1
|
Tomita Y, Tagawa K, Nishiyasu T, Fujii N. Alternate local skin cooling and heating ameliorates impaired forearm skin vasodilation function mediated by prolonged sitting. Microvasc Res 2025; 159:104795. [PMID: 39954719 DOI: 10.1016/j.mvr.2025.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/26/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Prolonged sitting can impair physiological functions. We hypothesized that prolonged sitting attenuates forearm cutaneous vascular function but alternating local skin cooling and heating mitigates this attenuation. Eleven young adults (five women) sat for 75 min in thermoneutral condition (25 °C) during which skin temperature at four forearm skin sites was modulated: 1) maintained at 33 °C (control), 2) reduced to 15 °C for 4 min, then rised to 40 °C, repeated 5 times, 3) maintained at 33 °C for 4 min, then rised to 40 °C for 4 min, repeated 5 times or 4) elevated to 40 °C. Before and after 75-min prolonged sitting, venoarteriolar reflex (VAR) was assessed by a reduction in cutaneous blood flow (laser Doppler flowmetry) mediated by venous occlusion, whereas post-occlusive reactive hyperemia (PORH) was assessed by increases in cutaneous blood flow following arterial occlusion. After prolonged sitting, PORH decreased at the control (mean with 95%CI: 40.2 [34.5, 45.9] %max vs. 26.3 [19.3, 33.3] %max P < 0.001), but this response was not seen at the site subjected to alternating 15 °C cooling and 40 °C heating (P = 0.983). VAR remained unchanged before and after prolonged sitting at the control (P = 0.990), but increased with 15 °C cooling and 40 °C heating (-47.8 [-61.6, -34.1] %baseline vs. -68.0 [-75.3, -60.7] %baseline P = 0.029). We show that prolonged sitting decreases forearm cutaneous vasodilation function (PORH), but this response is mitigated by alternating local skin cooling and heating. Additionally, prolonged sitting does not affect forearm cutaneous VAR, but alternating local skin cooling and heating enhances VAR.
Collapse
Affiliation(s)
- Yudai Tomita
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Kaname Tagawa
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan; Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba City, Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan; Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba City, Japan.
| |
Collapse
|
2
|
Tamiya H, Hotta K, Hoshiai M, Kurosawa Y, Hamaoka T, Tsubaki A. Leg fidgeting alleviates reduced oxygen extraction in the gastrocnemius muscle caused by prolonged sitting: a randomized crossover trial. Eur J Appl Physiol 2025; 125:469-481. [PMID: 39312008 DOI: 10.1007/s00421-024-05613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/10/2024] [Indexed: 02/16/2025]
Abstract
PURPOSE Oxygen extraction in skeletal muscle is an important determinant of exercise tolerance. Prolonged sitting decreases oxygen extraction in the gastrocnemius muscle. However, the underlying mechanism remains unknown, and preventive measures are yet to be established. Therefore, we aimed to elucidate the mechanism by which prolonged sitting decreased muscle oxygen extraction and investigate preventive measures. METHODS Ten healthy young males (age 21.2 ± 0.4 years; body mass index, 20.5 ± 1.3 kg/m2) were randomly assigned to each of the following conditions: 3-h supine (CON), 3-h sitting (SIT), and 3-h fidgeting of one lower leg during sitting (FID). Oxygen extraction from the gastrocnemius muscle was measured using near-infrared spectroscopy and the vascular occlusion test under each condition. The rate of change in total Hb + Mb (THb) was measured as an indicator of venous stasis and interstitial fluid accumulation in the lower leg. RESULTS Muscle oxygen extraction was significantly lower at 180 min for SIT and FID than for CON (4384.2 ± 1426.8; 5281.5 ± 1823.7; 6517.4 ± 1390.8 a.u., respectively) and significantly higher for FID than for SIT (5281.5 ± 1823.7 vs. 4384.2 ± 1426.8 a.u., respectively). The rate of THb change was significantly higher at 180 min for SIT than for CON and FID (12.9 ± 15.1; -2.3 ± 5.7; 2.2 ± 11.6%, respectively). However, no significant difference was observed between CON and FID. CONCLUSION We found that 3-h prolonged sitting reduced oxygen extraction in the gastrocnemius muscles due to reduced oxygen supply to capillaries and increased distance between capillaries and myocytes. However, leg fidgeting alleviated this effect in healthy young males. TRIAL REGISTRATION NUMBER UMIN000050531 (March 8, 2023).
Collapse
Affiliation(s)
- Hajime Tamiya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Kazuki Hotta
- Department of Rehabilitation Sciences, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Megumi Hoshiai
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University, Nikko Medical Center, Nikko, Tochigi, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
3
|
Saito S, Dora K, Karaki M, Kunimatsu N, Tsukamoto H, Sugawara J, Iwamoto E, Ogoh S. Prolonged sitting is not associated with altered shear-mediated dilation of the internal carotid artery, despite impairing lower limb endothelial function. Physiol Rep 2025; 13:e70097. [PMID: 39878625 PMCID: PMC11776389 DOI: 10.14814/phy2.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 01/31/2025] Open
Abstract
The present study aims to examine the effect of 4 h of continuous sitting on cerebral endothelial function, which is a crucial component of cerebral blood flow regulation. We hypothesized that 4 h of sitting may impair cerebral endothelial function similarly to how it affects lower limb vasculature. Thirteen young, healthy participants were instructed to remain seated for 4 h without moving their lower limbs. The blood flow and shear rate (SR) in the popliteal and internal carotid artery (ICA) were measured using duplex Doppler ultrasound. During the 4-h sitting, peripheral (popliteal artery) and cerebral (ICA) endothelial function were assessed every hour. We induced peripheral and cerebral flow-mediated dilation (pFMD and ICA FMD) using hyperemia (5 min of cuff inflation on lower limb, then deflation) or hypercapnia (30s of hypercapnia, end-tidal partial pressure of CO2 + 9 mmHg), respectively. We then calculated each relative peak dilation from the baseline diameter to identify both pFMD and ICA FMD. We observed a significant decrease in pFMD starting at 2 h from the onset of sitting, and this reduction persisted throughout the 4-h sitting [Base (6.8 ± 4.2%) vs. 2-h (3.9 ± 2.0%), p = 0.044; vs. 3-h (3.2 ± 1.8%), p = 0.016; vs. 4-h (3.2 ± 1.9%), p = 0.005]. In contrast, during the 4-h sitting, ICA blood flow, SR, and ICA FMD remained unchanged (p = 0.062, p = 0.068, and p = 0.203, respectively). Unlike peripheral endothelial function, cerebral endothelial function remained stable during 4-h sitting. This suggests that the acute effect of prolonged sitting on cerebral vasculature differs from that of lower limb vasculature.
