1
|
Zhang P, Fassett JT, Zhu G, Li J, Hu X, Xu X, Chen Y, Bache RJ. Repetitive ischemia increases myocardial dimethylarginine dimethylaminohydrolase 1 expression. Vasc Med 2017; 22:179-188. [PMID: 28145161 DOI: 10.1177/1358863x16681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pharmacologic inhibition of nitric oxide production inhibits growth of coronary collateral vessels. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is the major enzyme that degrades asymmetric dimethylarginine (ADMA), a potent inhibitor of nitric oxide synthase. Here we examined regulation of the ADMA-DDAH1 pathway in a canine model of recurrent myocardial ischemia during the time when coronary collateral growth is known to occur. Under basal conditions, DDAH1 expression was non-uniform across the left ventricular (LV) wall, with expression strongest in the subepicardium. In response to ischemia, DDAH1 expression was up-regulated in the midmyocardium of the ischemic zone, and this was associated with a significant reduction in myocardial interstitial fluid (MIF) ADMA. The decrease in MIF ADMA during ischemia was likely due to increased DDAH1 because myocardial protein arginine N-methyl transferase 1 (PRMT1) and the methylated arginine protein content (the source of ADMA) were unchanged or increased, respectively, at this time. The inflammatory mediators interleukin (IL-1β) and tumor necrosis factor (TNF-α) were also elevated in the midmyocardium where DDAH1 expression was increased. Both of these factors significantly up-regulated DDAH1 expression in cultured human coronary artery endothelial cells. Taken together, these results suggest that inflammatory factors expressed in response to myocardial ischemia contributed to up-regulation of DDAH1, which was responsible for the decrease in MIF ADMA.
Collapse
Affiliation(s)
- Ping Zhang
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John T Fassett
- 2 Department of Pharmacology and Toxicology, Karl Franzen University of Graz, Graz, Austria
| | - Guangshuo Zhu
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jingxin Li
- 3 Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinli Hu
- 4 Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xin Xu
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yingjie Chen
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert J Bache
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
Schirmer SH, Millenaar DN, Werner C, Schuh L, Degen A, Bettink SI, Lipp P, van Rooijen N, Meyer T, Böhm M, Laufs U. Exercise promotes collateral artery growth mediated by monocytic nitric oxide. Arterioscler Thromb Vasc Biol 2015; 35:1862-71. [PMID: 26088573 DOI: 10.1161/atvbaha.115.305806] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Collateral artery growth (arteriogenesis) is an important adaptive response to hampered arterial perfusion. It is unknown whether preventive physical exercise before limb ischemia can improve arteriogenesis and modulate mononuclear cell function. This study aimed at investigating the effects of endurance exercise before arterial occlusion on MNC function and collateral artery growth. APPROACH AND RESULTS After 3 weeks of voluntary treadmill exercise, ligation of the right femoral artery was performed in mice. Hindlimb perfusion immediately after surgery did not differ from sedentary mice. However, previous exercise improved perfusion restoration ≤7 days after femoral artery ligation, also when exercise was stopped at ligation. This was accompanied by an accumulation of peri-collateral macrophages and increased expression of endothelial nitric oxide synthase and inducible nitric oxide synthase (iNOS) in hindlimb collateral and in MNC of blood and spleen. Systemic monocyte and macrophage depletion by liposomal clodronate but not splenectomy attenuated exercise-induced perfusion restoration, collateral artery growth, peri-collateral macrophage accumulation, and upregulation of iNOS. iNOS-deficient mice did not show exercise-induced perfusion restoration. Transplantation of bone marrow-derived MNC from iNOS-deficient mice into wild-type animals inhibited exercise-induced collateral artery growth. In contrast to sedentary controls, thrice weekly aerobic exercise training for 6 months in humans increased peripheral blood MNC iNOS expression. CONCLUSIONS Circulating mononuclear cell-derived inducible nitric oxide is an important mediator of exercise-induced collateral artery growth.
Collapse
Affiliation(s)
- Stephan H Schirmer
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.).
| | - Dominic N Millenaar
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Christian Werner
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Lisa Schuh
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Achim Degen
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Stephanie I Bettink
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Peter Lipp
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Nico van Rooijen
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Tim Meyer
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Michael Böhm
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| | - Ulrich Laufs
- From the Klinik für Innere Medizin III (S.H.S., D.N.M., C.W., L.S., A.D., S.I.B., M.B., U.L.) and Institut für Molekulare Zellbiologie (P.L.), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands (N.R.); and Institut für Sport- und Präventivmedizin, Universität des Saarlandes, Saarbrücken, Germany (T.M.)
| |
Collapse
|