1
|
Daoud HAS, Kokoti L, Al-Karagholi MAM. K ATP channels in cerebral hemodynamics: a systematic review of preclinical and clinical studies. Front Neurol 2024; 15:1417421. [PMID: 39022739 PMCID: PMC11252034 DOI: 10.3389/fneur.2024.1417421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Cumulative evidence suggests that ATP-sensitive potassium (KATP) channels act as a key regulator of cerebral blood flow (CBF). This implication seems to be complicated, since KATP channels are expressed in several vascular-related structures such as smooth muscle cells, endothelial cells and pericytes. In this systematic review, we searched PubMed and EMBASE for preclinical and clinical studies addressing the involvement of KATP channels in CBF regulation. A total of 216 studies were screened by title and abstract. Of these, 45 preclinical and 6 clinical studies were included. Preclinical data showed that KATP channel openers (KCOs) caused dilation of several cerebral arteries including pial arteries, the middle cerebral artery and basilar artery, and KATP channel inhibitor (KCI) glibenclamide, reversed the dilation. Glibenclamide affected neither the baseline CBF nor the baseline vascular tone. Endothelium removal from cerebral arterioles resulted in an impaired response to KCO/KCI. Clinical studies showed that KCOs dilated cerebral arteries and increased CBF, however, glibenclamide failed to attenuate these vascular changes. Endothelial KATP channels played a major role in CBF regulation. More studies investigating the role of KATP channels in CBF-related structures are needed to further elucidate their actual role in cerebral hemodynamics in humans. Systematic review registration: Prospero: CRD42023339278 (preclinical data) and CRD42022339152 (clinical data).
Collapse
Affiliation(s)
- Hassan Ali Suleiman Daoud
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Lili Kokoti
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Nordsjaellands Hospital- Hilleroed, Hilleroed, Denmark
| |
Collapse
|
2
|
Dilaveris P, Antoniou CK, Manolakou P, Tsiamis E, Gatzoulis K, Tousoulis D. Biomarkers Associated with Atrial Fibrosis and Remodeling. Curr Med Chem 2019; 26:780-802. [PMID: 28925871 DOI: 10.2174/0929867324666170918122502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation is the most common rhythm disturbance encountered in clinical practice. Although often considered as solely arrhythmic in nature, current evidence has established that atrial myopathy constitutes both the substrate and the outcome of atrial fibrillation, thus initiating a vicious, self-perpetuating cycle. This myopathy is triggered by stress-induced (including pressure/volume overload, inflammation, oxidative stress) responses of atrial tissue, which in the long term become maladaptive, and combine elements of both structural, especially fibrosis, and electrical remodeling, with contemporary approaches yielding potentially useful biomarkers of these processes. Biomarker value becomes greater given the fact that they can both predict atrial fibrillation occurrence and treatment outcome. This mini-review will focus on the biomarkers of atrial remodeling (both electrical and structural) and fibrosis that have been validated in human studies, including biochemical, histological and imaging approaches.
Collapse
Affiliation(s)
- Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Tsiamis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Chan CS, Lin YK, Kao YH, Chen YC, Chen SA, Chen YJ. Hydrogen sulphide increases pulmonary veins and atrial arrhythmogenesis with activation of protein kinase C. J Cell Mol Med 2018; 22:3503-3513. [PMID: 29659148 PMCID: PMC6010708 DOI: 10.1111/jcmm.13627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/09/2018] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulphide (H2 S), one of the most common toxic air pollutants, is an important aetiology of atrial fibrillation (AF). Pulmonary veins (PVs) and left atrium (LA) are the most important AF trigger and substrate. We investigated whether H2 S may modulate the arrhythmogenesis of PVs and atria. Conventional microelectrodes and whole-cell patch clamp were performed in rabbit PV, sinoatrial node (SAN) or atrial cardiomyocytes before and after the perfusion of NaHS with or without chelerythrine (a selective PKC inhibitor), rottlerin (a specific PKC δ inhibitor) or KB-R7943 (a NCX inhibitor). NaHS reduced spontaneous beating rates, but increased the occurrences of delayed afterdepolarizations and burst firing in PVs and SANs. NaHS (100 μmol/L) increased IKATP and INCX in PV and LA cardiomyocytes, which were attenuated by chelerythrine (3 μmol/L). Chelerythrine, rottlerin (10 μmol/L) or KB-R7943 (10 μmol/L) attenuated the arrhythmogenic effects of NaHS on PVs or SANs. NaHS shortened the action potential duration in LA, but not in right atrium or in the presence of chelerythrine. NaHS increased PKC activity, but did not translocate PKC isoforms α, ε to membrane in LA. In conclusion, through protein kinase C signalling, H2 S increases PV and atrial arrhythmogenesis, which may contribute to air pollution-induced AF.
