1
|
Huang F, Chen Z, Tan B, He R, Zhang X, Chen Y, Gao J, Sun B. An exploratory study of high-throughput transcriptomic analysis reveals novel mRNA biomarkers for acute myocardial infarction using integrated methods. Sci Rep 2025; 15:8436. [PMID: 40069305 PMCID: PMC11897311 DOI: 10.1038/s41598-025-92757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Acute myocardial infarction (AMI) is a major contributor to cardiovascular-related mortality, and early diagnosis is crucial for effective treatment and better outcomes. While several biomarkers have been explored for AMI, there remains a need for reliable, non-invasive biomarkers that can accurately differentiate AMI patients from healthy individuals. This study aims to identify potential mRNA biomarkers in peripheral blood that could aid in the diagnosis and monitoring of AMI. We performed transcriptomic analysis of blood samples from 81 individuals, including 16 healthy controls, 58 AMI patients, and 7 post-treated AMI individuals. Through a combination of Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA), random forest (RF), Weighted Gene Co-expression Network Analysis (WGCNA), and LASSO regression, we identified mRNA markers that are significantly correlated with AMI. Specifically, the mRNA expressions of ANKRD52, ART1, NRP2, and PPP1R15A were elevated in AMI patients, whereas BAIAP2L1 and CCNE1 were downregulated. However, while these mRNA biomarkers show potential for distinguishing AMI patients from healthy individuals, further studies are needed to confirm their clinical applicability.
Collapse
Affiliation(s)
- Fei Huang
- Medical School, People's Hospital of Lijiang, Kunming University of Science and Technology, Kunming, China
| | - Zongning Chen
- Medical School, People's Hospital of Lijiang, Kunming University of Science and Technology, Kunming, China
| | - Binjie Tan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Rong He
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyu Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yali Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinsong Gao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Bo Sun
- Medical School, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
2
|
Hao Y, Li B, Yin F, Liu W. tRNA-derived small RNA (tsr007330) regulates myocardial fibrosis after myocardial infarction through NAT10-mediated ac4C acetylation of EGR3 mRNA. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167267. [PMID: 38810917 DOI: 10.1016/j.bbadis.2024.167267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Small non-coding ribonucleic acids (sncRNAs) play an important role in cell regulation and are closely related to the pathogenesis of heart diseases. However, the role and molecular mechanism of transfer RNA-derived small RNAs (tsRNAs) in myocardial fibrosis after myocardial infarction (MI) remain unknown. In this study, we identified and validated sncRNAs (mainly miRNA and tsRNA) associated with myocardial fibrosis after MI through PANDORA sequencing of rat myocardial tissue. As a key enzyme of N4-acetylcytidine (ac4C) acetylation modification, N-acetyltransferase 10 (NAT10) plays an important role in regulating messenger RNA (mRNA) stability and translation efficiency. We found that NAT10 is highly expressed in infarcted myocardial tissue, and the results of acetylated RNA immunoprecipitation sequencing (acRIP-seq) analysis suggest that early growth response 3 (EGR3) may be an important molecule in the pathogenesis of NAT10-mediated myocardial fibrosis. Both in vivo and in vitro experiments have shown that inhibition of NAT10 can reduce the expression of EGR3 and alleviate myocardial fibrosis after MI. tsRNA can participate in gene regulation by inhibiting target genes. The expression of tsr007330 was decreased in myocardial infarction tissue. We found that overexpression of tsr007330 in rat myocardial tissue could antagonize NAT10, improve myocardial function in MI and alleviate myocardial fibrosis. In conclusion, tsRNAs (rno-tsr007330) may regulate the occurrence of myocardial fibrosis by regulating NAT10-mediated EGR3 mRNA acetylation. This study provides new insights into the improvement of myocardial fibrosis after MI by targeting tsRNA therapy.
Collapse
Affiliation(s)
- Yan Hao
- Harbin Medical University, Harbin, Heilongjiang 150001, China; Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bohan Li
- Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Feiya Yin
- University of Sydney, NSW 2006, Australia
| | - Wei Liu
- Harbin Medical University, Harbin, Heilongjiang 150001, China; Department of Geriatric Cardiovascular Division, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
3
|
López-Millán Infantes JM, Coca-Gamito C, Cámara-Faraig A, Díaz-Infante E, García-Rubira JC. Stellate ganglion block for the management of electrical storm: An observational study. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:1-7. [PMID: 37666452 DOI: 10.1016/j.redare.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Electrical storm is a life-threatening emergency with a high mortality rate. When acute conventional treatment is ineffective, stellate ganglion block can help control arrhythmia by providing a visceral cervicothoracic sympathetic block. The objective of this study is to assess the effectiveness and safety of stellate ganglion block in the management of refractory arrhythmic storm. METHOD Follow-up of a cohort of patients with refractory electrical storm that met the criteria for performing stellate ganglion block. The block was ultrasound-guided at C6 using local anaesthetic and a steroid - left unilateral first, bilateral if no response, followed by fluoroscopy-guided radiofrequency ablation at C7 if there was a favourable response but subsequent relapse. RESULTS Seven patients were included. The in-hospital mortality rate was 14.29%. Four patients received unilateral and 3 bilateral stellate ganglion block. Six were ablated and 1 received an implantable cardioverter-defibrillator. Electrical storm was controlled temporarily beyond the effect of the local anaesthetic in all patients. Three patients underwent radiofrequency ablation and 2 underwent surgical thoracic sympathectomy. The only side effect was Horner's syndrome, which was observed in all cases after administering a stellate ganglion block with local anaesthetic. Two patients died after discharge and 4 are alive at the time of writing, 3 of them have not been re-admitted for ventricular events for more than 2 years. CONCLUSION Ultrasound-guided stellate ganglion block is an effective and safe complement to standard cardiological treatment of refractory electrical storm.
