 PMCID: PMC10801500 DOI: 10.3390/pathophysiology31010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The use of catheter-based irreversible electroporation in clinical cardiac laboratories, termed pulsed-field ablation (PFA), is gaining international momentum among cardiac electrophysiology proceduralists for the non-thermal management of both atrial and ventricular tachyrhythmogenic substrates. One area of potential application for PFA is in the mitigation of ventricular tachycardia (VT) risk in the setting of ischemia-mediated myocardial fibrosis, as evidenced by recently published clinical case reports. The efficacy of tissue electroporation has been documented in other branches of science and medicine; however, ventricular PFA's potential advantages and pitfalls are less understood. This comprehensive review will briefly summarize the pathophysiological mechanisms underlying VT and then summarize the pre-clinical and adult clinical data published to date on PFA's effectiveness in treating monomorphic VT. These data will be contrasted with the effectiveness ascribed to thermal cardiac ablation modalities to treat VT, namely radiofrequency energy and liquid nitrogen-based cryoablation.
Collapse
Affiliation(s)
| | - Ikeotunye Royal Chinyere
- Department of Medecine, Banner University Medicine, Tucson, AZ 85724, USA
- Sarver Heart Center, University of Arizona, 1501 North Campbell Avenue, Room 6154, Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
4
|
van Schie MS, Starreveld R, Bogers AJJC, de Groot NMS. Sinus rhythm voltage fingerprinting in patients with mitral valve disease using a high-density epicardial mapping approach. Europace 2021; 23:469-478. [PMID: 33432326 PMCID: PMC7947572 DOI: 10.1093/europace/euaa336] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/06/2020] [Indexed: 12/03/2022] Open
Abstract
Aims Unipolar voltage (UV) mapping is increasingly used for guiding ablative therapy of atrial fibrillation (AF) as unipolar electrograms (U-EGMs) are independent of electrode orientation and atrial wavefront direction. This study was aimed at constructing individual, high-resolution sinus rhythm (SR) UV fingerprints to identify low-voltage areas and study the effect of AF episodes in patients with mitral valve disease (MVD). Methods and results Intra-operative epicardial mapping (interelectrode distance 2 mm) of the right and left atrium, Bachmann’s bundle (BB), and pulmonary vein area was performed in 67 patients (27 male, 67 ± 11 years) with or without a history of paroxysmal AF (PAF). In all patients, there were considerable regional variations in voltages. UVs at BB were lower in patients with PAF compared with those without [no AF: 4.94 (3.56–5.98) mV, PAF: 3.30 (2.25–4.57) mV, P = 0.006]. A larger number of low-voltage potentials were recorded at BB in the PAF group [no AF: 2.13 (0.52–7.68) %, PAF: 12.86 (3.18–23.59) %, P = 0.001]. In addition, areas with low-voltage potentials were present in all patients, yet we did not find any predilection sites for low-voltage potentials to occur. Conclusion Even in SR, advanced atrial remodelling in MVD patients shows marked inter-individual and regional variation. Low UVs are even present during SR in patients without a history of AF indicating that low UVs should carefully be used as target sites for ablative therapy.
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Dr Molewaterplein 40, 3015GD Rotterdam, The Netherlands
| | - Roeliene Starreveld
- Department of Cardiology, Erasmus Medical Center, Dr Molewaterplein 40, 3015GD Rotterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus Medical Center, Dr Molewaterplein 40, 3015GD Rotterdam, The Netherlands
| |
Collapse
|
5
|
He Y, Wang G, Gao H, Liu Y, Li H, Feng Y, Tang J. Prolonged duration of repolarization and decreased conduction velocity in the atrial myocardium after hypothermic ischemia-reperfusion may be related to expressions of inward rectifier potassium channel 2.1 protein and connexin 40. Perfusion 2021; 36:146-153. [PMID: 32650696 DOI: 10.1177/0267659120934612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The study aimed to determine the role of inward rectifier potassium channel 2.1 protein and connexin 40 expressions in regulating the duration of repolarization and conduction velocity of right atrial myocardium in rats following hypothermic ischemia-reperfusion. METHODS The Langendorff isolated rat cardiac perfusion models were divided into control (C) and hypothermic ischemia-reperfusion groups, with 8 models in group C and 16 models in group ischemia-reperfusion. Depending on the incidence of atrial arrhythmia after reperfusion, the models in group ischemia-reperfusion were further divided into reperfusion non-atrial arrhythmia or reperfusion atrial arrhythmia subgroup. Right atrial monophasic action potential duration at 50% and 90% of repolarization after 30 minutes of continuous perfusion in group C and group ischemia-reperfusion (T0), 105 minutes of continuous perfusion in group C or after 15 minutes of reperfusion in group ischemia-reperfusion (T1) and 120 minutes of continuous perfusion in group C or 30 minutes of reperfusion in group ischemia-reperfusion (T2) were recorded. Right atrial conduction velocity and effective refractory period were recorded at T2. Then, the expressions of inward rectifier potassium channel 2.1 protein and connexin 40 in the right atrial myocardium were detected. RESULTS Monophasic action potential duration at 50% and 90% were higher at T1 and T2 than those at T0 in subgroup reperfusion atrial arrhythmia (p < 0.05); monophasic action potential duration at 50% in subgroup reperfusion atrial arrhythmia were larger than group C and subgroup reperfusion non-atrial arrhythmia at T1 and T2 (p < 0.05); monophasic action potential duration at 90% in subgroup reperfusion atrial arrhythmia were larger than group C and subgroup reperfusion non-atrial arrhythmia at T1 and T2 (p < 0.05); effective refractory period in subgroup reperfusion atrial arrhythmia was greater than that in group C and subgroup reperfusion non-atrial arrhythmia, and the conduction velocity and the expressions of inward rectifier potassium channel 2.1 protein and connexin 40 were significantly lower than group C and subgroup reperfusion non-atrial arrhythmia (p < 0.05). CONCLUSIONS The prolonged duration of repolarization and a decrease in conduction velocity of the atrial myocardium occur in rats after hypothermic ischemia-reperfusion. These observed effects may be related to the downregulated expressions of connexin 40 and inward rectifier potassium channel 2.1.
