1
|
Gonzales CR, Moca EN, Chandra PK, Busija DW, Rutkai I. Three-dimensional object geometry of mitochondria-associated signal: 3-D analysis pipeline for two-photon image stacks of cerebrovascular endothelial mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H1291-H1303. [PMID: 38517228 PMCID: PMC11630827 DOI: 10.1152/ajpheart.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Increasing evidence indicates the role of mitochondrial and vascular dysfunction in aging and aging-associated pathologies; however, the exact mechanisms and chronological processes remain enigmatic. High-energy demand organs, such as the brain, depend on the health of their mitochondria and vasculature for the maintenance of normal functions, therefore representing vulnerable targets for aging. This methodology article describes an analysis pipeline for three-dimensional (3-D) mitochondria-associated signal geometry of two-photon image stacks of brain vasculature. The analysis methods allow the quantification of mitochondria-associated signals obtained in real time in their physiological environment. In addition, signal geometry results will allow the extrapolation of fission and fusion events under normal conditions, during aging, or in the presence of different pathological conditions, therefore contributing to our understanding of the role mitochondria play in a variety of aging-associated diseases with vascular etiology.NEW & NOTEWORTHY Analysis pipeline for 3-D mitochondria-associated signal geometry of two-photon image stacks of brain vasculature.
Collapse
Affiliation(s)
- Christopher R Gonzales
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Eric N Moca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Jahan J, Joshi S, Oca IMD, Toelle A, Lopez-Yang C, Chacon CV, Beyer AM, Garcia CA, Jarajapu YP. The role of telomerase reverse transcriptase in the mitochondrial protective functions of Angiotensin-(1-7) in diabetic CD34 + cells. Biochem Pharmacol 2024; 222:116109. [PMID: 38458330 PMCID: PMC11007670 DOI: 10.1016/j.bcp.2024.116109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Angiotensin (Ang)-(1-7) stimulates vasoprotective functions of diabetic (DB) CD34+ hematopoietic stem/progenitor cells partly by decreasing reactive oxygen species (ROS), increasing nitric oxide (NO) levels and decreasing TGFβ1 secretion. Telomerase reverse transcriptase (TERT) translocates to mitochondria and regulates ROS generation. Alternative splicing of TERT results in variants α-, β- and α-β-TERT, which may oppose functions of full-length (FL) TERT. This study tested if the protective functions of Ang-(1-7) or TGFβ1-silencing are mediated by mitoTERT and that diabetes decreases FL-TERT expression by inducing splicing. CD34+ cells were isolated from the peripheral blood mononuclear cells of nondiabetic (ND, n = 68) or DB (n = 74) subjects. NO and mitoROS levels were evaluated by flow cytometry. TERT splice variants and mitoDNA-lesions were characterized by qPCR. TRAP assay was used for telomerase activity. Decoy peptide was used to block mitochondrial translocation (mitoXTERT). TERT inhibitor or mitoXTERT prevented the effects of Ang-(1-7) on NO or mitoROS levels in DB-CD34+ cells. FL-TERT expression and telomerase activity were lower and mitoDNA-lesions were higher in DB cells compared to ND and were reversed by Ang-(1-7) or TGFβ1-silencing. The prevalence of TERT splice variants, with predominant β-TERT expression, was higher and the expression of FL-TERT was lower in DB cells (n = 25) compared to ND (n = 30). Ang-(1-7) or TGFβ1-silencing decreased TERT-splicing and increased FL-TERT. Blocking of β-splicing increased FL-TERT and protected mitoDNA in DB-cells. The findings suggest that diabetes induces TERT-splicing in CD34+ cells and that β-TERT splice variant largely contributes to the mitoDNA oxidative damage.