Collapse
Affiliation(s)
- J M López-Millán Infantes
- Department of Anaesthesiology, Critical Care and Pain Medicine, Virgen Macarena University Hospital, Seville, Spain.
| | - C Coca-Gamito
- Department of Anaesthesiology, Critical Care and Pain Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - A Cámara-Faraig
- Department of Anaesthesiology, Critical Care and Pain Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - E Díaz-Infante
- Department of Cardiology, Arrhythmia Unit, Virgen Macarena University Hospital, Seville, Spain
| | - J C García-Rubira
- Department of Cardiology, Coronary Unit, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
4
|
Macres S, Aldwinckle RJ, Saldahna U, Pritzlaff SG, Jung M, Santos J, Kotova M, Bishop R. Reconceptualizing Acute Pain Management in the 21st Century. Adv Anesth 2023; 41:87-110. [PMID: 38251624 DOI: 10.1016/j.aan.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Acute pain can have many etiologies that include surgical procedures, trauma (motor vehicle accident), musculoskeletal injuries (rib fracture) and, burns among others. Valuable components of a multimodal approach to acute pain management include both opioid and non-opioid medications, procedure specific regional anesthesia techniques (peripheral nerve blocks and neuraxial approaches), and interventional approaches (eg, peripheral nerve stimulation and cryo-neurolysis). Overall, successful acute perioperative pain management requires a multimodal, multidisciplinary approach that involves a coordinated effort between the surgical team, the anesthesia team, nursing, and pharmacy staff using Enhanced Recovery After Surgery (ERAS) protocols.
Collapse
Affiliation(s)
- Stephen Macres
- Department of Anesthesiology and Pain Medicine, University of California, Davis Medical Center, 4150 V. Street, Sacramento, CA 95817, USA.
| | - Robin J Aldwinckle
- Anesthesiology, Department of Anesthesiology & Pain Medicine, 4150 V. Street, PSSB Suite 1200, Sacramento, CA 95817, USA
| | - Usha Saldahna
- Regional Anesthesia Fellowship, Department of Anesthesiology and Pain Medicine, University of California, Davis Medical Center, 4150 V. Street, Sacramento, CA 95817, USA
| | - Scott G Pritzlaff
- Division of Pain Medicine, Pain Medicine Fellowship, Department of Anesthesiology and Pain Medicine, University of California, Davis Medical Center, 4860 Y. Street, Suite 3020, Sacramento CA 95817, USA
| | - Michael Jung
- Pain Fellowship, Department of Anesthesiology and Pain Medicine, UC Davis Medical Center, 4860 Y. Street, Suite 3020, Sacramento CA 95817, USA
| | - Josh Santos
- Pre-Anesthesia Readiness & Education Program, 4150 V. Street, Sacramento, CA 95817, USA
| | - Mariya Kotova
- Department of Pharmacy, UC Davis Medical Center, 1240 47th Avenue, Sacramento, CA 95831, USA
| | - Robert Bishop
- Department of Anesthesiology and Pain Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
5
|
Liu W, Li Y, Zhang Y, Li S, Chen Y, Han B, Lu Y. Identification of biomarkers and immune infiltration in acute myocardial infarction and heart failure by integrated analysis. Biosci Rep 2023; 43:BSR20222552. [PMID: 37334672 PMCID: PMC10329185 DOI: 10.1042/bsr20222552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
The mortality of heart failure after acute myocardial infarction (AMI) remains high. The aim of the present study was to analyze hub genes and immune infiltration in patients with AMI and heart failure (HF). The study utilized five publicly available gene expression datasets from peripheral blood in patients with AMI who either developed or did not develop HF. The unbiased patterns of 24 immune cell were estimated by xCell algorithm. Single-cell RNA sequencing data were used to examine the immune cell infiltration in heart failure patients. Hub genes were validated by quantitative reverse transcription-PCR (RT-qPCR). In comparison with the coronary heart disease (CHD) group, immune infiltration analysis of AMI patients showed that macrophages M1, macrophages, monocytes, natural killer (NK) cells, and NKT cells were the five most highly activated cell types. Five common immune-related genes (S100A12, AQP9, CSF3R, S100A9, and CD14) were identified as hub genes associated with AMI. Using RT-qPCR, we confirmed FOS, DUSP1, CXCL8, and NFKBIA as the potential biomarkers to identify AMI patients at risk of HF. The study identified several transcripts that differentiate between AMI and CHD, and between HF and non-HF patients. These findings could improve our understanding of the immune response in AMI and HF, and allow for early identification of AMI patients at risk of HF.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Institute of Cardiovascular Disease, Xuzhou Clinical School of Nanjing Medical University, No. 199 Jiefang South Road, Xuzhou 221009, PR China
| | - Yuling Li
- Department of Ultrasonography, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, No. 199 Jiefang South Road, Xuzhou 221009, PR China
| | - Yan Zhang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, No. 199 Jiefang South Road, Xuzhou 221009, PR China
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Han
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Institute of Cardiovascular Disease, Xuzhou Clinical School of Nanjing Medical University, No. 199 Jiefang South Road, Xuzhou 221009, PR China
| | - Yao Lu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Institute of Cardiovascular Disease, Xuzhou Clinical School of Nanjing Medical University, No. 199 Jiefang South Road, Xuzhou 221009, PR China
| |
Collapse
|
6
|