Collapse
Affiliation(s)
- Chao-Shun Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, and Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Hu X, Van Marion DMS, Wiersma M, Zhang D, Brundel BJJM. The protective role of small heat shock proteins in cardiac diseases: key role in atrial fibrillation. Cell Stress Chaperones 2017; 22:665-674. [PMID: 28484965 PMCID: PMC5465041 DOI: 10.1007/s12192-017-0799-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most common tachyarrhythmia which is associated with increased morbidity and mortality. AF usually progresses from a self-terminating paroxysmal to persistent disease. It has been recognized that AF progression is driven by structural remodeling of cardiomyocytes, which results in electrical and contractile dysfunction of the atria. We recently showed that structural remodeling is rooted in derailment of proteostasis, i.e., homeostasis of protein production, function, and degradation. Since heat shock proteins (HSPs) play an important role in maintaining a healthy proteostasis, the role of HSPs was investigated in AF. It was found that especially small heat shock protein (HSPB) levels get exhausted in atrial tissue of patients with persistent AF and that genetic or pharmacological induction of HSPB protects against cardiomyocyte remodeling in experimental models for AF. In this review, we provide an overview of HSPBs as a potential therapeutic target for normalizing proteostasis and suppressing the substrates for AF progression in experimental and clinical AF and discuss HSP activators as a promising therapy to prevent AF onset and progression.
Collapse
Affiliation(s)
- Xu Hu
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Denise M S Van Marion
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marit Wiersma
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Deli Zhang
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Alves JL. Blood–brain barrier and traumatic brain injury. J Neurosci Res 2013; 92:141-7. [DOI: 10.1002/jnr.23300] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/10/2013] [Accepted: 08/29/2013] [Indexed: 12/29/2022]
Affiliation(s)
- José Luís Alves
- Doctoral Programme in Health SciencesFaculdade de Medicina da Universidade de CoimbraCoimbra Portugal
| |
Collapse
|
6
|
DeGracia DJ, Kreipke CW, Kayali FM, Rafols JA. Brain endothelial HSP-70 stress response coincides with endothelial and pericyte death after brain trauma. Neurol Res 2013; 29:356-61. [PMID: 17626730 DOI: 10.1179/016164107x204666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Our objective was to characterize the heat shock response (HSR) in a model of traumatic brain injury (TBI) and to determine the association of HSR to cell death. METHODS We used immunofluorescent detection of HSP-70 to characterize HSR and TUNEL labeling to determine the pattern of cell death. RESULTS HSP-70 immunofluorescence revealed a steady increase from 4 to 48 hours following TBI, culminating in a ubiquitous expression with the capillary bed 48 hours post-TBI. TUNEL labeling revealed a small subset of endothelial cell death and a most robust staining of putative pericyte cell death. DISCUSSION Our results show that while injury causes a detectable stress response, cell death is not a direct consequence of the HSR.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
7
|
Hypoxia and reoxygenation modulate the arrhythmogenic activity of the pulmonary vein and atrium. Clin Sci (Lond) 2011; 122:121-32. [PMID: 21880017 DOI: 10.1042/cs20110178] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ischaemia and reperfusion contribute to the genesis of AF (atrial fibrillation). PVs (pulmonary veins) and the atria are important foci for AF initiation and maintenance. However, the effect of ischaemia and reperfusion on PVs and the atria has not yet been fully elucidated. In the present study, conventional microelectrodes were used to record the APs (action potentials) in isolated rabbit PV, LA (left atrium) and RA (right atrium) specimens during hypoxia and reoxygenation, and pharmacological interventions. Hypoxia reduced the PV beating rates from 1.8±0.1 to 1.3±0.2 and 0.8±0.1 Hz at 30 and 60 min respectively (n=8, P<0.005), and induced EAD (early after depolarization) in three (37.5%) of the PVs and DAD (delayed after depolarization) in one (12.5%) of the PVs. Reoxygenation increased the PV spontaneous rate to 1.4±0.2 Hz (P<0.05) and induced PV burst firings (3.5±0.1 Hz, P<0.001) in six (75%) of the PVs. Hypoxia shortened the AP duration in the LA and PVs, but not in the RA. Pretreatment with glibenclamide attenuated hypoxia-induced decreases in the PV spontaneous activity and the shortening of the LA and PV AP duration. Similar to those in hypoxia, the K(ATP) (ATP-sensitive potassium) channel opener pinacidil (30 μM) decreased PV spontaneous activity and shortened the AP duration. Pretreatment with 5 mM N-MPG [N-(mercaptopropionyl)glycine; a hydroxyl (•OH) free-radical scavenger] or 300 μM chloramphenicol [a cytochrome P450 inhibitor that reduces ROS (reactive oxygen species)] attenuated the rate changes induced by hypoxia and reoxygenation, and also decreased the burst firing incidence. In conclusion, hypoxia and reoxygenation significantly increased PV arrhythmogenesis and induced different electrophysiological responses in the RA and LA, which may play a role in the pathophysiology of AF.