Collapse
Affiliation(s)
- Youqin He
- School of Anesthesiology, Guizhou Medical University, Guiyang, P.R. China
| | - Guilong Wang
- Department of Anesthesiology, The People's Hospital of Zhijin County, Bijie, P.R. China
| | - Hong Gao
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, P.R. China
| | - Yanqiu Liu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Huayu Li
- School of Anesthesiology, Guizhou Medical University, Guiyang, P.R. China
| | - Yurong Feng
- School of Anesthesiology, Guizhou Medical University, Guiyang, P.R. China
| | - Jian Tang
- School of Anesthesiology, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
6
|
Chinyere IR, Moukabary T, Hutchinson MD, Lancaster JJ, Juneman E, Goldman S. Progression of infarct-mediated arrhythmogenesis in a rodent model of heart failure. Am J Physiol Heart Circ Physiol 2021; 320:H108-H116. [PMID: 33164577 PMCID: PMC7847079 DOI: 10.1152/ajpheart.00639.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
Heart failure (HF) post-myocardial infarction (MI) presents with increased vulnerability to monomorphic ventricular tachycardia (mmVT). To appropriately evaluate new therapies for infarct-mediated reentrant arrhythmia in the preclinical setting, chronologic characterization of the preclinical animal model pathophysiology is critical. This study aimed to evaluate the rigor and reproducibility of mmVT incidence in a rodent model of HF. We hypothesize a progressive increase in the incidence of mmVT as the duration of HF increases. Adult male Sprague-Dawley rats underwent permanent left coronary artery ligation or SHAM surgery and were maintained for either 6 or 10 wk. At end point, SHAM and HF rats underwent echocardiographic and invasive hemodynamic evaluation. Finally, rats underwent electrophysiologic (EP) assessment to assess susceptibility to mmVT and define ventricular effective refractory period (ERP). In 6-wk HF rats (n = 20), left ventricular (LV) ejection fraction (EF) decreased (P < 0.05) and LV end-diastolic pressure (EDP) increased (P < 0.05) compared with SHAM (n = 10). Ten-week HF (n = 12) revealed maintenance of LVEF and LVEDP (P > 0.05), (P > 0.05). Electrophysiology studies revealed an increase in incidence of mmVT between SHAM and 6-wk HF (P = 0.0016) and ERP prolongation (P = 0.0186). The incidence of mmVT and ventricular ERP did not differ between 6- and 10-wk HF (P = 1.0000), (P = 0.9831). Findings from this rodent model of HF suggest that once the ischemia-mediated infarct stabilizes, proarrhythmic deterioration ceases. Within the 6- and 10-wk period post-MI, no echocardiographic, invasive hemodynamic, or electrophysiologic changes were observed, suggesting stable HF. This is the necessary context for the evaluation of experimental therapies in rodent HF.NEW & NOTEWORTHY Rodent model of ischemic cardiomyopathy exhibits a plateau of inducible monomorphic ventricular tachycardia incidence between 6 and 10 wk postinfarction.