Collapse
Affiliation(s)
- Shotaro Saito
- Department of Biomedical EngineeringToyo UniversitySaitamaJapan
| | - Kento Dora
- Department of Biomedical EngineeringToyo UniversitySaitamaJapan
| | - Marino Karaki
- Graduate School of Health and Sport SciencesChukyo UniversityAichiJapan
| | | | | | - Jun Sugawara
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyIbarakiJapan
| | - Erika Iwamoto
- School of Health SciencesSapporo Medical UniversitySapporoHokkaidoJapan
| | - Shigehiko Ogoh
- Department of Biomedical EngineeringToyo UniversitySaitamaJapan
- Neurovascular Research LaboratoryUniversity of South WalesPontypriddUK
| |
Collapse
|
4
|
Carr JMJR, Ainslie PN, Day T. Confined spaces in space: Cerebral implications of chronic elevations of inspired carbon dioxide and implications for long-duration space travel. Exp Physiol 2025. [PMID: 39776002 DOI: 10.1113/ep091659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Cerebrovascular regulation is critically dependent upon the arterial partial pressure of carbon dioxide (P aC O 2 ${P_{{\mathrm{aC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ), owing to its effect on cerebral blood flow, tissueP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , tissue proton concentration, cerebral metabolism and cognitive and neuronal function. In normal environments and in the absence of pathology, at least over acute time frames, hypercapnia is usually managed readily via the respiratory chemoreflex arcs and/or acid-base buffering capacity, such that there is minimal impact on cerebrovascular and neurological function. However, in non-normal environments, such as enclosed spaces, or with pathology, extended exposures to elevations inP aC O 2 ${P_{{\mathrm{aC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ can be detrimental to cerebral health. Given the direct effect of protons on cellular function, even if pH is normalized, it is feasible that higher proton concentrations could still produce detrimental effects. Although it seems that humans can work safely in mildly hypercapnic environments for extended periods, chronic respiratory acidosis can cause bone demineralization, renal calcification, perinatal developmental abnormalities, systemic inflammation and impairments in cognitive function and visuomotor skills and can produce cerebral acidosis, potentially inducing sustained alterations in cerebral function. With the advancement of new initiatives in spaceflight, including proposed long-duration missions to Mars, the study of the effects of chronic inspired CO2 on human health is relevant. In this review, we draw on evidence from preclinical, physiological and clinical research in humans to summarize the cerebral ramifications of prolonged and chronic exposures to elevated partial pressures of inspired CO2 and respiratory acidosis.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Trevor Day
- Department of Biology, Mount Royal University, Calgary, AB, Canada
| |
Collapse
|
5
|
Moinuddin A, Stone K, Turner L, Paterson C, Hall N, Daykin A, Lucas S, Faulkner J, Fryer S. The impact of uninterrupted sitting on central and peripheral cardiovascular function in pre-menopausal and post-menopausal women. Eur J Appl Physiol 2024; 124:3021-3029. [PMID: 38801445 DOI: 10.1007/s00421-024-05502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Independently, both prolonged uninterrupted sitting and the onset of menopause negatively impact markers of cardiovascular risk. Whether their combination augment these responses additively remains unknown. This study assessed whether prolonged uninterrupted sitting causes greater central and peripheral cardiovascular dysfunction in post-menopausal women compared to pre-menopausal women. To address this, 23 healthy women (13 pre-menopausal [43.77 ± 4.30 years] and 10 post-menopausal [57.20 ± 8.55 years]) sat uninterrupted for 2-h. Carotid-femoral pulse wave velocity (cf-PWV), pulse wave analysis (PWA), lower limb venous pooling (HHb), and calf circumference were assessed pre-and post-sitting using general linear mixed models, with age as a covariate. Changes in MAP over time (both between and within groups) was assessed using a two-way repeated-measures-ANOVA. There were no significant interactions for any outcome measures. However, for cf-PWV, there was a significant main effect of group (Δ = 0.854 ± 0.354 m s-1; p = 0.026, ηp2 = 0.707). For PWA, only heart rate (HR) and pressure forwards (Pf) showed significant main effects 13 of time [Δ = 6 ± 1 bts-min-1, p < 0.001, ηp2 = 0.861] and group [Δ = 3.893 ± 1.450 mmHg, p = 0.016, ηp2 = 0.271], respectively. Both HHb (Δ = 2.737 ± 0.952, p = 0.009, ηp2 = 0.742) and calf circumference (Δ = 0.812 ± 0.128 cm, p < 0.001, ηp2 = 0.863) significantly increased over time. Whilst post-menopausal women demonstrated greater overall arterial stiffness (increased cf-PWV at baseline), there was no difference in cardiovascular response (central or peripheral) to 2-h of prolonged sitting between the pre- and post-menopausal women.