Collapse
|
8
|
Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Inhibition of trigeminovascular dural nociceptive afferents by Ca2+-activated K+ (MaxiK/BKCa) channel opening. Pain 2010; 151:128-136. [DOI: 10.1016/j.pain.2010.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 06/11/2010] [Accepted: 06/26/2010] [Indexed: 11/29/2022]
|
9
|
Abstract
The ATP-sensitive potassium (K(ATP)) channels which extensively distribute in diverse tissues (e.g. vascular smooth muscle, cardiac cells, and pancreas) are well-established for characteristics like vasodilatation, myocardial protection against ischemia, and insulin secretion. The aim of this review is to get insight into the novel roles of K(ATP) channels in Parkinson's disease (PD), with consideration of the specificities K(ATP) channels in the central nervous system (CNS), such as the control of neuronal excitability, action potential, mitochondrial function and neurotransmitter release.
Collapse
|
10
|
Sakabe M, Shiroshita-Takeshita A, Maguy A, Brundel BJ, Fujiki A, Inoue H, Nattel S. Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia. Cardiovasc Res 2008; 78:63-70. [DOI: 10.1093/cvr/cvn019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Shen F, Wen L, Yang X, Liu W. The potential application of gene therapy in the treatment of traumatic brain injury. Neurosurg Rev 2007; 30:291-8; discussion 298. [PMID: 17687574 DOI: 10.1007/s10143-007-0094-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/30/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Advances in molecular biology have allowed the possibility of using gene therapy in the treatment of traumatic brain injury. The major tactics involve picking out the appropriate gene target and, by controlling its specific regional expression, inhibiting neuronal cell deaths and/or promoting neuronal regeneration. This review addresses the preliminary usage of gene therapy in in vitro experiments and in animal models to treat traumatic brain injury. The gene targets with therapeutic potentials, the vectors that can be employed to deliver the candidate genes, as well as different approaches for gene therapy are discussed in detail in this review. Despite the existence of several major obstacles to making it practical and effective, gene therapy could provide a new strategy for treatment of the traumatically injured brain.
Collapse
Affiliation(s)
- Fang Shen
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou City, 310003 Zhejiang, People's Republic of China.
| | | | | | | |
Collapse
|
12
|
Armstrong GAB, Shoemaker KL, Money TGA, Robertson RM. Octopamine mediates thermal preconditioning of the locust ventilatory central pattern generator via a cAMP/protein kinase A signaling pathway. J Neurosci 2006; 26:12118-26. [PMID: 17122036 PMCID: PMC6675444 DOI: 10.1523/jneurosci.3347-06.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the role of biogenic amines in generating thermoprotection of the ventilatory motor pattern circuitry in Locusta migratoria. Levels of octopamine (OA) and dopamine (DA) in the metathoracic ganglion decreased during heat stress. We measured the thermosensitivity of central pattern generation in response to a ramped increase of temperature in semi-intact preparations. OA, DA, and tyramine (TA) were either bath applied or injected into the locust hemocoel 4-8 h before testing. Neither TA nor DA modified the thermotolerance of ventilatory motor pattern generation. However, OA treatment by bath applications (10(-4) M OA) or by injections into the hemocoel (2 microg/10 microl OA) mimicked heat shock preconditioning and improved the thermotolerance of the motor pattern by increasing the failure temperature and by decreasing the time taken to recover operation after a return to room temperature. Heat shock-induced thermoprotection was eradicated in locusts preinjected with epinastine (Oct betaR antagonist). Neuropil injections of the cAMP agonist and protein kinase A (PKA) activator, Sp-cAMPs, both conferred thermoprotection in control locusts and rescued thermoprotection in epinastine-treated HS locusts. Similar injections of the PKA inhibitor Rp-cAMPs blocked the thermoprotective effect of bath-applied OA. Octopamine-mediated thermoprotection was also abolished with neuropil injections of cycloheximide or actinomycin D, indicating a requirement for transcription and translation. We conclude that OA has a crucial role in triggering protein synthesis-dependent physiological adaptations to protect CNS function during heat stress by activating a cAMP/PKA pathway.
Collapse
Affiliation(s)
- Gary A B Armstrong
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | |
Collapse
|