Razee A, Banerjee S, Hong J, Magaki S, Fishbein G, Ajijola OA, Umar S. Thoracic Spinal Cord Neuroinflammation as a Novel Therapeutic Target in Pulmonary Hypertension. Hypertension 2023; 80:1297-1310. [PMID: 37092338 PMCID: PMC10192067 DOI: 10.1161/hypertensionaha.122.20782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with aberrant sympathoexcitation leading to right ventricular failure (RVF), arrhythmias, and death. Microglial activation and neuroinflammation have been implicated in sympathoexcitation in experimental PH. We recently reported the first evidence of thoracic spinal cord (TSC) neuroinflammation in PH rats. Here, we hypothesize that PH is associated with increased cardiopulmonary afferent signaling leading to TSC-specific neuroinflammation and sympathoexcitation. Furthermore, inhibition of TSC neuroinflammation rescues experimental PH and RVF. METHODS We performed transcriptomic analysis and its validation on the TSC of monocrotaline (n=8) and Sugen hypoxia (n=8) rat models of severe PH-RVF. A group of monocrotaline rats received either daily intrathecal microglial activation inhibitor minocycline (200 μg/kg per day, n=5) or PBS (n=5) from day 14 through 28. Echocardiography and right ventricle-catheterization were performed terminally. Real-time quantitative reverse transcription PCR, immunolocalization, microglia+astrocyte quantification, and terminal deoxynucleotidyl transferase dUTP nick end labeling were assessed. Plasma catecholamines were measured by ELISA. Human spinal cord autopsy samples (Control n=3; pulmonary arterial hypertension n=3) were assessed to validate preclinical findings. RESULTS Increased cardiopulmonary afferent signaling was demonstrated in preclinical and clinical PH. Our findings delineated common dysregulated genes and pathways highlighting neuroinflammation and apoptosis in the remodeled TSC and highlighted increased sympathoexcitation in both rat models. Moreover, we validated significantly increased microglial and astrocytic activation and CX3CL1 expression in TSC of human pulmonary arterial hypertension. Finally, amelioration of TSC neuroinflammation by minocycline in monocrotaline rats inhibited microglial activation, decreased proinflammatory cytokines, sympathetic nervous system activation and significantly attenuated PH and RVF. CONCLUSIONS Targeting neuroinflammation and associated molecular pathways and genes in the TSC may yield novel therapeutic strategies for PH and RVF.
Collapse
Affiliation(s)
- Asif Razee
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Somanshu Banerjee
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jason Hong
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Los Angeles, CA, USA
| | - Shino Magaki
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Greg Fishbein
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Los Angeles, CA, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Howard-Quijano K, Kuwabara Y, Yamaguchi T, Roman K, Salavatian S, Taylor B, Mahajan A. GABAergic Signaling during Spinal Cord Stimulation Reduces Cardiac Arrhythmias in a Porcine Model. Anesthesiology 2023; 138:372-387. [PMID: 36724342 PMCID: PMC9998372 DOI: 10.1097/aln.0000000000004516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Neuraxial modulation, including spinal cord stimulation, reduces cardiac sympathoexcitation and ventricular arrhythmogenesis. There is an incomplete understanding of the molecular mechanisms through which spinal cord stimulation modulates cardiospinal neural pathways. The authors hypothesize that spinal cord stimulation reduces myocardial ischemia-reperfusion-induced sympathetic excitation and ventricular arrhythmias through γ-aminobutyric acid (GABA)-mediated pathways in the thoracic spinal cord. METHODS Yorkshire pigs were randomized to control (n = 11), ischemia-reperfusion (n = 16), ischemia-reperfusion plus spinal cord stimulation (n = 17), ischemia-reperfusion plus spinal cord stimulation plus γ-aminobutyric acid type A (GABAA) or γ-aminobutyric acid type B (GABAB) receptor antagonist (GABAA, n = 8; GABAB, n = 8), and ischemia-reperfusion plus GABA transaminase inhibitor (GABAculine, n = 8). A four-pole spinal cord stimulation lead was placed epidurally (T1 to T4). GABA modulating pharmacologic agents were administered intrathecally. Spinal cord stimulation at 50 Hz was applied 30 min before ischemia. A 56-electrode epicardial mesh was used for high-resolution electrophysiologic recordings, including activation recovery intervals and ventricular arrhythmia scores. Immunohistochemistry and Western blots were performed to measure GABA receptor expression in the thoracic spinal cord. RESULTS Cardiac ischemia led to myocardial sympathoexcitation with reduction in activation recovery interval (mean ± SD, -42 ± 11%), which was attenuated by spinal cord stimulation (-21 ± 17%, P = 0.001). GABAA and GABAB receptor antagonists abolished spinal cord stimulation attenuation of sympathoexcitation (GABAA, -9.7 ± 9.7%, P = 0.043 vs. ischemia-reperfusion plus spinal cord stimulation; GABAB, -13 ± 14%, P = 0.012 vs. ischemia-reperfusion plus spinal cord stimulation), while GABAculine alone caused a therapeutic effect similar to spinal cord stimulation (-4.1 ± 3.7%, P = 0.038 vs. ischemia-reperfusion). The ventricular arrhythmia score supported these findings. Spinal cord stimulation during ischemia-reperfusion increased GABAA receptor expression with no change in GABAB receptor expression. CONCLUSIONS Thoracic spinal cord stimulation reduces ischemia-reperfusion-induced sympathoexcitation and ventricular arrhythmias through activation of GABA signaling pathways. These data support the hypothesis that spinal cord stimulation-induced release of GABA activates inhibitory interneurons to decrease primary afferent signaling from superficial dorsal horn to sympathetic output neurons in the intermediolateral nucleus. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh. A-1305 Scaife Hall, 3550 Terrace Street Pittsburgh, PA 15261, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center. 200 Lothrop St, Pittsburgh, PA 15213, United States
