1
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Parvalbumin: A Major Fish Allergen and a Forensically Relevant Marker. Genes (Basel) 2023; 14:genes14010223. [PMID: 36672964 PMCID: PMC9858982 DOI: 10.3390/genes14010223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Parvalbumins (PVALBs) are low molecular weight calcium-binding proteins. In addition to their role in many biological processes, PVALBs play an important role in regulating Ca2+ switching in muscles with fast-twitch fibres in addition to their role in many biological processes. The PVALB gene family is divided into two gene types, alpha (α) and beta (β), with the β gene further divided into two gene types, beta1 (β1) and beta2 (β2), carrying traces of whole genome duplication. A large variety of commonly consumed fish species contain PVALB proteins which are known to cause fish allergies. More than 95% of all fish-induced food allergies are caused by PVALB proteins. The authentication of fish species has become increasingly important as the seafood industry continues to grow and the growth brings with it many cases of food fraud. Since the PVALB gene plays an important role in the initiation of allergic reactions, it has been used for decades to develop alternate assays for fish identification. A brief review of the significance of the fish PVALB genes is presented in this article, which covers evolutionary diversity, allergic properties, and potential use as a forensic marker.
Collapse
|
3
|
Immadisetty K, Sun B, Kekenes-Huskey PM. Structural Changes beyond the EF-Hand Contribute to Apparent Calcium Binding Affinities: Insights from Parvalbumins. J Phys Chem B 2021; 125:6390-6405. [PMID: 34115511 PMCID: PMC8848088 DOI: 10.1021/acs.jpcb.1c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the parvalbumin (PV) family of calcium (Ca2+) binding proteins (CBPs) share a relatively high level of sequence similarity. However, their Ca2+ affinities and selectivities against competing ions like Mg2+ can widely vary. We conducted molecular dynamics simulations of several α-parvalbumin (αPV) constructs with micromolar to nanomolar Ca2+ affinities to identify structural and dynamic features that contribute to their binding of ions. Specifically, we examined a D94S/G98E construct with a lower Ca2+ affinity (≈-18 kcal/mol) relative to the wild type (WT) (≈-22 kcal/mol) and an S55D/E59D variant with enhanced affinity (≈-24 kcal/mol). Additionally, we also examined the binding of Mg2+ to these isoforms, which is much weaker than Ca2+. We used mean spherical approximation (MSA) theory to evaluate ion binding thermodynamics within the proteins' EF-hand domains to account for the impact of ions' finite sizes and the surrounding electrolyte composition. While the MSA scores differentiated Mg2+ from Ca2+, they did not indicate that Ca2+ binding affinities at the binding loop differed between the PV isoforms. Instead, molecular mechanics generalized Born surface area (MM/GBSA) approximation energies, which we used to quantify the thermodynamic cost of structural rearrangement of the proteins upon binding ions, indicated that S55D/E59D αPV favored Ca2+ binding by -20 kcal/mol relative to WT versus 30 kcal/mol for D94S/G98E αPV. Meanwhile, Mg2+ binding was favored for the S55D/E59D αPV and D94S/G98E αPV variants by -18.32 and -1.65 kcal/mol, respectively. These energies implicate significant contributions to ion binding beyond oxygen coordination at the binding loop, which stemmed from changes in α-helicity, β-sheet character, and hydrogen bonding. Hence, Ca2+ affinity and selectivity against Mg2+ are emergent properties stemming from both local effects within the proteins' ion binding sites as well as non-local contributions elsewhere. Our findings broaden our understanding of the molecular bases governing αPV ion binding that are likely shared by members of the broad family of CBPs.
Collapse
Affiliation(s)
| | - Bin Sun
- Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | |
Collapse
|
4
|
Abstract
Changes of intracellular Ca2+ concentration regulate many aspects of cardiac myocyte function. About 99% of the cytoplasmic calcium in cardiac myocytes is bound to buffers, and their properties will therefore have a major influence on Ca2+ signaling. This article considers the fundamental properties and identities of the buffers and how to measure them. It reviews the effects of buffering on the systolic Ca2+ transient and how this may change physiologically, and in heart failure and both atrial and ventricular arrhythmias, as well. It is concluded that the consequences of this strong buffering may be more significant than currently appreciated, and a fuller understanding is needed for proper understanding of cardiac calcium cycling and contractility.
Collapse
Affiliation(s)
- Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK (G.L.S.)