Collapse
Affiliation(s)
- Arsalan Moinuddin
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, UK.
| | - Keeron Stone
- Centre for Cardiovascular Health and Ageing, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- National Cardiovascular Research Network, Wales, UK
| | - Louise Turner
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, UK
| | - Craig Paterson
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Nicky Hall
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, UK
| | - Anne Daykin
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, UK
| | - Sam Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - James Faulkner
- School of Sport, Health and Community, University of Winchester, Winchester, UK
| | - Simon Fryer
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, UK
| |
Collapse
|
6
|
Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Sitting leg vasculopathy: potential adaptations beyond the endothelium. Am J Physiol Heart Circ Physiol 2024; 326:H760-H771. [PMID: 38241008 PMCID: PMC11221807 DOI: 10.1152/ajpheart.00489.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
Increased sitting time, the most common form of sedentary behavior, is an independent risk factor for all-cause and cardiovascular disease mortality; however, the mechanisms linking sitting to cardiovascular risk remain largely elusive. Studies over the last decade have led to the concept that excessive time spent in the sitting position and the ensuing reduction in leg blood flow-induced shear stress cause endothelial dysfunction. This conclusion has been mainly supported by studies using flow-mediated dilation in the lower extremities as the measured outcome. In this review, we summarize evidence from classic studies and more recent ones that collectively support the notion that prolonged sitting-induced leg vascular dysfunction is likely also attributable to changes occurring in vascular smooth muscle cells (VSMCs). Indeed, we provide evidence that prolonged constriction of resistance arteries can lead to modifications in the structural characteristics of the vascular wall, including polymerization of actin filaments in VSMCs and inward remodeling, and that these changes manifest in a time frame that is consistent with the vascular changes observed with prolonged sitting. We expect this review will stimulate future studies with a focus on VSMC cytoskeletal remodeling as a potential target to prevent the detrimental vascular ramifications of too much sitting.
Collapse
Affiliation(s)
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
7
|
Bryans CG, Gopaul J, Athaide CE, Pugh CJA, Au JS. The influence of physical activity and sex on carotid artery longitudinal wall motion in younger healthy adults. Appl Physiol Nutr Metab 2024; 49:385-394. [PMID: 37963352 DOI: 10.1139/apnm-2023-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Carotid artery longitudinal wall motion (CALM) is a novel preclinical marker for atherosclerosis that describes the axial anterograde and retrograde motion of the intima-media complex. While regular physical activity and sex are known to independently influence arterial stiffness, their roles on axial arterial wall behaviour are unknown. The purpose of this study is to examine whether physical activity and sex impact CALM. We hypothesized that CALM retrograde displacement and total amplitude would be greater in females and active individuals, as a function of arterial stiffness. Fifty-seven young healthy adults (30 females; aged 22 ± 3 years) were evaluated for CALM outcomes and arterial stiffness and grouped by physical activity based on active (V̇O2 = 44.2 ± 8.9 mL/kg/min) or sedentary (V̇O2 = 33.7 ± 6.7 mL/kg/min) lifestyles defined by the Canadian 24-Hour Movement Guidelines. Arterial stiffness and CALM were measured by carotid-femoral pulse wave velocity (cfPWV) and vascular ultrasound at the right common carotid artery with speckle tracking analysis, respectively. cfPWV was greater in males (p < 0.01) with no interaction between sex and physical activity (p = 0.90). CALM anterograde displacement was greater in males (p = 0.03) resulting in a forward shift in total CALM pattern, which became less prominent when controlling for mean arterial pressure (p = 0.06). All other CALM outcomes were not different between activity and sex. V̇O2max was not correlated to any CALM outcome (all p > 0.05). Apparent sex differences in vascular function extend to novel CALM outcomes but may be confounded by blood pressure. We recommend sex-balanced design and reporting in future studies due to possible anterograde-shifted CALM patterns in healthy males.
Collapse
Affiliation(s)
- Carol G Bryans
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Josh Gopaul
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Chloe E Athaide
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Christopher J A Pugh
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jason S Au
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| |
Collapse
|
8
|
Tamiya H, Hoshiai M, Abe T, Watanabe H, Fujii Y, Tsubaki A. Prolonged Sitting Induces Elevated Blood Pressure in Healthy Young Men: A Randomized Crossover Trial. Cureus 2024; 16:e55224. [PMID: 38558663 PMCID: PMC10981358 DOI: 10.7759/cureus.55224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Prolonged sitting-induced blood pooling in the lower legs can increase blood pressure through increased sympathetic nerve activity and peripheral vascular resistance, an aspect that has been understudied as a primary outcome. This study compared the effects of prolonged sitting with those of prolonged supination on blood pressure in healthy young men. Methods This randomized crossover study included 16 healthy young men (mean age: 21.6 ± 0.7 years) who were randomly assigned to a three-hour supine (CON) or three-hour sitting (SIT) condition, followed by a washout period of at least one week. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), low-frequency/high-frequency (LF/HF) ratio derived from heart rate variability, and leg circumference were measured at 60, 120, and 180 minutes from baseline. These indices were compared by two-way (time × conditions) analysis of variance (ANOVA). Results In the SIT condition, DBP, MAP, HR, LF/HF ratio, and leg circumference increased significantly over time (P < 0.05) and were significantly higher than those in the CON condition (P < 0.05). However, SBP showed no significant change over time and between conditions. Conclusions The findings indicate the involvement of sympathetic nerve activity and increased peripheral vascular resistance induced by fluid retention in the lower legs with increased DBP and MAP in healthy young men.