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh. A-1305 Scaife Hall, 3550 Terrace Street Pittsburgh, PA 15261, United States
| | - Tomoki Yamaguchi
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh. A-1305 Scaife Hall, 3550 Terrace Street Pittsburgh, PA 15261, United States
| | - Kenny Roman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh. A-1305 Scaife Hall, 3550 Terrace Street Pittsburgh, PA 15261, United States
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh. A-1305 Scaife Hall, 3550 Terrace Street Pittsburgh, PA 15261, United States
| | - Bradley Taylor
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh. A-1305 Scaife Hall, 3550 Terrace Street Pittsburgh, PA 15261, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh. A-1305 Scaife Hall, 3550 Terrace Street Pittsburgh, PA 15261, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center. 200 Lothrop St, Pittsburgh, PA 15213, United States
| |
Collapse
|
8
|
Zhou Q, Meng D, Li F, Zhang X, Liu L, Zhu Y, Liu S, Xu M, Deng J, Lei Z, Sluijter JP, Xiao J. Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling. EBioMedicine 2022; 85:104274. [PMID: 36182775 PMCID: PMC9526139 DOI: 10.1016/j.ebiom.2022.104274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
|
9
|
Wu Y, Luo Z, Hu Z, Lv K, Liu Y, Wang D. Optical Activation of the Dorsal Horn of the Thoracic Spinal Cord Prevents Ventricular Arrhythmias in Acute Myocardial Ischemia-Reperfusion Rats. Front Cardiovasc Med 2022; 9:753959. [PMID: 35198610 PMCID: PMC8858961 DOI: 10.3389/fcvm.2022.753959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background and ObjectivesSpinal cord stimulation can prevent myocardial ischemia and reperfusion arrhythmias, but the relevant neurons and mechanisms remain unknown. Thus, this study applied optogenetic techniques to selectively activate glutamatergic neurons at the thoracic spinal cord (T1 segment) for examining the anti-arrhythmia effects during acute myocardial ischemic-reperfusion.MethodsAdeno-associated viruses (AAVs) carrying channelrhodopsin-2 (ChR2, a blue-light sensitive ion channel) CaMKIIα-hChR2(H134R) or empty vector were injected into the dorsal horn of the T1 spinal cord. Four weeks later, optogenetic stimulation with a 473-nm blue laser was applied for 30 min. Then, the myocardial ischemia-reperfusion model was created by occlusion of the anterior descending coronary artery for ischemia (15 min) and reperfusion (30 min). Cardiac electrical activity and sympathetic nerve activity were assessed continuously.ResultsCaMKIIα-hChR2 viral transfection is primarily expressed in glutamatergic neurons in the spinal cord. Selective optical stimulation of the T1 dorsal horn in the ChR2 rat reduced the ventricular arrhythmia and arrhythmia score during myocardial ischemia-reperfusion, preventing the over-activation of cardiac sympathetic nerve activity. Additionally, optical stimulation also reduced the action potential duration at the 90% level (APD90) and APD dispersion.ConclusionSelective optical stimulation T1 glutamatergic neurons of dorsal horn prevent ischemia-reperfusion arrhythmias. The mechanism may be associated with inhibiting sympathetic nervous system overexcitation and increasing APD dispersion during myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gerontology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhongxu Luo
- Department of Gerontology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhengtao Hu
- Department of Gerontology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
| | - Yinhua Liu
- Department of Pathology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Deguo Wang
- Department of Gerontology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
- *Correspondence: Deguo Wang
| |
Collapse
|
10
|
Howard-Quijano K, Yamaguchi T, Gao F, Kuwabara Y, Puig S, Lundquist E, Salavatian S, Taylor B, Mahajan A. Spinal Cord Stimulation Reduces Ventricular Arrhythmias by Attenuating Reactive Gliosis and Activation of Spinal Interneurons. JACC Clin Electrophysiol 2021; 7:1211-1225. [PMID: 34454884 DOI: 10.1016/j.jacep.2021.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study investigated spinal cord neuronal and glial cell activation during cardiac ischemia-reperfusion (IR)-triggered ventricular arrhythmias and neuromodulation therapy by spinal cord stimulation (SCS). BACKGROUND Myocardial ischemia induces changes in cardiospinal neural networks leading to sudden cardiac death. Neuromodulation with SCS decreases cardiac sympathoexcitation; however, the molecular mechanisms remain unknown. METHODS Yorkshire pigs (n = 16) were randomized to Control, IR, or IR+SCS groups. A 4-pole SCS lead was placed in the T1-T4 epidural space with stimulation for 30 minutes before IR (50 Hz, 0.4-ms duration, 90% motor threshold). Cardiac electrophysiological mapping and Ventricular Arrhythmia Score (VAS) were recorded. Immunohistochemistry of thoracic spinal sections was used to map and identify Fos-positive neuronal and glial cell types during IR with and without SCS. RESULTS IR increased cardiac sympathoexcitation and arrhythmias (VAS = 6.2 ± 0.9) that were attenuated in IR + SCS (VAS = 2.8 ± 0.5; P = 0.017). IR increased spinal cellular Fos expression (#Fos+ cells Control = 23 ± 2 vs IR = 88 ± 5; P < 0.0001) in T1-T4, with the greatest increase localized to T3, and the greatest %Fos+ cells being microglia and astrocytes. Fos expression was attenuated by IR + SCS (62 ± 4; P < 0.01), primarily though a reduction in Fos+ microglia and astrocytes, as SCS also led to increase in Fos+ neurons in deep dorsal laminae. CONCLUSIONS In a porcine model, cardiac IR was associated with astrocyte and microglial cell activation. Our results suggest that preemptive thoracic SCS decreased IR-induced cardiac sympathoexcitation and ventricular arrhythmias through attenuation of reactive gliosis and activation of inhibitory interneurons in the dorsal horn of spinal cord.