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, UK (D.A.E.)
| |
Collapse
|
5
|
Law ML, Cohen H, Martin AA, Angulski ABB, Metzger JM. Dysregulation of Calcium Handling in Duchenne Muscular Dystrophy-Associated Dilated Cardiomyopathy: Mechanisms and Experimental Therapeutic Strategies. J Clin Med 2020; 9:jcm9020520. [PMID: 32075145 PMCID: PMC7074327 DOI: 10.3390/jcm9020520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
: Duchenne muscular dystrophy (DMD) is an X-linked recessive disease resulting in the loss of dystrophin, a key cytoskeletal protein in the dystrophin-glycoprotein complex. Dystrophin connects the extracellular matrix with the cytoskeleton and stabilizes the sarcolemma. Cardiomyopathy is prominent in adolescents and young adults with DMD, manifesting as dilated cardiomyopathy (DCM) in the later stages of disease. Sarcolemmal instability, leading to calcium mishandling and overload in the cardiac myocyte, is a key mechanistic contributor to muscle cell death, fibrosis, and diminished cardiac contractile function in DMD patients. Current therapies for DMD cardiomyopathy can slow disease progression, but they do not directly target aberrant calcium handling and calcium overload. Experimental therapeutic targets that address calcium mishandling and overload include membrane stabilization, inhibition of stretch-activated channels, ryanodine receptor stabilization, and augmentation of calcium cycling via modulation of the Serca2a/phospholamban (PLN) complex or cytosolic calcium buffering. This paper addresses what is known about the mechanistic basis of calcium mishandling in DCM, with a focus on DMD cardiomyopathy. Additionally, we discuss currently utilized therapies for DMD cardiomyopathy, and review experimental therapeutic strategies targeting the calcium handling defects in DCM and DMD cardiomyopathy.
Collapse
Affiliation(s)
- Michelle L. Law
- Department of Family and Consumer Sciences, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA;
| | - Houda Cohen
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Ashley A. Martin
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Addeli Bez Batti Angulski
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
- Correspondence: ; Tel.: +1-612-625-5902; Fax: +1-612-625-5149
| |
Collapse
|
6
|
Schwaller B. Cytosolic Ca 2+ Buffers Are Inherently Ca 2+ Signal Modulators. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035543. [PMID: 31308146 DOI: 10.1101/cshperspect.a035543] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For precisely regulating intracellular Ca2+ signals in a time- and space-dependent manner, cells make use of various components of the "Ca2+ signaling toolkit," including Ca2+ entry and Ca2+ extrusion systems. A class of cytosolic Ca2+-binding proteins termed Ca2+ buffers serves as modulators of such, mostly short-lived Ca2+ signals. Prototypical Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Although initially considered to function as pure Ca2+ buffers, that is, as intracellular Ca2+ signal modulators controlling the shape (amplitude, decay, spread) of Ca2+ signals, evidence has accumulated that calbindin-D28k and calretinin have additional Ca2+ sensor functions. These other functions are brought about by direct interactions with target proteins, thereby modulating their targets' function/activity. Dysregulation of Ca2+ buffer expression is associated with several neurologic/neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. In some cases, the presence of these proteins is presumed to confer a neuroprotective effect, as evidenced in animal models of Parkinson's or Alzheimer's disease.