Collapse
Affiliation(s)
- Hajime Tamiya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, JPN
| | - Megumi Hoshiai
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Nikko, JPN
| | - Takuya Abe
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, JPN
| | - Hiroaki Watanabe
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, JPN
| | - Yutaka Fujii
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, JPN
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, JPN
| |
Collapse
|
9
|
Adams NT, Paterson C, Poles J, Higgins S, Stoner L. The Effect of Sitting Duration on Peripheral Blood Pressure Responses to Prolonged Sitting, With and Without Interruption: A Systematic Review and Meta-Analysis. Sports Med 2024; 54:169-183. [PMID: 37682412 PMCID: PMC10872309 DOI: 10.1007/s40279-023-01915-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND A previous meta-analysis reported that: (i) an acute bout of prolonged uninterrupted sitting induces a significant increase in peripheral blood pressure (BP) and (ii) the increase in BP can be offset by interrupting the sitting bout with light aerobic activities such as walking. However, the temporal association between prolonged uninterrupted sitting and BP was not determined. A better understanding of temporality, for example, how long it takes BP to increase, will assist in prescribing sitting interruption strategies. OBJECTIVES We aimed to determine: (1) the temporal association between the duration of uninterrupted sitting and BP and (2) whether regular sitting interruptions moderate the association between uninterrupted sitting and BP. DATA SOURCES Electronic databases (PubMed, Web of Science, SPORTDiscus) were searched from inception to July 2022. Reference lists of eligible studies and relevant reviews were also screened. STUDY SELECTION Inclusion criteria for objective (1) were: (i) participants aged ≥ 18 years; (ii) a prolonged sitting bout ≥ 1 h; and (iii) peripheral BP measurements (systolic BP, diastolic BP, and/or mean arterial pressure) at more than two timepoints during the sitting bout. Additional criteria for objective (2) were: (i) the sitting interruption strategy was implemented during the sitting bout (i.e., not prior to engaging in sitting) and (ii) the study included a control (uninterrupted sitting) condition or group. APPRAISAL AND SYNTHESIS METHODS There were 1555 articles identified, of which 33 met inclusion criteria for objective (1). Of those articles, 20 met inclusion criteria for objective (2). To investigate the effect of sitting duration on the BP response, unstandardized b coefficients (mmHg/h) and 95% confidence intervals (CIs) were calculated using a three-level mixed-effect meta-regression. RESULTS Increased sitting duration was positively associated with systolic BP (b = 0.42 mmHg/h, 95% CI 0.18-0.60), diastolic BP (b = 0.24 mmHg/h, 95% CI 0.06-0.42), and mean arterial pressure (b = 0.66 mmHg/h, 95% CI 0.36-0.90). In trials where sitting was interrupted, there was a significant decrease in systolic BP (b = - 0.24 mmHg/h, 95% CI - 0.42 to - 0.06) and diastolic BP (b = - 0.24 mmHg/h, 95% CI - 0.42 to - 0.12), and a non-significant change in mean arterial pressure (p = 0.69). CONCLUSIONS Increased uninterrupted sitting duration results in greater increases in BP; however, regularly interrupting sitting may offset negative effects.
Collapse
Affiliation(s)
- Nathan T Adams
- School of Health and Exercise Science, University of British Columbia, 1238 Discovery Ave, Kelowna, BC, V1V 1V9, Canada.
| | - Craig Paterson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jillian Poles
- Vilcek Institute of Graduate Biomedical Sciences, New York University, New York, NY, USA
| | - Simon Higgins
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Anderson CP, Park SY. Attenuated reactive hyperemia after prolonged sitting is associated with reduced local skeletal muscle metabolism: insight from artificial intelligence. Am J Physiol Regul Integr Comp Physiol 2023; 325:R380-R388. [PMID: 37458376 PMCID: PMC10639015 DOI: 10.1152/ajpregu.00067.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
Blunted post-occlusive reactive hyperemia (PORH) after prolonged sitting (PS) has been used as evidence of microvascular dysfunction. However, it has not been determined if confounding variables are responsible for the reduction in PORH after PS. Therefore, the purpose of this study was to examine the PS-mediated changes in cardiovascular and metabolic factors that affect PORH using artificial intelligence (AI). We hypothesized that calf muscle metabolic rate (MMR) is attenuated after PS, which may reduce tissue hypoxia during an arterial occlusion (i.e., oxygen deficit) and PORH. Thirty-one subjects (male = 13, female = 18) sat for 2.5 h. A rapid-inflation cuff was placed around the thigh above the knee to generate an arterial occlusion. PORH was represented by the reoxygenation rate (RR) of the near-infrared spectroscopy (NIRS) tissue oxygenation index (TOI) after 5-min of arterial occlusion. An artificial intelligence model (AI) defined the stimulus-response relationship between the oxygen deficit (i.e., ΔTOI and TOI deficit), and RR with 65 previous PORH recordings. If the AI predicts the experimental RRs, then the change in RR is related to the change in the oxygen deficit. RR (Δ -0.27 ± 0.55 lnTOI%·s-1, P = 0.001), MMR (Δ -0.46 ± 0.61 lnTOI%·s-1, P < 0.001), ΔTOI (Δ -0.34 ± 0.62 lnTOI%, P < 0.001), and the TOI deficit (Δ -0.42 ± 0.68 lnTOI%·s, P < 0.001) were reduced after PS. In addition, strong linear associations were found between MMR and the TOI deficit (r2 = 0.900, P < 0.001) and ΔTOI (r2 = 0.871, P < 0.001). Furthermore, the AI accurately predicted the RRs pre- and post-PS (P = 0.471, P = 0.328, respectively). Therefore, blunted PORH after PS may be caused by attenuated MMR and not microvascular dysfunction.NEW & NOTEWORTHY Prolonged sitting reduces lower leg skeletal muscle metabolic rate in healthy individuals. Artificial intelligence revealed that impaired post-occlusive reactive hyperemia after prolonged sitting is related to a reduced stimulus for vasodilation and may not be evidence of microvascular dysfunction. Current post-occlusive reactive hyperemia protocols may be insufficient to assess micro- and macrovascular function after prolonged sitting.
Collapse
Affiliation(s)
- Cody P Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
11
|
Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, Dunstan DW. Physiology of sedentary behavior. Physiol Rev 2023; 103:2561-2622. [PMID: 37326297 PMCID: PMC10625842 DOI: 10.1152/physrev.00022.2022] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/10/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Sedentary behaviors (SB) are characterized by low energy expenditure while in a sitting or reclining posture. Evidence relevant to understanding the physiology of SB can be derived from studies employing several experimental models: bed rest, immobilization, reduced step count, and reducing/interrupting prolonged SB. We examine the relevant physiological evidence relating to body weight and energy balance, intermediary metabolism, cardiovascular and respiratory systems, the musculoskeletal system, the central nervous system, and immunity and inflammatory responses. Excessive and prolonged SB can lead to insulin resistance, vascular dysfunction, shift in substrate use toward carbohydrate oxidation, shift in muscle fiber from oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength and bone mass, and increased total body fat mass and visceral fat depot, blood lipid concentrations, and inflammation. Despite marked differences across individual studies, longer term interventions aimed at reducing/interrupting SB have resulted in small, albeit marginally clinically meaningful, benefits on body weight, waist circumference, percent body fat, fasting glucose, insulin, HbA1c and HDL concentrations, systolic blood pressure, and vascular function in adults and older adults. There is more limited evidence for other health-related outcomes and physiological systems and for children and adolescents. Future research should focus on the investigation of molecular and cellular mechanisms underpinning adaptations to increasing and reducing/interrupting SB and the necessary changes in SB and physical activity to impact physiological systems and overall health in diverse population groups.