Collapse
Affiliation(s)
- Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tomoki Yamaguchi
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fei Gao
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Stephanie Puig
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Eevanna Lundquist
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bradley Taylor
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
11
|
Guo HH, Jing XY, Chen H, Xu HX, Zhu BM. STAT3 but Not STAT5 Contributes to the Protective Effect of Electroacupuncture Against Myocardial Ischemia/Reperfusion Injury in Mice. Front Med (Lausanne) 2021; 8:649654. [PMID: 34307396 PMCID: PMC8299366 DOI: 10.3389/fmed.2021.649654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Electroacupuncture (EA) can help reduce infarct size and injury resulting from myocardial ischemia/reperfusion (I/R); however, the underlying molecular mechanism remains unknown. We previously reported that STAT5 plays a critical role in the cardioprotective effect of remote ischemic preconditioning (RIPC). Here, we assessed the effects of electroacupuncture pretreatment (EAP) on myocardial I/R injury in the presence and/or absence of Stat5 in mice and investigated whether EAP exerts its cardioprotective effects in a STAT5-dependent manner. Adult Stat5fl/fl and Stat5-cKO mice were exposed to EAP at Neiguan (PC6) for 7 days before the induction of I/R injury by left anterior descending (LAD) coronary artery ligation. The myocardial infarct size (IS), area at risk, and apoptotic rate of cardiomyocytes were detected. RT-qPCR and western blotting were used to measure gene and protein expression, respectively, in homogenized heart tissues. RNA-seq was used to identify candidate genes and pathways. Our results showed that EAP decreased IS and the rate of cardiomyocyte apoptosis. We further found that STAT5 was activated by EAP in Stat5fl/fl mice but not in Stat5-cKO mice, whereas the opposite was observed for STAT3. Following EAP, the levels of the antiapoptotic proteins Bcl-xL, Bcl-2, and p-AKT were increased in the presence of Stat5, while that of interleukin 10 (IL-10) was increased in both Stat5fl/fl and Stat5-cKO. The gene expression profile in heart tissues was different between Stat5fl/fl and the Stat5-cKO mice with EAP. Importantly, the top 30 DEGs under EAP in the Stat5-cKO mice were enriched in the IL-6/STAT3 signaling pathway. Our results revealed for the first time that the protective effect of EAP following myocardial I/R injury was attributable to, but not dependent on, STAT5. Additionally, we found that EAP could activate STAT3 signaling in the absence of the Stat5 gene, and could also activate antiapoptotic, survival, and anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Chen
- Rehabilitation Medicine Department, YE DA Hospital of Yantai, Yantai, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Wallner C, Drysch M, Becerikli M, Schmidt SV, Hahn S, Wagner JM, Reinkemeier F, Dadras M, Sogorski A, von Glinski M, Lehnhardt M, Behr B. Deficiency of myostatin protects skeletal muscle cells from ischemia reperfusion injury. Sci Rep 2021; 11:12572. [PMID: 34131275 PMCID: PMC8206371 DOI: 10.1038/s41598-021-92159-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Ischemia reperfusion (IR) injury plays a pivotal role in many diseases and leads to collateral damage during surgical interventions. While most studies focus on alleviating its severity in the context of brain, liver, kidney, and cardiac tissue, research as regards to skeletal muscle has not been conducted to the same extent. In the past, myostatin (MSTN), primarily known for supressing muscle growth, has been implicated in inflammatory circuits, and research provided promising results for cardiac IR injury mitigation by inhibiting MSTN cell surface receptor ACVR2B. This generated the question if interrupting MSTN signaling could temper IR injury in skeletal muscle. Examining human specimens from free myocutaneous flap transfer demonstrated increased MSTN signaling and tissue damage in terms of apoptotic activity, cell death, tissue edema, and lipid peroxidation. In subsequent in vivo MstnLn/Ln IR injury models, we identified potential mechanisms linking MSTN deficiency to protective effects, among others, inhibition of p38 MAPK signaling and SERCA2a modulation. Furthermore, transcriptional profiling revealed a putative involvement of NK cells. Collectively, this work establishes a protective role of MSTN deficiency in skeletal muscle IR injury.