Collapse
Affiliation(s)
- Beat Schwaller
- Department of Anatomy, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
7
|
Thompson BR, Cohen H, Angulski ABB, Metzger JM. Gene Transfer of Calcium-Binding Proteins into Adult Cardiac Myocytes. Methods Mol Biol 2019; 1929:187-205. [PMID: 30710274 PMCID: PMC6507422 DOI: 10.1007/978-1-4939-9030-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heart failure is the leading cause of combined morbidity and mortality in the USA with 50% of cases being diastolic heart failure. Diastolic heart failure results from poor myocardial relaxation and inadequate filling of the left ventricular chamber caused in part by calcium-handling dysregulation. In this chapter we describe methods to investigate new approaches of novel human Ca2+ binding protein motifs to restore normal Ca2+ handling function to diseased myocardium. Gene transfer of parvalbumin into adult cardiac myocytes has been studied as a potential therapeutic, specifically as a strategic Ca2+ buffer to correct cardiac mechanical dysfunction in disease. This chapter provides protocols for studying wild-type parvalbumin isoforms and parvalbumins with strategically designed EF-hand motifs in adult cardiac myocytes via acute adenoviral gene transfer. These protocols have been used extensively to optimize parvalbumin function as a potential therapeutic for failing heart muscle.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Houda Cohen
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Addeli Bez Batti Angulski
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Li X, Tang X, Lu J, Yuan S. Therapeutic inhibition of galectin‑3 improves cardiomyocyte apoptosis and survival during heart failure. Mol Med Rep 2017; 17:4106-4112. [PMID: 29286090 DOI: 10.3892/mmr.2017.8323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/24/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xia Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xuan Tang
- Department of Laboratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Jinping Lu
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Sheng Yuan
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
9
|
Abstract
Cardiac contractility is regulated by changes in intracellular Ca concentration ([Ca2+]i). Normal function requires that [Ca2+]i be sufficiently high in systole and low in diastole. Much of the Ca needed for contraction comes from the sarcoplasmic reticulum and is released by the process of calcium-induced calcium release. The factors that regulate and fine-tune the initiation and termination of release are reviewed. The precise control of intracellular Ca cycling depends on the relationships between the various channels and pumps that are involved. We consider 2 aspects: (1) structural coupling: the transporters are organized within the dyad, linking the transverse tubule and sarcoplasmic reticulum and ensuring close proximity of Ca entry to sites of release. (2) Functional coupling: where the fluxes across all membranes must be balanced such that, in the steady state, Ca influx equals Ca efflux on every beat. The remainder of the review considers specific aspects of Ca signaling, including the role of Ca buffers, mitochondria, Ca leak, and regulation of diastolic [Ca2+]i.
Collapse
Affiliation(s)
- David A Eisner
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom.
| | - Jessica L Caldwell
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| | - Kornél Kistamás
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| |
Collapse
|
10
|
Asp ML, Sjaastad FV, Siddiqui JK, Davis JP, Metzger JM. Effects of Modified Parvalbumin EF-Hand Motifs on Cardiac Myocyte Contractile Function. Biophys J 2017; 110:2094-105. [PMID: 27166817 DOI: 10.1016/j.bpj.2016.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022] Open
Abstract
Cardiac gene delivery of parvalbumin (Parv), an EF-hand Ca(2+) buffer, has been studied as a therapeutic strategy for diastolic heart failure, in which slow Ca(2+) reuptake is an important contributor. A limitation of wild-type (WT) Parv is the significant trade-off between faster relaxation and blunted contraction amplitude, occurring because WT-Parv sequesters Ca(2+) too early in the cardiac cycle and prematurely truncates sarcomere shortening in the facilitation of rapid relaxation. We recently demonstrated that an E → Q substitution (ParvE101Q) at amino acid 12 of the EF-hand Ca(2+)/Mg(2+) binding loop disrupts bidentate Ca(2+) binding, reducing Ca(2+) affinity by 99-fold and increasing Mg(2+) affinity twofold. ParvE101Q caused faster relaxation and not only preserved contractility, but unexpectedly increased it above untreated myocytes. To gain mechanistic insight into the increased contractility, we focused here on amino acid 12 of the EF-hand motif. We introduced an E → D substitution (ParvE101D) at this site, which converts bidentate Ca(2+) coordination to monodentate coordination. ParvE101D decreased Ca(2+) affinity by 114-fold and increased Mg(2+) affinity 28-fold compared to WT-Parv. ParvE101D increased contraction amplitude compared to both untreated myocytes and myocytes with ParvE101Q, with limited improvement in relaxation. Additionally, ParvE101D increased spontaneous contractions after pacing stress. ParvE101D also increased Ca(2+) transient peak height and was diffusely localized around the Z-line of the sarcomere, suggesting a Ca(2+)-dependent mechanism of enhanced contractility. Sarcoplasmic reticulum Ca(2+) load was not changed with ParvE101D, but postpacing Ca(2+) waves were increased. Together, these data show that inverted Ca(2+)/Mg(2+) binding affinities of ParvE101D increase myocyte contractility through a Ca(2+)-dependent mechanism without altering sarcoplasmic reticulum Ca(2+) load and by increasing unstimulated contractions and Ca(2+) waves. ParvE101D provides mechanistic insight into how changes in the Ca(2+)/Mg(2+) binding affinities of parvalbumin's EF-hand motif alter function of cardiac myocytes. These data are informative in developing new Ca(2+) buffering strategies for the failing heart.