Collapse
Affiliation(s)
- Ana J Pinto
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Audrey Bergouignan
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Paddy C Dempsey
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Neville Owen
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - David W Dunstan
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
12
|
Pekas EJ, Allen MF, Park SY. Prolonged sitting and peripheral vascular function: potential mechanisms and methodological considerations. J Appl Physiol (1985) 2023; 134:810-822. [PMID: 36794688 PMCID: PMC10042610 DOI: 10.1152/japplphysiol.00730.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Sitting time is associated with increased risks for subclinical atherosclerosis and cardiovascular disease development, and this is thought to be partially due to sitting-induced disturbances in macro- and microvascular function as well as molecular imbalances. Despite surmounting evidence supporting these claims, contributing mechanisms to these phenomena remain largely unknown. In this review, we discuss evidence for potential mechanisms of sitting-induced perturbations in peripheral hemodynamics and vascular function and how these potential mechanisms may be targeted using active and passive muscular contraction methods. Furthermore, we also highlight concerns regarding the experimental environment and population considerations for future studies. Optimizing prolonged sitting investigations may allow us to not only better understand the hypothesized sitting-induced transient proatherogenic environment but to also enhance methods and devise mechanistic targets to salvage sitting-induced attenuations in vascular function, which may ultimately play a role in averting atherosclerosis and cardiovascular disease development.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Michael F Allen
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| |
Collapse
|
13
|
Pekas EJ, Anderson CP, Park SY. Moderate dose of dietary nitrate improves skeletal muscle microvascular function in patients with peripheral artery disease. Microvasc Res 2023; 146:104469. [PMID: 36563997 PMCID: PMC11097165 DOI: 10.1016/j.mvr.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease characterized by compromised lower-extremity blood flow that impairs walking ability. We showed that a moderate dose of dietary nitrate in the form of beetroot juice (BRJ, 0.11 mmol/kg) can improve macrovascular function and maximal walking distance in patients with PAD. However, its impacts on the microcirculation and autonomic nervous system have not been examined. Therefore, we investigated the impacts of this dose of dietary nitrate on skeletal muscle microvascular function and autonomic nervous system function and further related these measurements to 6-min walking distance, pain-free walking distance, and exercise recovery in patients with PAD. Patients with PAD (n = 10) ingested either BRJ or placebo in a randomized crossover design. Heart rate variability, skeletal muscle microvascular function, and 6-min walking distance were performed pre- and post-BRJ and placebo. There were significant group × time interactions (P < 0.05) for skeletal muscle microvascular function, 6-min walking distance, and exercise recovery, but no changes (P > 0.05) in heart rate variability or pain-free walking distance were noted. The BRJ group demonstrated improved skeletal muscle microvascular function (∆ 22.1 ± 7.5 %·min-1), longer 6-min walking distance (Δ 37.5 ± 9.1 m), and faster recovery post-exercise (Δ -15.3 ± 4.2 s). Furthermore, changes in skeletal muscle microvascular function were positively associated with changes in 6-min walking distance (r = 0.5) and pain-free walking distance (r = 0.6). These results suggest that a moderate dose of dietary nitrate may support microvascular function, which is related to improvements in walking distance and claudication in patients with PAD.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Cody P Anderson
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Song-Young Park
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| |
Collapse
|
14
|
Daniele A, Lucas SJE, Rendeiro C. Detrimental effects of physical inactivity on peripheral and brain vasculature in humans: Insights into mechanisms, long-term health consequences and protective strategies. Front Physiol 2022; 13:998380. [PMID: 36237532 PMCID: PMC9553009 DOI: 10.3389/fphys.2022.998380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The growing prevalence of physical inactivity in the population highlights the urgent need for a more comprehensive understanding of how sedentary behaviour affects health, the mechanisms involved and what strategies are effective in counteracting its negative effects. Physical inactivity is an independent risk factor for different pathologies including atherosclerosis, hypertension and cardiovascular disease. It is known to progressively lead to reduced life expectancy and quality of life, and it is the fourth leading risk factor for mortality worldwide. Recent evidence indicates that uninterrupted prolonged sitting and short-term inactivity periods impair endothelial function (measured by flow-mediated dilation) and induce arterial structural alterations, predominantly in the lower body vasculature. Similar effects may occur in the cerebral vasculature, with recent evidence showing impairments in cerebral blood flow following prolonged sitting. The precise molecular and physiological mechanisms underlying inactivity-induced vascular dysfunction in humans are yet to be fully established, although evidence to date indicates that it may involve modulation of shear stress, inflammatory and vascular biomarkers. Despite the steady increase in sedentarism in our societies, only a few intervention strategies have been investigated for their efficacy in counteracting the associated vascular impairments. The current review provides a comprehensive overview of the evidence linking acute and short-term physical inactivity to detrimental effects on peripheral, central and cerebral vascular health in humans. We further examine the underlying molecular and physiological mechanisms and attempt to link these to long-term consequences for cardiovascular health. Finally, we summarize and discuss the efficacy of lifestyle interventions in offsetting the negative consequences of physical inactivity.
Collapse
Affiliation(s)
- Alessio Daniele
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Catarina Rendeiro,
| |
Collapse
|
15
|
Liu Z, Zhou C, Wang H, He Y. Blood pressure monitoring techniques in the natural state of multi-scenes: A review. Front Med (Lausanne) 2022; 9:851172. [PMID: 36091712 PMCID: PMC9462511 DOI: 10.3389/fmed.2022.851172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Blood pressure is one of the basic physiological parameters of human physiology. Frequent and repeated measurement of blood pressure along with recording of environmental or other physiological parameters when measuring blood pressure may reveal important cardiovascular risk factors that can predict occurrence of cardiovascular events. Currently, wearable non-invasive blood pressure measurement technology has attracted much research attention. Several different technical routes have been proposed to solve the challenge between portability or continuity of measurement methods and medical level accuracy of measurement results. The accuracy of blood pressure measurement technology based on auscultation and oscillography has been clinically verified, while majority of other technical routes are being explored at laboratory or multi-center clinical demonstration stage. Normally, Blood pressure measurement based on oscillographic method outside the hospital can only be measured at intervals. There is a need to develop techniques for frequent and high-precision blood pressure measurement under natural conditions outside the hospital. In this paper, we discussed the current status of blood pressure measurement technology and development trends of blood pressure measurement technology in different scenarios. We focuses on the key technical challenges and the latest advances in the study of miniaturization devices based on oscillographic method at wrist and PTT related method at finger positions as well as technology processes. This study is of great significance to the application of high frequency blood pressure measurement technology.