Collapse
Affiliation(s)
- Christoph Wallner
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Marius Drysch
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Mustafa Becerikli
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Sonja Verena Schmidt
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Stephan Hahn
- grid.5570.70000 0004 0490 981XDepartment of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Johannes Maximilian Wagner
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Felix Reinkemeier
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Mehran Dadras
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Alexander Sogorski
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Maxi von Glinski
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Marcus Lehnhardt
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Björn Behr
- grid.412471.50000 0004 0551 2937Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| |
Collapse
|
13
|
Spinal Anesthesia Reduces Myocardial Ischemia-triggered Ventricular Arrhythmias by Suppressing Spinal Cord Neuronal Network Interactions in Pigs. Anesthesiology 2021; 134:405-420. [PMID: 33411921 DOI: 10.1097/aln.0000000000003662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cardiac sympathoexcitation leads to ventricular arrhythmias. Spinal anesthesia modulates sympathetic output and can be cardioprotective. However, its effect on the cardio-spinal reflexes and network interactions in the dorsal horn cardiac afferent neurons and the intermediolateral nucleus sympathetic neurons that regulate sympathetic output is not known. The authors hypothesize that spinal bupivacaine reduces cardiac neuronal firing and network interactions in the dorsal horn-dorsal horn and dorsal horn-intermediolateral nucleus that produce sympathoexcitation during myocardial ischemia, attenuating ventricular arrhythmogenesis. METHODS Extracellular neuronal signals from the dorsal horn and intermediolateral nucleus neurons were simultaneously recorded in Yorkshire pigs (n = 9) using a 64-channel high-density penetrating microarray electrode inserted at the T2 spinal cord. Dorsal horn and intermediolateral nucleus neural interactions and known markers of cardiac arrhythmogenesis were evaluated during myocardial ischemia and cardiac load-dependent perturbations with intrathecal bupivacaine. RESULTS Cardiac spinal neurons were identified based on their response to myocardial ischemia and cardiac load-dependent perturbations. Spinal bupivacaine did not change the basal activity of cardiac neurons in the dorsal horn or intermediolateral nucleus. After bupivacaine administration, the percentage of cardiac neurons that increased their activity in response to myocardial ischemia was decreased. Myocardial ischemia and cardiac load-dependent stress increased the short-term interactions between the dorsal horn and dorsal horn (324 to 931 correlated pairs out of 1,189 pairs, P < 0.0001), and dorsal horn and intermediolateral nucleus neurons (11 to 69 correlated pairs out of 1,135 pairs, P < 0.0001). Bupivacaine reduced this network response and augmentation in the interactions between dorsal horn-dorsal horn (931 to 38 correlated pairs out of 1,189 pairs, P < 0.0001) and intermediolateral nucleus-dorsal horn neurons (69 to 1 correlated pairs out of 1,135 pairs, P < 0.0001). Spinal bupivacaine reduced shortening of ventricular activation recovery interval and dispersion of repolarization, with decreased ventricular arrhythmogenesis during acute ischemia. CONCLUSIONS Spinal anesthesia reduces network interactions between dorsal horn-dorsal horn and dorsal horn-intermediolateral nucleus cardiac neurons in the spinal cord during myocardial ischemia. Blocking short-term coordination between local afferent-efferent cardiac neurons in the spinal cord contributes to a decrease in cardiac sympathoexcitation and reduction of ventricular arrhythmogenesis. EDITOR’S PERSPECTIVE
Collapse
|
14
|
Li ZX, Li YJ, Wang Q, He ZG, Feng MH, Xiang HB. Characterization of novel lncRNAs in upper thoracic spinal cords of rats with myocardial ischemia-reperfusion injuries. Exp Ther Med 2021; 21:352. [PMID: 33732325 PMCID: PMC7903382 DOI: 10.3892/etm.2021.9783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant problem in clinical cardiology, and refers to a more serious myocardial injury caused by blood recanalization after a period of myocardial ischemia, as compared with injury caused by vascular occlusion. The spinal cord, as the primary afferent and efferent center of cardiac sensory and sympathetic nerve fibres, has received increased attention in recent years with regards to the regulation of MIRIs. Previous studies have revealed that MIRI has a strong correlation with the abnormal expression of long non-coding (lnc)RNAs in the myocardium; however, there are limited reports on the effects of the altered expression of lncRNAs in the spinal cord following MIRI. To investigate the expression patterns of lncRNAs in the spinal cord after MIRI and their potential role in the early stage of reperfusion, a MIRI model was established in rats. After 30 min of myocardial ischemia and 2 h of reperfusion, the upper thoracic spinal cord tissues were immediately dissected and isolated. lncRNAs and mRNAs in spinal cord tissues were screened using transcriptome sequencing technology, and the expression of several highly deregulated mRNAs, including Frs3, Zfp52, Dnajc6, Nedd4l, Tep1, Myef2, Tgfbr1, Fgf12, Mef2c, Tfdp1 and lncRNA, including ENSRNOT00000080713, ENSRNOT00000090564, ENSRNOT00000082588, ENSRNOT00000091080, ENSRNOT00000091570, ENSRNOT00000087777, ENSRNOT00000082061, ENSRNOT00000091108, ENSRNOT00000087028, ENSRNOT00000086475, were further validated via reverse transcription-quantitative PCR. The number of altered expressed lncRNAs was 126, among which there were 41 upregulated probe sets and 85 downregulated sets. A total of 470 mRNAs were differentially expressed, in which 231 probe sets were upregulated and 239 were downregulated. Gene Ontology analysis indicated that dysregulated transcripts related to biological processes were mainly associated with ‘cell-cell signaling’. Moreover, pathway analysis demonstrated significant changes in the ‘PI3K/Akt signaling pathway’ and the ‘p53 signaling pathway’. Thus, the altered expression of lncRNAs in the spinal cord may be of considerable importance in the process of MIRI. The present results could provide an insight into the potential roles and mechanism of lncRNAs during the early stage of reperfusion.