Collapse
Affiliation(s)
- Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- MD-PhD Program, College of Medicine, University of Arizona, Tucson, Arizona
| | - Talal Moukabary
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | - Mathew D Hutchinson
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | | | - Elizabeth Juneman
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Rogers AJ, Selvalingam A, Alhusseini MI, Krummen DE, Corrado C, Abuzaid F, Baykaner T, Meyer C, Clopton P, Giles W, Bailis P, Niederer S, Wang PJ, Rappel WJ, Zaharia M, Narayan SM. Machine Learned Cellular Phenotypes in Cardiomyopathy Predict Sudden Death. Circ Res 2020; 128:172-184. [PMID: 33167779 DOI: 10.1161/circresaha.120.317345] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Susceptibility to VT/VF (ventricular tachycardia/fibrillation) is difficult to predict in patients with ischemic cardiomyopathy either by clinical tools or by attempting to translate cellular mechanisms to the bedside. OBJECTIVE To develop computational phenotypes of patients with ischemic cardiomyopathy, by training then interpreting machine learning of ventricular monophasic action potentials (MAPs) to reveal phenotypes that predict long-term outcomes. METHODS AND RESULTS We recorded 5706 ventricular MAPs in 42 patients with coronary artery disease and left ventricular ejection fraction ≤40% during steady-state pacing. Patients were randomly allocated to independent training and testing cohorts in a 70:30 ratio, repeated K=10-fold. Support vector machines and convolutional neural networks were trained to 2 end points: (1) sustained VT/VF or (2) mortality at 3 years. Support vector machines provided superior classification. For patient-level predictions, we computed personalized MAP scores as the proportion of MAP beats predicting each end point. Patient-level predictions in independent test cohorts yielded c-statistics of 0.90 for sustained VT/VF (95% CI, 0.76-1.00) and 0.91 for mortality (95% CI, 0.83-1.00) and were the most significant multivariate predictors. Interpreting trained support vector machine revealed MAP morphologies that, using in silico modeling, revealed higher L-type calcium current or sodium-calcium exchanger as predominant phenotypes for VT/VF. CONCLUSIONS Machine learning of action potential recordings in patients revealed novel phenotypes for long-term outcomes in ischemic cardiomyopathy. Such computational phenotypes provide an approach which may reveal cellular mechanisms for clinical outcomes and could be applied to other conditions.
Collapse
Affiliation(s)
- Albert J Rogers
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - Anojan Selvalingam
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University.,Department of Cardiology, University Medical Center Hamburg-Eppendorf, Germany (A.S., C.M.)
| | - Mahmood I Alhusseini
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - David E Krummen
- Department of Medicine (D.E.K.), University of California, San Diego
| | - Cesare Corrado
- Department of Biomedical Engineering, King's College London, United Kingdom (C.C., S.N.)
| | - Firas Abuzaid
- Department of Computer Sciences (F.A., M.Z., P.B.), Stanford University
| | - Tina Baykaner
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - Christian Meyer
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Germany (A.S., C.M.)
| | - Paul Clopton
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - Wayne Giles
- Department of Physiology and Pharmacology, University of Calgary, Canada (W.G.)
| | - Peter Bailis
- Department of Computer Sciences (F.A., M.Z., P.B.), Stanford University
| | - Steven Niederer
- Department of Biomedical Engineering, King's College London, United Kingdom (C.C., S.N.)
| | - Paul J Wang
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - Wouter-Jan Rappel
- Department of Physics (W.-J.R.), University of California, San Diego
| | - Matei Zaharia
- Department of Computer Sciences (F.A., M.Z., P.B.), Stanford University
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| |
Collapse
|
8
|
Chinyere IR, Hutchinson M, Moukabary T, Koevary JW, Juneman E, Goldman S, Lancaster JJ. Modulating the Infarcted Ventricle's Refractoriness with an Epicardial Biomaterial. J Investig Med 2020; 69:364-370. [PMID: 33115956 DOI: 10.1136/jim-2020-001486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 11/03/2022]
Abstract
Patients diagnosed with heart failure with reduced ejection fraction (HFrEF) are at increased risk of monomorphic ventricular tachycardia (VT) and ventricular fibrillation. The presence of myocardial fibrosis provides both anatomical and functional barriers that promote arrhythmias in these patients. Propagation of VT in a reentrant circuit depends on the presence of excitable myocardium and the refractoriness of the circuit. We hypothesize that myocardial refractoriness can be modulated surgically in a model of HFrEF, leading to decreased susceptibility to VT.Male Sprague-Dawley rats were infarcted via permanent left coronary artery ligation. At 3 weeks post-infarction, engineered grafts composed of human dermal fibroblasts cultured into a polyglactin-910 biomaterial were implanted onto the epicardium to cover the area of infarction. Three weeks post-graft treatment, all rats underwent a terminal electrophysiologic study to compare monophasic action potential electroanatomic maps and susceptibility to inducible monomorphic VT.HFrEF rats (n=29) demonstrated a longer (p=0.0191) ventricular effective refractory period (ERP) and a greater (p=0.0394) VT inducibility compared with sham (n=7). HFrEF rats treated with the graft (n=12) exhibited no change in capture threshold (p=0.3220), but had a longer ventricular ERP (p=0.0029) compared with HFrEF. No statistically significant change in VT incidence was found between HFrEF rats treated with the graft and untreated HFrEF rats (p=0.0834).Surgical deployment of a fibroblast-containing biomaterial in a rodent ischemic cardiomyopathy model prolonged ventricular ERP as measured by programmed electrical stimulation. This hypothesis-generating study warrants additional studies to further characterize the antiarrhythmic or proarrhythmic effects of this novel surgical therapy.
Collapse
Affiliation(s)
| | - Mathew Hutchinson
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Talal Moukabary
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Jen Watson Koevary
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Elizabeth Juneman
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Steven Goldman
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Jordan J Lancaster
- Sarver Heart Center, University of Arizona Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|