Collapse
Affiliation(s)
- Ziyi Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Guangdong Transtek Medical Electronics Co., Ltd., Zhongshan, China
| | - Congcong Zhou
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hongwei Wang
- Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Hongwei Wang,
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Yong He,
| |
Collapse
|
16
|
Association between physical activity levels and depressive symptoms in patients with minor ischemic stroke. J Stroke Cerebrovasc Dis 2022; 31:106641. [PMID: 35834937 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Post-stroke depression is associated with stroke recurrence and it is necessary to identify its influencing factors. The study aims to determine whether physical activity during hospitalization, as measured by accelerometer, was associated with depression after discharge in patients with minor ischemic stroke. MATERIALS AND METHODS This prospective observational study assessed 76 patients with minor ischemic stroke (aged 71.2 years) admitted to an acute care hospital. Depressive symptoms 3 months after discharge from the hospital was assessed using a questionnaire sent by mail. Baseline was set during hospitalization, and accelerometers were used to measure sedentary behavior, light and moderate-to-vigorous physical activities during hospitalization. RESULTS Three months after hospital discharge, 14 patients (18.4%) were placed in the depressive symptom group, with significantly more sedentary behavior (p = 0.021), less light physical activity (p = 0.016) and more depressive symptoms during hospitalization (p = 0.005) than in the non-depressive symptom group. Logistic regression analysis showed that sedentary behavior (odds ratio = 1.130, 95% confidence interval = 1.013‒1.281, p = 0.028) and light-intensity physical activity (odds ratio = 0.853, 95% confidence interval = 0.746‒0.976, p = 0.021) were independent factors for depressive symptoms at three months after discharge. Moderate to vigorous physical activity was not an independent factor. CONCLUSIONS Sedentary behavior and light-intensity physical activity during hospitalization were associated with depressive symptoms in patients with minor ischemic stroke after discharge. Reducing sedentary behavior and increasing light-intensity physical activity as part of inpatient rehabilitation may help prevent post-stroke depression.
Collapse
|
17
|
Park SY, Pekas EJ, Anderson CP, Kambis TN, Mishra PK, Schieber MN, Wooden TK, Thompson JR, Kim KS, Pipinos II. Impaired microcirculatory function, mitochondrial respiration, and oxygen utilization in skeletal muscle of claudicating patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2022; 322:H867-H879. [PMID: 35333113 PMCID: PMC9018007 DOI: 10.1152/ajpheart.00690.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease that impairs blood flow and muscle function in the lower limbs. A skeletal muscle myopathy characterized by mitochondrial dysfunction and oxidative damage is present in PAD; however, the underlying mechanisms are not well established. We investigated the impact of chronic ischemia on skeletal muscle microcirculatory function and its association with leg skeletal muscle mitochondrial function and oxygen delivery and utilization capacity in PAD. Gastrocnemius samples and arterioles were harvested from patients with PAD (n = 10) and age-matched controls (Con, n = 11). Endothelium-dependent and independent vasodilation was assessed in response to flow (30 μL·min-1), acetylcholine, and sodium nitroprusside (SNP). Skeletal muscle mitochondrial respiration was quantified by high-resolution respirometry, microvascular oxygen delivery, and utilization capacity (tissue oxygenation index, TOI) were assessed by near-infrared spectroscopy. Vasodilation was attenuated in PAD (P < 0.05) in response to acetylcholine (Con: 71.1 ± 11.1%, PAD: 45.7 ± 18.1%) and flow (Con: 46.6 ± 20.1%, PAD: 29.3 ± 10.5%) but not SNP (P = 0.30). Complex I + II state 3 respiration (P < 0.01) and TOI recovery rate were impaired in PAD (P < 0.05). Both flow and acetylcholine-mediated vasodilation were positively associated with complex I + II state 3 respiration (r = 0.5 and r = 0.5, respectively, P < 0.05). Flow-mediated vasodilation and complex I + II state 3 respiration were positively associated with TOI recovery rate (r = 0.8 and r = 0.7, respectively, P < 0.05). These findings suggest that chronic ischemia attenuates skeletal muscle arteriole endothelial function, which may be a key mediator for mitochondrial and microcirculatory dysfunction in the PAD leg skeletal muscle. Targeting microvascular dysfunction may be an effective strategy to prevent and/or reverse disease progression in PAD.NEW & NOTEWORTHY Ex vivo skeletal muscle arteriole endothelial function is impaired in claudicating patients with PAD, and this is associated with attenuated skeletal muscle mitochondrial respiration. In vivo skeletal muscle oxygen delivery and utilization capacity is compromised in PAD, and this may be due to microcirculatory and mitochondrial dysfunction. These results suggest that targeting skeletal muscle arteriole function may lead to improvements in skeletal muscle mitochondrial respiration and oxygen delivery and utilization capacity in claudicating patients with PAD.