Collapse
Affiliation(s)
- Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mao-Hui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China.,The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, Hubei 430071, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
15
|
Zhang X, Shao X, Zhang R, Zhu R, Feng R. Integrated analysis reveals the alterations that LMNA interacts with euchromatin in LMNA mutation-associated dilated cardiomyopathy. Clin Epigenetics 2021; 13:3. [PMID: 33407844 PMCID: PMC7788725 DOI: 10.1186/s13148-020-00996-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a serious cardiac heterogeneous pathological disease, which may be caused by mutations in the LMNA gene. Lamins interact with not only lamina-associated domains (LADs) but also euchromatin by alone or associates with the lamina-associated polypeptide 2 alpha (LAP2α). Numerous studies have documented that LMNA regulates gene expression by interacting with LADs in heterochromatin. However, the role of LMNA in regulating euchromatin in DCM is poorly understood. Here, we determine the differential binding genes on euchromatin in DCM induced by LMNA mutation by performing an integrated analysis of bioinformatics and explore the possible molecular pathogenesis mechanism. RESULTS Six hundred twenty-three and 4484 differential binding genes were identified by ChIP-seq technology. The ChIP-seq analysis results and matched RNA-Seq transcriptome data were integrated to further validate the differential binding genes of ChIP-seq. Five and 60 candidate genes involved in a series of downstream analysis were identified. Finally, 4 key genes (CREBBP, PPP2R2B, BMP4, and BMP7) were harvested, and these genes may regulate LMNA mutation-induced DCM through WNT/β-catenin or TGFβ-BMP pathways. CONCLUSIONS We identified four key genes that may serve as potential biomarkers and novel therapeutic targets. Our study also illuminates the possible molecular pathogenesis mechanism that the abnormal binding between LMNA or LAP2α-lamin A/C complexes and euchromatin DNA in LMNA mutations, which may cause DCM through the changes of CREBBP, PPP2R2B, BMP4, BMP7 expressions, and the dysregulation of WNT/β-catenin or TGFβ-BMP pathways, providing valuable insights to improve the occurrence and development of DCM.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xiuli Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Ruijia Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Rongli Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
16
|
Ganesh A, Qadri YJ, Boortz-Marx RL, Al-Khatib SM, Harpole DH, Katz JN, Koontz JI, Mathew JP, Ray ND, Sun AY, Tong BC, Ulloa L, Piccini JP, Fudim M. Stellate Ganglion Blockade: an Intervention for the Management of Ventricular Arrhythmias. Curr Hypertens Rep 2020; 22:100. [PMID: 33097982 DOI: 10.1007/s11906-020-01111-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To highlight the indications, procedural considerations, and data supporting the use of stellate ganglion blockade (SGB) for management of refractory ventricular arrhythmias. RECENT FINDINGS In patients with refractory ventricular arrhythmias, unilateral or bilateral SGB can reduce arrhythmia burden and defibrillation events for 24-72 h, allowing time for use of other therapies like catheter ablation, surgical sympathectomy, or heart transplantation. The efficacy of SGB appears to be consistent despite the type (monomorphic vs polymorphic) or etiology (ischemic vs non-ischemic cardiomyopathy) of the ventricular arrhythmia. Ultrasound-guided SGB is safe with low risk for complications, even when performed on anticoagulation. SGB is effective and safe and could be considered for patients with refractory ventricular arrhythmias.
