1
|
Samani SL, Barlow SC, Freeburg LA, Jones TL, Poole M, Sarzynski MA, Zile MR, Shazly T, Spinale FG. Left ventricle function and post-transcriptional events with exercise training in pigs. PLoS One 2024; 19:e0292243. [PMID: 38306359 PMCID: PMC10836705 DOI: 10.1371/journal.pone.0292243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/14/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Standardized exercise protocols have been shown to improve overall cardiovascular fitness, but direct effects on left ventricular (LV) function, particularly diastolic function and relation to post-transcriptional molecular pathways (microRNAs (miRs)) are poorly understood. This project tested the central hypothesis that adaptive LV remodeling resulting from a large animal exercise training protocol, would be directly associated with specific miRs responsible for regulating pathways relevant to LV myocardial stiffness and geometry. METHODS AND RESULTS Pigs (n = 9; 25 Kg) underwent a 4 week exercise training protocol (10 degrees elevation, 2.5 mph, 10 min, 5 days/week) whereby LV chamber stiffness (KC) and regional myocardial stiffness (rKm) were measured by Doppler/speckle tracking echocardiography. Age and weight matched non-exercise pigs (n = 6) served as controls. LV KC fell by approximately 50% and rKm by 30% following exercise (both p < 0.05). Using an 84 miR array, 34 (40%) miRs changed with exercise, whereby 8 of the changed miRs (miR-19a, miR-22, miR-30e, miR-99a, miR-142, miR-144, miR-199a, and miR-497) were correlated to the change in KC (r ≥ 0.5 p < 0.05) and mapped to matrix and calcium handling processes. Additionally, miR-22 and miR-30e decreased with exercise and mapped to a localized inflammatory process, the inflammasome (NLRP-3, whereby a 2-fold decrease in NLRP-3 mRNA occurred with exercise (p < 0.05). CONCLUSION Chronic exercise reduced LV chamber and myocardial stiffness and was correlated to miRs that map to myocardial relaxation processes as well as local inflammatory pathways. These unique findings set the stage for utilization of myocardial miR profiling to identify underlying mechanisms by which exercise causes changes in LV myocardial structure and function.
Collapse
Affiliation(s)
- Stephanie L. Samani
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
| | - Shayne C. Barlow
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Lisa A. Freeburg
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
| | - Traci L. Jones
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Marlee Poole
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Michael R. Zile
- Division of Cardiology, RHJ Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC, United States of America
| | - Tarek Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, SC, United States of America
| | - Francis G. Spinale
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
- College of Engineering and Computing, University of South Carolina, Columbia, SC, United States of America
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
2
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
3
|
Gitau SC, Li X, Zhao D, Guo Z, Liang H, Qian M, Lv L, Li T, Xu B, Wang Z, Zhang Y, Xu C, Lu Y, Du Z, Shan H, Yang B. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling. Front Med 2015; 9:444-456. [PMID: 26626190 DOI: 10.1007/s11684-015-0421-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg(-1)·d(-1)); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L(-1)) was treated with the human equivalent of low (10 or 100 μmol·L(-1)) and high (1000 μmol·L(-1)) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of β-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3β. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of β-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin.
Collapse
MESH Headings
- Animals
- Aspirin/pharmacology
- Cells, Cultured
- Cyclooxygenase Inhibitors/pharmacology
- Disease Models, Animal
- Drug Monitoring
- Echocardiography/methods
- Hypertrophy, Left Ventricular/diagnosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/prevention & control
- Mice
- Microscopy, Electron, Transmission/methods
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oncogene Protein v-akt/metabolism
- Rats
- Signal Transduction/drug effects
- Wnt Proteins/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Samuel Chege Gitau
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy and Complementary Medicine, School of Health Sciences, Kenyatta University, P.O. BOX 43844-00100, Nairobi, Kenya
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Dandan Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Zhenfeng Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Ming Qian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Tianshi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Bozhi Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Zhiguo Wang
- Institute of Cardiovascular Research, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
- Institute of Cardiovascular Research, Harbin Medical University, Harbin, 150081, China
| | - Zhiming Du
- Institute of Clinical Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China.