Collapse
Affiliation(s)
- Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Cody P Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Molly N Schieber
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kyung Soo Kim
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
18
|
Park SY, Wooden TK, Pekas EJ, Anderson CP, Yadav SK, Slivka DR, Layec G. Effects of passive and active leg movements to interrupt sitting in mild hypercapnia on cardiovascular function in healthy adults. J Appl Physiol (1985) 2022; 132:874-887. [PMID: 35175102 PMCID: PMC8934680 DOI: 10.1152/japplphysiol.00799.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged sitting in a mild hypercapnic environment impairs peripheral vascular function. The effects of sitting interruptions using passive or active skeletal muscle contractions are still unclear. Therefore, we sought to examine the vascular effects of brief periods (2 min every half hour) of passive and active lower limb movement to interrupt prolonged sitting with mild hypercapnia in adults. Fourteen healthy adults (24 ± 2 yr) participated in three experimental visits sitting for 2.5 h in a mild hypercapnic environment (CO2 = 1,500 ppm): control (CON, no limb movement), passive lower limb movement (PASS), and active lower limb movement (ACT) during sitting. At all visits, brachial and popliteal artery flow-mediated dilation (FMD), microvascular function, plasmatic levels of nitrate/nitrite and endothelin-1, and heart rate variability were assessed before and after sitting. Brachial and popliteal artery FMDs were reduced in CON and PASS (P < 0.05) but were preserved (P > 0.05) in ACT. Microvascular function was blunted in CON (P < 0.05) but was preserved in PASS and ACT (P > 0.05). In addition, total plasma nitrate/nitrite was preserved in ACT (P > 0.05) but was reduced in CON and PASS (P < 0.05), and endothelin-1 levels were decreased in ACT (P < 0.05). Both passive and active movement induced a greater ratio between the low-frequency and high-frequency bands for heart rate variability (P < 0.05). For the first time, to our knowledge, we found that brief periods of passive leg movement can preserve microvascular function, but that an intervention that elicits larger increases in shear rate, such as low-intensity exercise, is required to fully protect both macrovascular and microvascular function and circulating vasoactive substance balance.NEW & NOTEWORTHY Passive leg movement could not preserve macrovascular endothelial function, whereas active leg movement could protect endothelial function. Attenuated microvascular function can be salvaged by passive movement and active movement. Preservation of macrovascular hemodynamics and plasma total nitrate/nitrite and endothelin-1 during prolonged sitting requires active movement. These findings dissociate the impacts induced by mechanical stress (passive movement) from the change in metabolism (active movement) on the vasculature during prolonged sitting in a mild hypercapnic environment.
Collapse
Affiliation(s)
- Song-Young Park
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - TeSean K. Wooden
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Elizabeth J. Pekas
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Cody P. Anderson
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Santosh K. Yadav
- 2Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dustin R. Slivka
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Gwenael Layec
- 3Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts,4Institute for Applied Life Sciences, Amherst, Massachusetts
| |
Collapse
|
19
|
Taylor FC, Pinto AJ, Maniar N, Dunstan DW, Green DJ. The Acute Effects of Prolonged Uninterrupted Sitting on Vascular Function: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2022; 54:67-76. [PMID: 34334722 DOI: 10.1249/mss.0000000000002763] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to determine the dose-response relationship between prolonged sitting and vascular function in healthy individuals and those with metabolic disturbances and to investigate the acute effects, on vascular function, of interventions that target interrupting prolonged sitting. DESIGN This is a systematic review with meta-analysis. DATA SOURCES Ovid Embase, Ovid Medline, PubMed, and CINAHL were searched from inception to 4 December 2020. ELIGIBILITY CRITERIA Randomized crossover trials, quasi-randomized trials, and parallel group trials where vascular function (flow-mediated dilation [FMD]) was assessed before and after an acute period of sedentary behavior was used in this study. RESULTS Prolonged sitting resulted in a significant decrease in the standardized mean change (SMC) for lower-limb FMD at the 120-min (SMC = -0.85, 95% confidence interval [CI] = -1.32 to -0.38) and 180-min (SMC = -1.18, 95% CI = -1.69 to -0.66) time points. A similar pattern was observed for lower-limb shear rate. No significant changes were observed for any outcomes in the upper limb. Subgroup analysis indicated that prolonged sitting decreased lower-limb FMD in healthy adults (SMC = -1.33, 95% CI = -1.89 to -0.78) who had higher a priori vascular endothelial function, but not in those with metabolic and vascular dysfunction (SMC = -0.51, 95% CI = -1.18 to 0.15). Interrupting sitting with active interruptions increased the standardized mean difference for FMD, relative to prolonged sitting, but it was not statistically significant (0.13, 95% CI = -0.20 to 0.45). CONCLUSIONS Lower-limb vascular function is progressively impaired as a consequence of prolonged sitting, up to 180 min. A similar trend was not observed in upper-limb vascular function. Subgroup analysis indicated that prolonged sitting negatively affects healthy populations, a finding not observed in those with metabolic disturbances. Regularly interrupting sitting with activity may be beneficial for those with metabolic disturbances.
Collapse
Affiliation(s)
| | - Ana J Pinto
- Applied Physiology and Nutrition Research Group, Laboratory of Assessment and Conditioning in Rheumatology, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, BRAZIL
| | | | | | - Daniel J Green
- Department of Exercise and Sport Science, School of Human Sciences, The University of Western Australia, Perth, AUSTRALIA
| |
Collapse
|
20
|
The Effects of Acute Exposure to Prolonged Sitting, with and Without Interruption, on Peripheral Blood Pressure Among Adults: A Systematic Review and Meta-Analysis. Sports Med 2021; 52:1369-1383. [PMID: 34932203 DOI: 10.1007/s40279-021-01614-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous reviews have shown that exposure to acute prolonged sitting can have detrimental effects on several cardiovascular and cardiometabolic health markers. However, to date, there has been no synthesis of peripheral blood pressure data (including systolic blood pressure, diastolic blood pressure and mean arterial pressure), an important and translatable marker of cardiovascular health. Similarly, no previous study has consolidated the effects of sitting interruptions on peripheral blood pressure. OBJECTIVES We aimed to (1) assess the effect of exposure to acute prolonged sitting on peripheral blood pressure and (2) determine the efficacy of sitting interruption strategies as a means of offsetting any negative effects. Subgroup analyses by age and interruption modality were performed to explore heterogeneity. DATA SOURCES Electronic databases (PubMed, Web of Science and, SPORTDiscus) were searched from inception to March 2021. Reference lists of eligible studies and relevant reviews were also screened. STUDY SELECTION Inclusion criteria for objective (1) were: (i) peripheral blood pressure was assessed non-invasively in the upper limb pre-sitting and post-sitting; (ii) studies were either randomised controlled, randomised crossover or quasi-experimental pre-test vs post-test trials; (iii) the sitting period was ≥ 1 h; (iv) pre-sitting and post-sitting measures were performed in the same posture; and (v) participants were adults (aged ≥ 18 years), free of autonomic or neuromuscular dysfunction. Additional criteria for objective (2) were: (i) the interruption strategy was during the sitting period; (ii) there was an uninterrupted sitting control condition; and (iii) the interruption strategy must have involved participants actively moving their upper or lower limbs. APPRAISAL AND SYNTHESIS METHODS In total, 9763 articles were identified, of which 33 met inclusion criteria for objective (1). Of those articles, 22 met inclusion criteria for objective (2). Weighted mean difference (WMD), 95% confidence intervals (95% CI), and standardised mean difference (SMD) were calculated for all trials using inverse variance heterogeneity meta-analysis modelling. Standardised mean difference was used to determine the magnitude of effect, where < 0.2, 0.2, 0.5 and 0.8 were defined as trivial, small, moderate and large, respectively. RESULTS (1) Prolonged uninterrupted sitting resulted in trivial and small significant increases in systolic blood pressure (WMD = 3.2 mmHg, 95% CI 0.6 to 5.8, SMD = 0.14) and mean arterial pressure (WMD = 3.3 mmHg, 95% CI 2.2 to 4.4, SMD = 0.37), respectively, and a non-significant trivial increase in diastolic blood pressure. Subgroup analyses indicated that the increases in systolic blood pressure and mean arterial pressure were more pronounced in younger age groups. (2) Interrupting bouts of prolonged sitting resulted in significantly lower systolic blood pressure (WMD = - 4.4 mmHg, 95% CI - 7.4 to - 1.5, SMD = 0.26) and diastolic blood pressure (WMD = - 2.4 mmHg, 95% CI - 4.5 to - 0.3, SMD = 0.19) compared with control conditions, particularly when using aerobic interruption strategies. CONCLUSIONS Exposure to acute prolonged uninterrupted sitting results in significant increases in systolic blood pressure and mean arterial pressure, particularly in younger age groups. Regularly interrupting bouts of prolonged sitting, particularly with aerobic interruption strategies may reduce negative effects.
