1
|
Doherty I, Shetty R, Ni H, Morotti S, Grandi E. Exploring the mechanisms of sex-specific proarrhythmia in long QT syndrome through computational modeling. Am J Physiol Heart Circ Physiol 2025; 328:H963-H972. [PMID: 40080081 DOI: 10.1152/ajpheart.00792.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Females exhibit longer QT intervals and a higher risk of long QT syndrome (LQTS) associated arrhythmogenesis compared with males. Although several studies suggest these sex disparities result from the effect of sex hormones on cardiac ion channels, the underlying mechanisms remain incompletely understood. This research investigates the arrhythmogenic effects, sex-specific risk, and mechanisms associated with LQTS linked to either to loss-of-function of the rapidly activating delayed rectifier K+ current (IKr), or gain-of-function of the L-type Ca2+ current (ICaL). We primarily used the Tomek-Rodriguez (ToR-ORd) model of human ventricular cardiomyocytes and incorporated sex-specific parameterizations based on previous studies. The O'Hara-Rudy and Grandi-Bers models were used to demonstrate model-independence of the findings. We used a populations-of-models approach to assess early afterdepolarization (EAD) susceptibility in control and LQTS male and female groups. All female models had consistently longer action potentials and were more prone to EADs than male models. In the ToR-ORd model, IKr loss-of-function led to EADs in 65.8% of females versus 22.8% of males. ICaL gain-of-function led to EADs in 66.2% of females but only 3.6% of males. Using logistic regression analysis, we identified key ionic predictors of EAD susceptibility, with maximal conductance of the L-type Ca2+ current (GCaL) and maximal transport rate of the Na+/Ca2+ exchanger (GNCX) consistently emerging as positively and maximal conductance of the rapidly activating delayed rectifier K+ current (GKr) as negatively associated to EADs across both sexes and LQTS types. Notably, higher GNCX but lower GKr in female versus male cardiomyocytes could explain heightened female EAD risk. Our studies explore the ionic traits that favor (or confer resilience against) EADs with potential implications for personalized treatments. NEW & NOTEWORTHY We explored sex disparities in long QT syndrome (LQTS) using sex-specific human ventricular cardiomyocyte models. We showed that females exhibit greater susceptibility to early afterdepolarizations (EADs) than males, and identified key ionic predictors of EAD risk, including increases in the voltage-gated L-type Ca2+ current and electrogenic Na+/Ca2+ exchanger, and downregulation of the rapidly activating delayed rectifier K+ current. These findings offer new insights into sex-specific mechanisms underlying arrhythmogenesis in LQTS, with potential implications for personalized treatments.
Collapse
Grants
- Quad Fellowship
- 24CDA1258695 American Heart Association (AHA)
- 20POST35120462 American Heart Association (AHA)
- R01HL131517 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL170521 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL141214 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL141084 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R03AG086695 HHS | NIH | National Institute on Aging (NIA)
- 1OT2OD026580-01 HHS | NIH | OSC | Common Fund (NIH Common Fund)
- R00HL138160 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL171057 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL171586 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL176651 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Dean's Fellow Award UC | UCD | University of California Davis School of Medicine (UC Davis School of Medicine)
Collapse
Affiliation(s)
- Isabella Doherty
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Roshni Shetty
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
2
|
Saljic A, Heijman J, Dobrev D. From Atrial Small-conductance Calcium-activated Potassium Channels to New Antiarrhythmics. Eur Cardiol 2024; 19:e26. [PMID: 39872420 PMCID: PMC11770539 DOI: 10.15420/ecr.2024.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/27/2024] [Indexed: 01/30/2025] Open
Abstract
Despite significant advances in its management, AF remains a major healthcare burden affecting millions of individuals. Rhythm control with antiarrhythmic drugs or catheter ablation has been shown to improve symptoms and outcomes in AF patients, but current treatment options have limited efficacy and/or significant side-effects. Novel mechanism-based approaches could potentially be more effective, enabling improved therapeutic strategies for managing AF. Small-conductance calcium-activated potassium (SK or KCa2.x) channels encoded by KCNN1-3 have recently gathered interest as novel antiarrhythmic targets with potential atrial-predominant effects. Here, the molecular composition of smallconductance calcium-activated potassium channels and their complex regulation in AF as the basis for understanding the distinct mechanism of action of pore-blockers (apamin, UCL1684, ICAGEN) and modulators of calcium-dependent activation (NS8593, AP14145, AP30663) are summarised. Furthermore, the preclinical and early clinical evidence for the role of small-conductance calcium-activated potassium channel inhibitors in the treatment of AF are reviewed.