- Institute of Cardiovascular Research, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
4
|
Vutthasathien P, Wattanapermpool J. Regular exercise improves cardiac contractile activation by modulating MHC isoforms and SERCA activity in orchidectomized rats. J Appl Physiol (1985) 2015; 119:831-9. [PMID: 26272317 DOI: 10.1152/japplphysiol.00224.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022] Open
Abstract
Data from the trial known as Testosterone in Older Men with Mobility Limitations (TOM) has indicated an association between testosterone administration and a greater risk for adverse cardiovascular events. We therefore propose that regular exercise is a cardioprotective alternative that prevents detrimental changes in contractile activation when a deficiency in male sex hormones exists. Ten-week-old orchidectomized (ORX) rats were subjected to a 9-wk treadmill running program at moderate intensity starting 1 wk after surgery. Although exercise-induced cardiac hypertrophy was observed both in rats that underwent ORX and sham surgery, regular exercise enhanced cardiac myofilament Ca(2+) sensitivity and myosin light-chain 2 phosphorylation only in rats that underwent a sham operation. Although the rats that had sham surgery and and given exercise exhibited no change in maximum developed tension, regular running prevented the suppression of maximum active tension in the hearts of ORX rats. Regular exercise also prevented a shift in myosin heavy chain (MHC) isoforms toward β-MHC, a reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity, and an increase in SERCA sensitivity in the hearts of ORX rats. Neither SERCA content nor its modulating component, phospholamban (PLB), was altered by exercise in either sham-operated or ORX rats. However, decreases in the phosphorylated Thr(17) form of PLB and the phosphorylated Thr(287) form of Ca(2+)/calmodulin-dependent kinase II in the hearts of ORX rats were abolished after regular exercise. These results thus support the use of regular running as a cardioprotective alternative to testosterone replacement in hypogonadal conditions.
Collapse
|
5
|
Souza-Smith FM, Molina PE, Breslin JW. Reduced RhoA activity mediates acute alcohol intoxication-induced inhibition of lymphatic myogenic constriction despite increased cytosolic [Ca(2+) ]. Microcirculation 2014; 20:377-84. [PMID: 23237297 DOI: 10.1111/micc.12032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/10/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVES We previously showed that AAI reduces lymphatic myogenic constriction in response to step increases in luminal pressure. Because of the known role of Ca(2+) in smooth muscle contractile responses, we investigated how alcohol impacts cyclic Ca(2+) and whether changes in RhoA/ROCK-mediated Ca(2+) sensitivity underlie the alcohol-induced reduction of myogenic responsiveness. METHODS AAI was produced by intragastric administration of 30% alcohol in rats. Mesenteric lymphatics were cannulated and loaded with Fura-2 AM to [Ca(2+) ]i for 30 minutes after AAI. Active GTP-bound RhoA levels were determined by ELISA. To determine ROCK's ability to restore myogenic responsiveness following AAI, isolated lymphatics were transfected with constitutively active ca-ROCK protein. RESULTS Lymphatics from alcohol-treated rats displayed significantly larger Ca(2+) transients. Also, step increases in luminal pressure caused a gradual rise in the basal [Ca(2+) ]i between transients that was greater in lymphatics submitted to AAI, compared to vehicle control. RhoA-GTP was significantly reduced in lymphatics from the AAI group, compared to vehicle control. Transfection with ca-ROCK protein restored the myogenic response of lymphatic vessels isolated from AAI animals. CONCLUSIONS The data strongly suggest that the alcohol-induced inhibition of mesenteric lymphatic myogenic constriction is mediated by reduced RhoA/ROCK-mediated Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Flavia M Souza-Smith
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|