Collapse
|
21
|
Pekas EJ, Wooden TK, Yadav SK, Park SY. Body mass-normalized moderate dose of dietary nitrate intake improves endothelial function and walking capacity in patients with peripheral artery disease. Am J Physiol Regul Integr Comp Physiol 2021; 321:R162-R173. [PMID: 34161745 DOI: 10.1152/ajpregu.00121.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is characterized by the accumulation of atherosclerotic plaques in the lower extremity conduit arteries, which impairs blood flow and walking capacity. Dietary nitrate has been used to reduce blood pressure (BP) and improve walking capacity in PAD. However, a standardized dose for PAD has not been determined. Therefore, we sought to determine the effects of a body mass-normalized moderate dose of nitrate (0.11 mmol nitrate/kg) as beetroot juice on serum nitrate/nitrite, vascular function, walking capacity, and tissue oxygen utilization capacity in patients with PAD. A total of 11 patients with PAD received either nitrate supplement or placebo in a randomized crossover design. Total serum nitrate/nitrite, resting BP, brachial and popliteal artery endothelial function (flow-mediated dilation, FMD), arterial stiffness (pulse-wave velocity, PWV), augmentation index (AIx), maximal walking distance and time, claudication onset time, and skeletal muscle oxygen utilization were measured pre- and postnitrate and placebo intake. There were significant group × time interactions (P < 0.05) for serum nitrate/nitrite, FMD, BP, walking distance and time, and skeletal muscle oxygen utilization. The nitrate group showed significantly increased serum nitrate/nitrite (Δ1.32 μM), increased brachial and popliteal FMD (Δ1.3% and Δ1.7%, respectively), reduced peripheral and central systolic BP (Δ-4.7 mmHg and Δ-8.2 mmHg, respectively), increased maximal walking distance (Δ92.7 m) and time (Δ56.3 s), and reduced deoxygenated hemoglobin during walking. There were no changes in PWV, AIx, or claudication (P > 0.05). These results indicate that a body-mass normalized moderate dose of nitrate may be effective and safe for reducing BP, improving endothelial function, and improving walking capacity in patients with PAD.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Santosh K Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Song-Young Park
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
22
|
Bates LC, Alansare A, Gibbs BB, Hanson ED, Stoner L. Effects of Acute Prolonged Sitting and Interrupting Prolonged Sitting on Heart Rate Variability and Heart Rate in Adults: A Meta-Analysis. Front Physiol 2021; 12:664628. [PMID: 34012409 PMCID: PMC8126673 DOI: 10.3389/fphys.2021.664628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 01/29/2023] Open
Abstract
Prolonged sitting increases cardiovascular disease (CVD) risk, however the physiological mechanisms contributing to CVD from acute sitting exposure are not well-understood. Therefore, this study investigated the heart rate (HR) and variability (HRV) responses to prolonged sitting and after interrupting prolonged sitting (e.g., walking). Electronic databases were searched (inception-August 2020) for studies which exposed adults to prolonged (≥1 h) sitting with and/or without interruptions. Twenty-one articles (27 trials, n = 537) met inclusion criteria. Prolonged sitting non-significantly increased HR (weighted mean difference (WMD) = 0 bpm, 95% CI: −2, 3) and HRV (standardized mean difference (SMD) = 0.12, 95% CI: −0.08, 0.33) compared to pre-sitting baseline. Interrupting prolonged sitting yielded a non-significant small increase in HR (WMD = 4 bpm, 95% CI: 0, 7) compared to pre-sitting baseline. Sub-group analyses investigating interrupting prolonged sitting revealed small-to-moderate increases in HR in healthy populations (WMD = 6 bpm, 95% CI: 1, 10) and following walking interruptions (WMD = 7 bpm, 95% CI: 3, 11). In conclusion, prolonged sitting does not significantly affect HR or HRV. However, interrupting prolonged sitting yielded a small non-significant increase in HR, potentially indicative of increased metabolic demand. Further research is needed to investigate poor CVD outcomes via autonomic disruption from prolonged sitting.
Collapse
Affiliation(s)
- Lauren C Bates
- Department of Exercise and Sport, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Abdullah Alansare
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Exercise Physiology, King Saud University, Riyadh, Saudi Arabia
| | - Bethany Barone Gibbs
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, United States
| | - Erik D Hanson
- Department of Exercise and Sport, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lee Stoner
- Department of Exercise and Sport, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|