Collapse
Affiliation(s)
- Arun Ganesh
- Duke Anesthesiology, Duke University, Durham, NC, USA
| | - Yawar J Qadri
- Emory Anesthesiology, Emory University, Atlanta, GA, USA
| | | | - Sana M Al-Khatib
- Duke Cardiology, Duke University Medical Center, 2301 Erwin Road, Durham, NC, 27710, USA
| | - David H Harpole
- Cardiothoracic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jason N Katz
- Duke Cardiology, Duke University Medical Center, 2301 Erwin Road, Durham, NC, 27710, USA
| | - Jason I Koontz
- Duke Cardiology, Duke University Medical Center, 2301 Erwin Road, Durham, NC, 27710, USA.,Duke Center for Atrial Fibrillation, Duke University Medical Center, Duke University, Durham, NC, USA
| | | | - Neil D Ray
- Duke Anesthesiology, Duke University, Durham, NC, USA
| | - Albert Y Sun
- Duke Cardiology, Duke University Medical Center, 2301 Erwin Road, Durham, NC, 27710, USA
| | - Betty C Tong
- Cardiothoracic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Luis Ulloa
- Duke Anesthesiology, Duke University, Durham, NC, USA.,Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Jonathan P Piccini
- Duke Cardiology, Duke University Medical Center, 2301 Erwin Road, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Durham, NC, USA.,Duke Center for Atrial Fibrillation, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Marat Fudim
- Duke Cardiology, Duke University Medical Center, 2301 Erwin Road, Durham, NC, 27710, USA. .,Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
17
|
Dale EA, Kipke J, Kubo Y, Sunshine MD, Castro PA, Ardell JL, Mahajan A. Spinal cord neural network interactions: implications for sympathetic control of the porcine heart. Am J Physiol Heart Circ Physiol 2020; 318:H830-H839. [PMID: 32108524 DOI: 10.1152/ajpheart.00635.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inherent and acquired factors determine the integrated autonomic response to cardiovascular stressors. Excessive sympathoexcitation to ischemic stress is a major contributor to the potential for sudden cardiac death. To define fundamental aspects of cardiac-related autonomic neural network interactions within the thoracic cord, specifically as related to modulating sympathetic preganglionic (SPN) neural activity. Adult, anesthetized Yorkshire pigs (n = 10) were implanted with penetrating high-density microarrays (64 electrodes) at the T2 level of the thoracic spinal cord to record extracellular potentials concurrently from left-sided dorsal horn (DH) and SPN neurons. Electrical stimulation of the T2 paravertebral chain allowed for antidromic identification of SPNs located in the intermediolateral cell column (57 of total 1,760 recorded neurons). Cardiac stressors included epicardial touch, occlusion of great vessels to transiently alter preload/afterload, and transient occlusion of the left anterior descending coronary artery (LAD). Spatial/temporal assessment of network interactions was characterized by cross-correlation analysis. While some DH neurons responded solely to changes in preload/afterload (8.5 ± 1.9%) or ischemic stress (10.5 ± 3.9%), the majority of cardiovascular-related DH neurons were multimodal (30.2 ± 4.7%) with ischemia sensitivity being one of the modalities (26.1 ± 4.7%). The sympathoexcitation associated with transient LAD occlusion was associated with increased correlations from baseline within DH neurons (2.43 ± 0.61 to 7.30 ± 1.84%, P = 0.04) and between SPN to DH neurons (1.32 ± 0.78 to 7.24 ± 1.84%, P = 0.02). DH to SPN network correlations were reduced during great vessel occlusion. In conclusion, increased intrasegmental network coherence within the thoracic spinal cord contributes to myocardial ischemia-induced sympathoexcitation.NEW & NOTEWORTHY In an in vivo pig model, we demonstrate using novel high-resolution neural electrode arrays that increased intrasegmental network coherence within the thoracic spinal cord contributes to myocardial ischemia-induced sympathoexcitation.
Collapse
Affiliation(s)
- Erica A Dale
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jasmine Kipke
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Yukiko Kubo
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Peter A Castro
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jeffrey L Ardell
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.,Department of Medicine, Cardiac Arrhythmia Center and Cardiac Neurocardiology Research Program of Excellence, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
18
|
Waldron NH, Fudim M, Mathew JP, Piccini JP. Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC Basic Transl Sci 2019; 4:546-562. [PMID: 31468010 PMCID: PMC6712352 DOI: 10.1016/j.jacbts.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Derangement of autonomic nervous signaling is an important contributor to cardiac arrhythmogenesis. Modulation of autonomic nervous signaling holds significant promise for the prevention and treatment of cardiac arrhythmias. Further clinical investigation is necessary to establish the efficacy and safety of autonomic modulatory therapies in reducing cardiac arrhythmias.
There is an increasing recognition of the importance of interactions between the heart and the autonomic nervous system in the pathophysiology of arrhythmias. These interactions play a role in both the initiation and maintenance of arrhythmias and are important in both atrial and ventricular arrhythmia. Given the importance of the autonomic nervous system in the pathophysiology of arrhythmias, there has been notable effort in the field to improve existing therapies and pioneer additional interventions directed at cardiac-autonomic targets. The interventions are targeted to multiple and different anatomic targets across the neurocardiac axis. The purpose of this review is to provide an overview of the rationale for neuromodulation in the treatment of arrhythmias and to review the specific treatments under evaluation and development for the treatment of both atrial fibrillation and ventricular arrhythmias.
Collapse
Key Words
- AERP, atrial effective refractory period
- AF, atrial fibrillation
- AGP, autonomic ganglionic plexus
- ANS, autonomic nervous system
- CABG, coronary artery bypass grafting
- HRV, heart rate variability
- ICD, implantable cardioverter-defibrillator
- LLVNS, low-level vagal nerve stimulation
- OSA, obstructive sleep apnea
- POAF, post-operative atrial fibrillation
- PVI, pulmonary vein isolation
- RDN, renal denervation
- SCS, spinal cord stimulation
- SGB, stellate ganglion blockade
- SNS, sympathetic nervous system
- VF, ventricular fibrillation
- VNS, vagal nerve stimulation
- VT, ventricular tachycardia
- arrhythmia
- atrial fibrillation
- autonomic nervous system
- ganglionated plexi
- neuromodulation
- ventricular arrhythmias
Collapse
Affiliation(s)
- Nathan H Waldron
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|