Collapse
Affiliation(s)
- Michelle L Asp
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Frances V Sjaastad
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jalal K Siddiqui
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota.
| |
Collapse
|
11
|
Wang W, Barnabei MS, Asp ML, Heinis FI, Arden E, Davis J, Braunlin E, Li Q, Davis JP, Potter JD, Metzger JM. Noncanonical EF-hand motif strategically delays Ca2+ buffering to enhance cardiac performance. Nat Med 2013; 19:305-12. [PMID: 23396207 DOI: 10.1038/nm.3079] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/21/2012] [Indexed: 12/26/2022]
Abstract
EF-hand proteins are ubiquitous in cell signaling. Parvalbumin (Parv), the archetypal EF-hand protein, is a high-affinity Ca(2+) buffer in many biological systems. Given the centrality of Ca(2+) signaling in health and disease, EF-hand motifs designed to have new biological activities may have widespread utility. Here, an EF-hand motif substitution that had been presumed to destroy EF-hand function, that of glutamine for glutamate at position 12 of the second cation binding loop domain of Parv (ParvE101Q), markedly inverted relative cation affinities: Mg(2+) affinity increased, whereas Ca(2+) affinity decreased, forming a new ultra-delayed Ca(2+) buffer with favorable properties for promoting cardiac relaxation. In therapeutic testing, expression of ParvE101Q fully reversed the severe myocyte intrinsic contractile defect inherent to expression of native Parv and corrected abnormal myocardial relaxation in diastolic dysfunction disease models in vitro and in vivo. Strategic design of new EF-hand motif domains to modulate intracellular Ca(2+) signaling could benefit many biological systems with abnormal Ca(2+) handling, including the diseased heart.
Collapse
Affiliation(s)
- Wang Wang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin-Moshier Y, Sebastian PJ, Higgins L, Sampson ND, Hewitt JE, Marchant JS. Re-evaluation of the role of calcium homeostasis endoplasmic reticulum protein (CHERP) in cellular calcium signaling. J Biol Chem 2013; 288:355-67. [PMID: 23148228 PMCID: PMC3537033 DOI: 10.1074/jbc.m112.405761] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/31/2012] [Indexed: 11/06/2022] Open
Abstract
Changes in cytoplasmic Ca(2+) concentration, resulting from activation of intracellular Ca(2+) channels within the endoplasmic reticulum, regulate several aspects of cellular growth and differentiation. Ca(2+) homeostasis endoplasmic reticulum protein (CHERP) is a ubiquitously expressed protein that has been proposed as a regulator of both major families of endoplasmic reticulum Ca(2+) channels, inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs), with resulting effects on mitotic cycling. However, the manner by which CHERP regulates intracellular Ca(2+) channels to impact cellular growth is unknown. Here, we challenge previous findings that CHERP acts as a direct cytoplasmic regulator of IP(3)Rs and RyRs and propose that CHERP acts in the nucleus to impact cellular proliferation by regulating the function of the U2 snRNA spliceosomal complex. The previously reported effects of CHERP on cellular growth therefore are likely indirect effects of altered spliceosomal function, consistent with prior data showing that loss of function of U2 snRNP components can interfere with cell growth and induce cell cycle arrest.
