4
|
Nishimura A, Shimauchi T, Tanaka T, Shimoda K, Toyama T, Kitajima N, Ishikawa T, Shindo N, Numaga-Tomita T, Yasuda S, Sato Y, Kuwahara K, Kumagai Y, Akaike T, Ide T, Ojida A, Mori Y, Nishida M. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal 2018; 11:11/556/eaat5185. [PMID: 30425165 DOI: 10.1126/scisignal.aat5185] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Defective mitochondrial dynamics through aberrant interactions between mitochondria and actin cytoskeleton is increasingly recognized as a key determinant of cardiac fragility after myocardial infarction (MI). Dynamin-related protein 1 (Drp1), a mitochondrial fission-accelerating factor, is activated locally at the fission site through interactions with actin. Here, we report that the actin-binding protein filamin A acted as a guanine nucleotide exchange factor for Drp1 and mediated mitochondrial fission-associated myocardial senescence in mice after MI. In peri-infarct regions characterized by mitochondrial hyperfission and associated with myocardial senescence, filamin A colocalized with Drp1 around mitochondria. Hypoxic stress induced the interaction of filamin A with the GTPase domain of Drp1 and increased Drp1 activity in an actin-binding-dependent manner in rat cardiomyocytes. Expression of the A1545T filamin mutant, which potentiates actin aggregation, promoted mitochondrial hyperfission under normoxia. Furthermore, pharmacological perturbation of the Drp1-filamin A interaction by cilnidipine suppressed mitochondrial hyperfission-associated myocardial senescence and heart failure after MI. Together, these data demonstrate that Drp1 association with filamin and the actin cytoskeleton contributes to cardiac fragility after MI and suggests a potential repurposing of cilnidipine, as well as provides a starting point for innovative Drp1 inhibitor development.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Takashi Toyama
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Naoyuki Kitajima
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuya Ishikawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,EA Pharma Co. Inc., Tokyo 104-0042, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Satoshi Yasuda
- National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Yoji Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | | | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takaaki Akaike
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomomi Ide
- Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Ogino A, Takemura G, Hashimoto A, Kanamori H, Okada H, Nakagawa M, Tsujimoto A, Goto K, Kawasaki M, Nagashima K, Miyakoda G, Fujiwara T, Yabuuchi Y, Fujiwara H, Minatoguchi S. OPC-28326, a selective peripheral vasodilator with angiogenic activity, mitigates postinfarction cardiac remodeling. Am J Physiol Heart Circ Physiol 2015; 309:H213-21. [PMID: 25910803 DOI: 10.1152/ajpheart.00062.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
Abstract
Although OPC-28326, 4-(N-methyl-2-phenylethylamino)-1-(3,5-dimethyl-4-propionyl-aminobenzoyl) piperidine hydrochloride monohydrate, was developed as a selective peripheral vasodilator with α2-adrenergic antagonist properties, it also reportedly exhibits angiogenic activity in an ischemic leg model. The purpose of this study was to examine the effect of OPC-28326 on the architectural dynamics and function of the infarcted left ventricle during the chronic stage of myocardial infarction. Myocardial infarction was induced in male C3H/He mice, after which the mice were randomly assigned into two groups: a control group receiving a normal diet and an OPC group whose diet contained 0.05% OPC-28326. The survival rate among the mice (n = 18 in each group) 4 wk postinfarction was significantly greater in the OPC than control group (83 vs. 44%; P < 0.05), and left ventricular remodeling and dysfunction were significantly mitigated. Histologically, infarct wall thickness was significantly greater in the OPC group, due in part to an abundance of nonmyocyte components, including blood vessels and myofibroblasts. Five days postinfarction, Ki-67-positive proliferating cells were more abundant in the granulation tissue in the OPC group, and there were fewer apoptotic cells. These effects were accompanied by activation of myocardial Akt and endothelial nitric oxide synthase. Hypoxia within the infarct issue, assessed using pimonidazole staining, was markedly attenuated in the OPC group. In summary, OPC-28326 increased the nonmyocyte population in infarct tissue by increasing proliferation and reducing apoptosis, thereby altering the tissue dynamics such that wall stress was reduced, which might have contributed to a mitigation of postinfarction cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Atsushi Ogino
