1
|
Timmermann V, Dejgaard LA, Haugaa KH, Edwards AG, Sundnes J, McCulloch AD, Wall ST. An integrative appraisal of mechano-electric feedback mechanisms in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:404-417. [PMID: 28851517 DOI: 10.1016/j.pbiomolbio.2017.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/12/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022]
Abstract
Mechanically-induced alterations in cardiac electrophysiology are referred to as mechano-electric feedback (MEF), and play an important role in electrical regulation of cardiac performance. The influence of mechanical stress and strain on electrophysiology has been investigated at all levels, however the role of MEF in arrhythmia remains poorly understood. During the normal contraction of the heart, mechano-sensitive processes are an implicit component of cardiac activity. Under abnormal mechanical events, stretch-activated mechanisms may contribute to local or global changes in electrophysiology (EP). While such mechanisms have been hypothesised to be involved in mechanically-initiated arrhythmias, the details of these mechanisms and their importance remain elusive. We assess the theoretical role of stretch mechanisms using coupled models of cellular electrophysiology and sarcomere contraction dynamics. Using models of single ventricular myocytes, we first investigated the potential MEF contributions of stretch-activated currents (SAC), and stretch-induced myofilament calcium release, to test how strain and fibrosis may alter cellular electrophysiology. For all models investigated, SACs were alone not sufficient to create a pro-arrhythmic perturbation of the action potential with stretch. However, when combined with stretch-induced myofilament calcium release, the action potential could be shortened depending on the timing of the strain. This effect was highly model dependent, with a canine epicardial EP model being the most sensitive. These model results suggest that known mechanisms of mechano-electric coupling in cardiac myocyte may be sufficient to be pro-arrhythmic, but only in combination and under specific strain patterns.
Collapse
Affiliation(s)
- Viviane Timmermann
- Simula Research Laboratory, Martin Linges vei 25, Fornebu, 1364, Norway; Center for Cardiological Innovation, Songsvannsveien 9, Oslo, 0372, Norway; University California San Diego, 9500 Gilman Drive, La Jolla, CA, United States; University of Oslo, Gaustadallen 23 B, Oslo, 0373, Norway.
| | - Lars A Dejgaard
- Center for Cardiological Innovation, Songsvannsveien 9, Oslo, 0372, Norway; Department of Cardiology, Oslo University Hospital, Norway
| | - Kristina H Haugaa
- Center for Cardiological Innovation, Songsvannsveien 9, Oslo, 0372, Norway; Department of Cardiology, Oslo University Hospital, Norway
| | - Andrew G Edwards
- Simula Research Laboratory, Martin Linges vei 25, Fornebu, 1364, Norway; Center for Cardiological Innovation, Songsvannsveien 9, Oslo, 0372, Norway; University of Oslo, Gaustadallen 23 B, Oslo, 0373, Norway
| | - Joakim Sundnes
- Simula Research Laboratory, Martin Linges vei 25, Fornebu, 1364, Norway; Center for Cardiological Innovation, Songsvannsveien 9, Oslo, 0372, Norway; University of Oslo, Gaustadallen 23 B, Oslo, 0373, Norway
| | - Andrew D McCulloch
- University California San Diego, 9500 Gilman Drive, La Jolla, CA, United States
| | - Samuel T Wall
- Simula Research Laboratory, Martin Linges vei 25, Fornebu, 1364, Norway; Center for Cardiological Innovation, Songsvannsveien 9, Oslo, 0372, Norway.
| |
Collapse
|
2
|
Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:161-70. [PMID: 19186188 DOI: 10.1016/j.pbiomolbio.2009.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the mammalian heart, myocytes and fibroblasts can communicate via gap junction, or connexin-mediated current flow. Some of the effects of this electrotonic coupling on the action potential waveform of the human ventricular myocyte have been analyzed in detail. The present study employs a recently developed mathematical model of the human atrial myocyte to investigate the consequences of this heterogeneous cell-cell interaction on the action potential of the human atrium. Two independent physiological processes which alter the physiology of the human atrium have been studied. i) The effects of the autonomic transmitter acetylcholine on the atrial action potential have been investigated by inclusion of a time-independent, acetylcholine-activated K(+) current in this mathematical model of the atrial myocyte. ii) A non-selective cation current which is activated by natriuretic peptides has been incorporated into a previously published mathematical model of the cardiac fibroblast. These results identify subtle effects of acetylcholine, which arise from the nonlinear interactions between ionic currents in the human atrial myocyte. They also illustrate marked alterations in the action potential waveform arising from fibroblast-myocyte source-sink principles when the natriuretic peptide-mediated cation conductance is activated. Additional calculations also illustrate the effects of simultaneous activation of both of these cell-type specific conductances within the atrial myocardium. This study provides a basis for beginning to assess the utility of mathematical modeling in understanding detailed cell-cell interactions within the complex paracrine environment of the human atrial myocardium.
Collapse
|