Collapse
Affiliation(s)
| | | | - LeeAnn Higgins
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455 and
| | - Natalie D. Sampson
- the School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jane E. Hewitt
- the School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | |
Collapse
|
13
|
Asp ML, Martindale JJ, Heinis FI, Wang W, Metzger JM. Calcium mishandling in diastolic dysfunction: mechanisms and potential therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:895-900. [PMID: 23022395 DOI: 10.1016/j.bbamcr.2012.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 01/11/2023]
Abstract
Diastolic dysfunction is characterized by slow or incomplete relaxation of the ventricles during diastole, and is an important contributor to heart failure pathophysiology. Clinical symptoms include fatigue, shortness of breath, and pulmonary and peripheral edema, all contributing to decreased quality of life and poor prognosis. There are currently no therapies available that directly target the heart pump defects in diastolic function. Calcium mishandling is a hallmark of heart disease and has been the subject of a large body of research. Efforts are ongoing in a number of gene therapy approaches to normalize the function of calcium handling proteins such as sarcoplasmic reticulum calcium ATPase. An alternative approach to address calcium mishandling in diastolic dysfunction is to introduce calcium buffers to facilitate relaxation of the heart. Parvalbumin is a calcium binding protein found in fast-twitch skeletal muscle and not normally expressed in the heart. Gene transfer of parvalbumin into normal and diseased cardiac myocytes increases relaxation rate but also markedly decreases contraction amplitude. Although parvalbumin binds calcium in a delayed manner, it is not delayed enough to preserve full contractility. Factors contributing to the temporal nature of calcium buffering by parvalbumin are discussed in relation to remediation of diastolic dysfunction. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Michelle L Asp
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
14
|
Zhang J, Shettigar V, Zhang GC, Kindell DG, Liu X, López JJ, Yerrimuni V, Davis GA, Davis JP. Engineering Parvalbumin for the Heart: Optimizing the Mg Binding Properties of Rat β-Parvalbumin. Front Physiol 2011; 2:77. [PMID: 22059076 PMCID: PMC3204457 DOI: 10.3389/fphys.2011.00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 10/10/2011] [Indexed: 01/01/2023] Open
Abstract
Parvalbumin (PV), an EF-hand protein family member, is a delayed calcium buffer that exchanges magnesium for calcium to facilitate fast skeletal muscle relaxation. Genetic approaches that express parvalbumin in the heart also enhance relaxation and show promise of being therapeutic against various cardiac diseases where relaxation is compromised. Unfortunately, skeletal muscle PVs have very slow rates of Ca2+ dissociation and are prone to becoming saturated with Ca2+, eventually losing their buffering capability within the constantly beating heart. In order for PV to have a more therapeutic potential in the heart, a PV with faster rates of calcium dissociation and high Mg2+ affinity is needed. We demonstrate that at 35°C, rat β-PV has an ~30-fold faster rate of Ca2+ dissociation compared to rat skeletal muscle α-PV, and still possesses a physiologically relevant Ca2+ affinity (~100 nM). However, rat β-PV will not be a delayed Ca2+ buffer since its Mg2+ affinity is too low (~1 mM). We have engineered two mutations into rat β-PV, S55D and E62D, when observed alone increase Mg2+ affinity up to fivefold, but when combined increase Mg2+ affinity ~13-fold, well within a physiologically relevant affinity. Furthermore, the Mg2+ dissociation rate (172/s) from the engineered S55D, E62D PV is slow enough for delayed Ca2+ buffering. Additionally, the engineered PV retains a high Ca2+ affinity (132 nM) and fast rate of Ca2+ dissociation (64/s). These PV design strategies hold promise for the development of new therapies to remediate relaxation abnormalities in different heart diseases and heart failure.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011; 124:1537-47. [PMID: 21900086 DOI: 10.1161/circulationaha.111.030932] [Citation(s) in RCA: 458] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. METHODS AND RESULTS Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. CONCLUSIONS These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression.
Collapse
|
16
|
Abstract
"Ca(2+) buffers," a class of cytosolic Ca(2+)-binding proteins, act as modulators of short-lived intracellular Ca(2+) signals; they affect both the temporal and spatial aspects of these transient increases in [Ca(2+)](i). Examples of Ca(2+) buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Besides their proven Ca(2+) buffer function, some might additionally have Ca(2+) sensor functions. Ca(2+) buffers have to be viewed as one of the components implicated in the precise regulation of Ca(2+) signaling and Ca(2+) homeostasis. Each cell is equipped with proteins, including Ca(2+) channels, transporters, and pumps that, together with the Ca(2+) buffers, shape the intracellular Ca(2+) signals. All of these molecules are not only functionally coupled, but their expression is likely to be regulated in a Ca(2+)-dependent manner to maintain normal Ca(2+) signaling, even in the absence or malfunctioning of one of the components.
Collapse
|
17
|
Turner I, Belema-Bedada F, Martindale J, Townsend D, Wang W, Palpant N, Yasuda SC, Barnabei M, Fomicheva E, Metzger JM. Molecular cardiology in translation: gene, cell and chemical-based experimental therapeutics for the failing heart. J Cardiovasc Transl Res 2010; 1:317-27. [PMID: 19956787 DOI: 10.1007/s12265-008-9065-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acquired and inherited diseases of the heart represent a major health care issue in this country and throughout the World. Clinical medicine has made important advancements in the past quarter century to enable several effective treatment regimes for cardiac patients. Nevertheless, it is apparent that even with the best care, current treatment strategies and therapeutics are inadequate for treating heart disease, leaving it arguably the most pressing health issue today. In this context it is important to seek new approaches to redress the functional deficits in failing myocardium. This review focuses on several recent gene, cell and chemical-based experimental therapeutics currently being developed in the laboratory for potential translation to patient care. For example, new advances in bio-sensing inducible gene expression systems offer the potential for designer cardio-protective proteins to be expressed only during hypoxia/ischemia in the heart. Stem cells continue to offer the promise of cardiac repair, and some recent advances are discussed here. In addition, discovery and applications of synthetic polymers are presented as a chemical-based strategy for acute and chronic treatment of diseased and failing cardiac tissue. Collectively, these approaches serve as the front lines in basic biomedical research, with an eye toward translation of these findings to clinically meaningful applications in cardiac disease.