Collapse
Affiliation(s)
- Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Andrew Toelle
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | | | - Andreas M Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
3
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
4
|
Rutkai I, Merdzo I, Wunnava S, McNulty C, Chandra PK, Katakam PV, Busija DW. Detrimental effects of transient cerebral ischemia on middle cerebral artery mitochondria in female rats. Am J Physiol Heart Circ Physiol 2022; 323:H1343-H1351. [PMID: 36367688 PMCID: PMC9744641 DOI: 10.1152/ajpheart.00346.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial numbers and dynamics in brain blood vessels differ between young male and female rats under physiological conditions, but how these differences are affected by stroke is unclear. In males, we found that mitochondrial numbers, possibly due to mitochondrial fission, in large middle cerebral arteries (MCAs) increased following transient middle cerebral artery occlusion (tMCAO). However, mitochondrial effects of stroke on MCAs of female rats have not been studied. To address this disparity, we conducted morphological, biochemical, and functional studies using electron microscopy, Western blot, mitochondrial respiration, and Ca2+ sparks activity measurements in MCAs of female, naïve or sham Sprague-Dawley rats before and 48 h after 90 min of tMCAO. Adverse changes in mitochondrial characteristics and the relationship between mitochondria and sarcoplasmic reticulum (SR) in MCAs were present on both sides. However, mitochondria and mitochondrial/SR associations were often within the range of normal appearance. Mitochondrial protein levels were similar between ipsilateral (ipsi) and contralateral (contra) sides. Nonrespiratory oxygen consumption, maximal respiration, and spare respiratory capacity were similar between ipsi and contra but were reduced compared with sham. Basal respiration, proton leak, and ATP production were similar among MCAs. Ca2+ sparks activity increased in sham and ipsi MCAs exposed to a mitochondrial ATP-sensitive potassium channel opener: diazoxide. Our results show that tMCAO has effects on mitochondria in MCAs on both the ipsi and contra sides. Mitochondrial responses of cerebral arteries to tMCAO in females are substantially different from responses seen previously in male rats suggesting the need for specific sex-based therapies.NEW & NOTEWORTHY We propose that differences in mitochondrial characteristics of males and females, including mitochondrial morphology, respiration, and calcium sparks activity contribute to sex differences in protective and repair mechanisms in response to transient ischemia-reperfusion.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sanjay Wunnava
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Catherine McNulty
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| |
Collapse
|
5
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|
6
|
Associations between serum mitokine levels and outcomes in stable COPD: an observational prospective study. Sci Rep 2022; 12:17315. [PMID: 36243733 PMCID: PMC9569360 DOI: 10.1038/s41598-022-21757-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Mitokines (Humanin (HN), GDF15 and FGF21) are produced as a result of mitochondrial dysfunction and may have major roles in chronic inflammation, malnutrition and exercise capacity in people with COPD. Except for GDF15, studies on this subject are lacking. A total of 165 patients with stable COPD and 49 smokers without COPD were enrolled. We assessed their serum mitokine levels and clinical characteristics at baseline. We recorded moderate and severe exacerbation for the next 12 months. Baseline serum HN (p = 0.037) and GDF-15 (p = 0.013) levels were higher in the COPD group. High HN levels were independently associated with a high risk of exacerbation (HRE) (OR 2.798, 95% CI 1.266-6.187, p = 0.011), malnutrition (OR 6.645, 95% CI 1.859-23.749, p = 0.004), and 6MWD (OR 0.995, 95% CI 0.991-0.999, p = 0.008), and future moderate (HR 1.826, 95% CI 1.181-2.822, p = 0.007) and severe exacerbations (HR 3.445, 95% CI 1.357-8.740, p = 0.009). High GDF15 levels were associated with HRE (OR 3.028, 95% CI 1.134-8.083, p = 0.027), 6MWD (OR 0.995, 95% CI 0.990-0.999, p = 0.017) and predicted desaturation in 6MWT (OR 3.999, 95% CI 1.487-10.757, p = 0.006). High FGF21 levels were associated with HRE (OR 2.144, 95% CI 1.000-4.600, p = 0.05), and predicted future severe exacerbation (HR 4.217, 95% CI 1.459-12.193, p = 0.008). The mitokine levels were higher in patients with COPD than smokers without COPD, and were associated with important clinical outcomes such as exercise capacity and COPD exacerbation. Among the mitokines, HN showed the strongest association with COPD and may serve as a future risk biomarker in this disease.Trial registation NCT04449419.