Collapse
Affiliation(s)
- Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-EssenEssen, Germany
| | - Jordi Heijman
- Gottfried Schatz Research Centre, Division of Medical Physics & Biophysics, Medical University of GrazGraz, Austria
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht UniversityMaastricht, the Netherlands
| | - Dobromir Dobrev
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
- Departments of Medicine and Research Centre, Montreal Heart Institute and Université de MontréalMontreal, Canada
- Department of Integrative Physiology, Baylor College of MedicineHouston, TX, US
| |
Collapse
|
3
|
Dasí A, Berg LA, Martinez-Navarro H, Bueno-Orovio A, Rodriguez B. Prospective in silico trials identify combined SK and K 2P channel block as an effective strategy for atrial fibrillation cardioversion. J Physiol 2024. [PMID: 39557619 DOI: 10.1113/jp287124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
Virtual evaluation of medical therapy through human-based modelling and simulation can accelerate and augment clinical investigations. Treatment of the most common cardiac arrhythmia, atrial fibrillation (AF), requires novel approaches. This study prospectively evaluates and mechanistically explains three novel pharmacological therapies for AF through in silico trials, including single and combined SK and K2P channel block. AF and pharmacological action were assessed in a large cohort of 1000 virtual patients, through 2962 multiscale simulations. Extensive calibration and validation with experimental and clinical data support their credibility. Sustained AF was observed in 654 virtual patients. In this cohort, cardioversion efficacy increased to 82% (535 of 654) through combined SK+K2P channel block, from 33% (213 of 654) and 43% (278 of 654) for single SK and K2P blocks, respectively. Drug-induced prolongation of tissue refractoriness, dependent on the virtual patient's ionic current profile, explained cardioversion efficacy (atrial refractory period increase: 133.0 ± 48.4 ms for combined vs. 45.2 ± 43.0 and 71.0 ± 55.3 ms for single SK and K2P block, respectively). Virtual patients cardioverted by SK channel block presented lower K2P densities, while lower SK densities favoured the success of K2P channel inhibition. Both ionic currents had a crucial role on atrial repolarization, and thus a synergism resulted from the multichannel block. All three strategies, including the multichannel block, preserved atrial electrophysiological function (i.e. conduction velocity and calcium transient dynamics) and thus its contractile properties (safety). In silico trials identify key factors determining treatment success and the combined SK+K2P channel block as a promising strategy for AF management. KEY POINTS: This is a large-scale in silico trial study involving 2962 multiscale simulations. A population of 1000 virtual patients underwent three treatments for atrial fibrillation. Single and combined SK+K2P channel block were assessed prospectively. The multi-ion channel inhibition resulted in 82% cardioversion efficacy. In silico trials have broad implications for precision medicine.
Collapse
Affiliation(s)
- Albert Dasí
- Department of Computer Science, University of Oxford, Oxford, UK
| | | | | | | | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Zhu X, Lv M, Cheng T, Zhou Y, Yuan G, Chu Y, Luan Y, Song Q, Hu Y. Bibliometric analysis of atrial fibrillation and ion channels. Heart Rhythm 2024; 21:1161-1169. [PMID: 38280618 DOI: 10.1016/j.hrthm.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Atrial fibrillation (AF) is a common clinical malignant arrhythmia with an increasing global incidence. Ion channel dysfunction is an important mechanism in the development of AF. In this study, we used bibliometrics to analyze the studies of ion channels and AF, aiming to provide inspiration and reference for researchers. A total of 3179 literature citations were obtained from Web of Science core databases. Analysis software included Excel 2019, VOSviewer 1.6.16, and CiteSpace 5.7.R2. This field of research has been growing since 1985. The most active country is the United States. The University of Montreal is the most important research institution. The journal Cardiovascular Research has published the largest number of articles in this field. Stanley Nattel and Dobromir Dobrev are the most frequently cited authors. The most cited literature was published in Nature and Science. Cardiac electrophysiology, gene expression, pathogenesis of AF, and AF prevention and treatment are the hot topics for this field research. Cardiac fibrillation and catheter ablation may be future research hotspots in this field.
Collapse
Affiliation(s)
- Xueping Zhu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Lv
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Cheng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguang Chu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Luan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qingqiao Song
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Xu J, Zhang D, Ma Y, Du H, Wang Y, Luo W, Wang R, Yi F. ROS in diabetic atria regulate SK2 degradation by Atrogin-1 through the NF-κB signaling pathway. J Biol Chem 2024; 300:105735. [PMID: 38336298 PMCID: PMC10938124 DOI: 10.1016/j.jbc.2024.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
One of the independent risk factors for atrial fibrillation is diabetes mellitus (DM); however, the underlying mechanisms causing atrial fibrillation in DM are unknown. The underlying mechanism of Atrogin-1-mediated SK2 degradation and associated signaling pathways are unclear. The aim of this study was to elucidate the relationship among reactive oxygen species (ROS), the NF-κB signaling pathway, and Atrogin-1 protein expression in the atrial myocardia of DM mice. We found that SK2 expression was downregulated comitant with increased ROS generation and enhanced NF-κB signaling activation in the atrial cardiomyocytes of DM mice. These observations were mimicked by exogenously applicating H2O2 and by high glucose culture conditions in HL-1 cells. Inhibition of ROS production by diphenyleneiodonium chloride or silencing of NF-κB by siRNA decreased the protein expression of NF-κB and Atrogin-1 and increased that of SK2 in HL-1 cells with high glucose culture. Moreover, chromatin immunoprecipitation assay demonstrated that NF-κB/p65 directly binds to the promoter of the FBXO32 gene (encoding Atrogin-1), regulating the FBXO32 transcription. Finally, we evaluated the therapeutic effects of curcumin, known as a NF-κB inhibitor, on Atrogin-1 and SK2 expression in DM mice and confirmed that oral administration of curcumin for 4 weeks significantly suppressed Atrogin-1 expression and protected SK2 expression against hyperglycemia. In summary, the results from this study indicated that the ROS/NF-κB signaling pathway participates in Atrogin-1-mediated SK2 regulation in the atria of streptozotocin-induced DM mice.
Collapse
Affiliation(s)
- Jian Xu
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yibo Ma
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Du
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenping Luo
- Institute of Cardiovascular and Vascular Disease, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Ruxing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Fu Yi
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|