Collapse
Affiliation(s)
- Immanuel Turner
- Department of Integrative Biology & Physiology, University of Minnesota, Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Arif SH. A Ca(2+)-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. Bioessays 2009; 31:410-21. [PMID: 19274659 DOI: 10.1002/bies.200800170] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parvalbumins (PVs) are acidic, intracellular Ca(2+)-binding proteins of low molecular weight. They are associated with several Ca(2+)-mediated cellular activities and physiological processes. It has been suggested that PV might function as a "Ca2+ shuttle" transporting Ca2+ from troponin-C (TnC) to the sarcoplasmic reticulum (SR) Ca2+ pump during muscle relaxation. Thus, PV may contribute to the performance of rapid, phasic movements by accelerating the contraction-relaxation cycle of fast-twitch muscle fibers. Interestingly, PVs promote the generation of power stroke in fish by speeding up the rate of relaxation and thus provide impetus to attain maximal sustainable speeds. However, immunological monitoring of diverse tissues demonstrated that PVs are also present in non-muscle cells. The axoplasmic transport and various intracellular secretory mechanisms including the endocrine secretions seem to be controlled by the Ca2+ regulation machinery. Any defect in the Ca2+ handling apparatus may cause several clinical problems; for instance, PV deficiency alters the neuronal activity, a key mechanism leading to epileptic seizures. Moreover, atypical relaxation of the heart results in diastolic dysfunction, which is a major cause of heart failure predominantly among the aged people. PV may offer a unique potential to correct defective relaxation in energetically compromised failing hearts through PV gene transfer. Consequently, PV gene transfer may present a new therapeutic approach to correct cellular disturbances in Ca2+ signaling pathways of diseased organs. Hence, PVs appear to be amazingly useful candidate proteins regulating a variety of cellular functions through action on Ca2+ flux management.
Collapse
Affiliation(s)
- Syed Hasan Arif
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, India.
| |
Collapse
|
19
|
Seong MH, Bae JW. Recent Advances in Gene Therapy Targeted to Intracellular Calcium Transport for Heart Failure. Chonnam Med J 2009. [DOI: 10.4068/cmj.2009.45.3.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mun Hyuk Seong
- Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Jang-Whan Bae
- Chungbuk Regional Cardiac Disease Center, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
20
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang W, Metzger JM. Parvalbumin isoforms for enhancing cardiac diastolic function. Cell Biochem Biophys 2008; 51:1-8. [PMID: 18458829 DOI: 10.1007/s12013-008-9011-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/04/2008] [Indexed: 11/28/2022]
Abstract
Diastolic heart failure (DHF), characterized by depressed myocardial relaxation performance and poor ventricular filling, is a distinct form of heart failure accounting for nearly half of the heart failure patients with otherwise normal systolic performance. Defective intracellular calcium (Ca2+) cycling is an important mechanism underlying impaired relaxation in DHF. Recently, genetic manipulation of Ca2+ handling proteins in cardiac myocytes has been explored for its potential therapeutic application in DHF. Specifically, ectopic expression of the skeletal muscle Ca2+ binding protein parvalbumin (Parv) has been shown to accelerate myocardial relaxation in vitro and in vivo. Parv acts as a unique "delayed" Ca2+ buffer during diastole by promoting Ca2+ transient decay and sequestration and corrects diastolic dysfunction in an energy-independent manner. This brief review summarizes the rationale and development of Parv gene transfer approaches for DHF, and in particular, discusses the divergent effects of Parv isoforms on cardiac myocyte Ca2+ handling and contractile function with the long-range goal of alleviating diastolic dysfunction in DHF.
Collapse
Affiliation(s)
- Wang Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 E. Catherine St., 7727 Medical Science II, Ann Arbor, MI 48109-0622, USA
| | | |
Collapse
|