Collapse
|
7
|
Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T, Babu JR. Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in Diabetes Mellitus and Alzheimer's disease. Pharmacol Res 2021; 171:105783. [PMID: 34302976 DOI: 10.1016/j.phrs.2021.105783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Diabetes and Alzheimer's disease are common chronic illnesses in the United States and lack clearly demonstrated therapeutics. Mitochondria, the "powerhouse of the cell", is involved in the homeostatic regulation of glucose, energy, and reduction/oxidation reactions. The mitochondria has been associated with the etiology of metabolic and neurological disorders through a dysfunction of regulation of reactive oxygen species. Mitochondria-targeted chemicals, such as the Szeto-Schiller-31 peptide, have advanced therapeutic potential through the inhibition of oxidative stress and the restoration of normal mitochondrial function as compared to traditional antioxidants, such as vitamin E. In this article, we summarize the pathophysiological relevance of the mitochondria and the beneficial effects of Szeto-Schiller-31 peptide in the treatment of Diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Hadeel Aldhowayan
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
8
|
Wu Y, Ding Y, Ramprasath T, Zou MH. Oxidative Stress, GTPCH1, and Endothelial Nitric Oxide Synthase Uncoupling in Hypertension. Antioxid Redox Signal 2021; 34:750-764. [PMID: 32363908 PMCID: PMC7910417 DOI: 10.1089/ars.2020.8112] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Significance: Hypertension has major health consequences, which is associated with endothelial dysfunction. Endothelial nitric oxide synthase (eNOS)-produced nitric oxide (NO) signaling in the vasculature plays an important role in maintaining vascular homeostasis. Considering the importance of NO system, this review aims to provide a brief overview of the biochemistry of members of NO signaling, including GTPCH1 [guanosine 5'-triphosphate (GTP) cyclohydrolase 1], tetrahydrobiopterin (BH4), and eNOS. Recent Advances: Being NO signaling activators and regulators of eNOS signaling, BH4 treatment is getting widespread attention either as potential therapeutic agents or as preventive agents. Recent clinical trials also support that BH4 treatment could be considered a promising therapeutic in hypertension. Critical Issues: Under conditions of BH4 depletion, eNOS-generated superoxides trigger pathological events. Abnormalities in NO availability and BH4 deficiency lead to disturbed redox regulation causing pathological events. This disturbed signaling influences the development of systemic hypertension as well as pulmonary hypertension. Future Directions: Considering the importance of BH4 and NO to improve the translational significance, it is essential to continue research on this field to manipulate BH4 to increase the efficacy for treating hypertension. Thus, this review also examines the current state of knowledge on the effects of eNOS activators on preclinical models and humans to utilize this information for potential therapy.
Collapse
Affiliation(s)
- Yin Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
GSTM1-null allele predicts rapid disease progression in nondialysis patients and mortality among South Indian ESRD patients. Mol Cell Biochem 2020; 469:21-28. [PMID: 32304007 DOI: 10.1007/s11010-020-03724-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/20/2020] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is one of the main causes of early death in humans worldwide. Glutathione S-Transferases (GSTs) are involved in a series of xenobiotics metabolism and free radical scavenging. The previous studies elucidated the interlink between GST variants and to the development of various diseases. The present case-control study performed to ascertain whether GST polymorphisms are associated with the incidence and advancement of CKD. From the Southern part of India, a total of 392 CKD patients (nondialysis, ND; n = 170, end-stage renal disease, ESRD; n = 222) and 202 healthy individuals were enrolled. Patients were followed-up for 70 months. Serum biochemical parameters were recorded, and the extraction of DNA was done from the patient's blood samples. To genotype study participants, multiplex PCR for GSTM1/T1 was performed. Statistical analysis was carried out to analyze the relationship between gene frequency and sonographic grading, as well as biochemical parameters for disease development. The GSTM1-null genotype showed threefold increased risk (OR = 2.9304; 95% CI 1.8959 to 4.5296; P < 0.0001) to CKD development and twofold increased risk (OR = 1.8379; 95% CI 1.1937 to 2.8299; P = 0.0057) to ESRD progression. During the mean follow-up of 41 months study, multivariate Cox regression analysis revealed that GSTM1-null genotype has 4 times increased the risk for all-cause rapid disease progression to ESRD among ND patients and 3.85-fold increased risk for death among ESRD patients. Survival analysis revealed that patients with GSTM1-present allele showed a significantly diminished risk of mortality compared to patients bearing the GSTM1-null allele among ESRD patients with a hazard ratio of 4.6242 (P < 0.0001). Thus, present data confirm that GSTM1-null genotype increased the risk for all-cause rapid disease progression to ESRD among ND patients. Based on our results, GSTM1-null genotype could be considered as a significant predictor for causing mortality among CKD patients when compared to all other variables.
Collapse
|