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Genzou Takemura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan;
| | - Ayako Hashimoto
- Research Institute of Pharmacological and Therapeutical Development, Otsuka Pharmaceutical Company Limited, Tokushima, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Munehiro Nakagawa
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akiko Tsujimoto
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuko Goto
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kenshi Nagashima
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Goro Miyakoda
- Research Institute of Pharmacological and Therapeutical Development, Otsuka Pharmaceutical Company Limited, Tokushima, Japan
| | - Takako Fujiwara
- Department of Food and Nutrition, Sonoda Women's University, Amagasaki, Japan; and
| | - Youichi Yabuuchi
- Research Institute of Pharmacological and Therapeutical Development, Otsuka Pharmaceutical Company Limited, Tokushima, Japan
| | - Hisayoshi Fujiwara
- Department of Cardiovascular Medicine, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
9
|
Okada H, Takemura G, Kanamori H, Tsujimoto A, Goto K, Kawamura I, Watanabe T, Morishita K, Miyazaki N, Tanaka T, Ushikoshi H, Kawasaki M, Miyazaki T, Suzui N, Nishigaki K, Mikami A, Ogura S, Minatoguchi S. Phenotype and physiological significance of the endocardial smooth muscle cells in human failing hearts. Circ Heart Fail 2014; 8:149-55. [PMID: 25466765 DOI: 10.1161/circheartfailure.114.001746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Extravascular smooth muscle cells are often observed in the endocardium of human failing hearts. Here, we characterized the phenotype of those cells and investigated their physiological significance. METHODS AND RESULTS We examined left ventricular biopsy specimens obtained from 44 patients with dilated cardiomyopathy and 6 nonfailing hearts. In Masson trichrome-stained histological preparations, bundles of smooth muscle cells were seen localized in the endocardium in 23 of the 44 specimens (none of the 6 controls). These cells were immunopositive for α-smooth muscle actin, type 2 smooth muscle myosin, desmin, and calponin, but were negative for embryonic smooth muscle myosin, vimentin, fibronectin, and periostin. This profile is indicative of a late differentiation (contractile) smooth muscle phenotype. Electron microscopy confirmed that phenotype, revealing the cells to contain abundant myofilaments with dense bodies but little rough endoplasmic reticulum or Golgi apparatus. In the endocardial smooth muscle-positive group, the left ventricular end-systolic volume index (73±34 versus 105±50 mL/m(2); P=0.021), left ventricular peak wall stress (164±47 versus 196±43 dynes 10(3)/cm(2); P=0.023), and left ventricular end-systolic meridional wall stress (97±38 versus 121±37 dynes 10(3)/cm(2); P=0.036) were all significantly smaller, and the ejection fraction was larger (41±8.8 versus 33±9.3%; P=0.005) than in the endocardial smooth muscle-negative group. However, no histological parameters differed between the 2 groups. CONCLUSIONS Endocardial smooth muscle cell bundles in hearts with dilated cardiomyopathy exhibit a mature contractile phenotype and may play a compensatory role mitigating heart failure by reducing left ventricular wall stress and systolic dysfunction.
Collapse
Affiliation(s)
- Hideshi Okada
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Genzou Takemura
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.).
| | - Hiromitsu Kanamori
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Akiko Tsujimoto
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Kazuko Goto
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Itta Kawamura
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Takatomo Watanabe
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Kentaro Morishita
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Nagisa Miyazaki
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Toshiki Tanaka
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Hiroaki Ushikoshi
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Masanori Kawasaki
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Tatsuhiko Miyazaki
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Natsuko Suzui
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Kazuhiko Nishigaki
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Atsushi Mikami
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Shinji Ogura
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Shinya Minatoguchi
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| |
Collapse
|