1
|
Leister R, Karl R, Stroh L, Mereles D, Eden M, Neff L, de Simone R, Romano G, Kriegseis J, Karck M, Lichtenstern C, Frey N, Frohnapfel B, Stroh A, Engelhardt S. Investigating the Shortcomings of the Flow Convergence Method for Quantification of Mitral Regurgitation in a Pulsatile In-Vitro Environment and with Computational Fluid Dynamics. Cardiovasc Eng Technol 2025; 16:155-170. [PMID: 39762656 PMCID: PMC11933158 DOI: 10.1007/s13239-024-00763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/11/2024] [Indexed: 03/25/2025]
Abstract
The flow convergence method includes calculation of the proximal isovelocity surface area (PISA) and is widely used to classify mitral regurgitation (MR) with echocardiography. It constitutes a primary decision factor for determination of treatment and should therefore be a robust quantification method. However, it is known for its tendency to underestimate MR and its dependence on user expertise. The present work systematically compares different pulsatile flow profiles arising from different regurgitation orifices using transesophageal echocardiographic (TEE) probe and particle image velocimetry (PIV) as a reference in an in-vitro environment. It is found that the inter-observer variability using echocardiography is small compared to the systematic underestimation of the regurgitation volume for large orifice areas (up to 52%) where a violation of the flow convergence method assumptions occurs. From a flow perspective, a starting vortex was found as a dominant flow pattern in the regurgant jet for all orifice shapes and sizes. A series of simplified computational fluid dynamics (CFD) simulations indicate that selecting a suboptimal aliasing velocity during echocardiography measurements might be a primary source of potential underestimation in MR characterization via the PISA-based method, reaching up to 40%. In this study, it has been noted in clinical observations that physicians often select an aliasing velocity higher than necessary for optimal estimation in diagnostic procedures.
Collapse
Affiliation(s)
- Robin Leister
- Institute of Fluid Mechanics (ISTM), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Roger Karl
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Lubov Stroh
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Derliz Mereles
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Eden
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Luis Neff
- Institute of Fluid Mechanics (ISTM), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Raffaele de Simone
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gabriele Romano
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Kriegseis
- Institute of Fluid Mechanics (ISTM), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Norbert Frey
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Bettina Frohnapfel
- Institute of Fluid Mechanics (ISTM), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Alexander Stroh
- Institute of Fluid Mechanics (ISTM), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sandy Engelhardt
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Wifstad SV, Kildahl HA, Holte E, Berg EAR, Grenne B, Salvesen Ø, Dalen H, Lovstakken L. EasyPISA: Automatic Integrated PISA Measurements of Mitral Regurgitation From 2-D Color-Doppler Using Deep Learning. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00254-0. [PMID: 39122609 DOI: 10.1016/j.ultrasmedbio.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE The proximal isovelocity surface area (PISA) method is a well-established approach for mitral regurgitation (MR) quantification. However, it exhibits high inter-observer variability and inaccuracies in cases of non-hemispherical flow convergence and non-holosystolic MR. To address this, we present EasyPISA, a framework for automated integrated PISA measurements taken directly from 2-D color-Doppler sequences. METHODS We trained convolutional neural networks (UNet/Attention UNet) on 1171 images from 196 recordings (54 patients) to detect and segment flow convergence zones in 2-D color-Doppler images. Different preprocessing schemes and model architectures were compared. Flow convergence surface areas were estimated, accounting for non-hemispherical convergence, and regurgitant volume (RVol) was computed by integrating the flow rate over time. EasyPISA was retrospectively applied to 26 MR patient examinations, comparing results with reference PISA RVol measurements, severity grades, and cMRI RVol measurements for 13 patients. RESULTS The UNet trained on duplex images achieved the best results (precision: 0.63, recall: 0.95, dice: 0.58, flow rate error: 10.4 ml/s). Mitigation of false-positive segmentation on the atrial side of the mitral valve was achieved through integration with a mitral valve segmentation network. The intraclass correlation coefficient was 0.83 between EasyPISA and PISA, and 0.66 between EasyPISA and cMRI. Relative standard deviations were 46% and 53%, respectively. Receiver operator characteristics demonstrated a mean area under the curve between 0.90 and 0.97 for EasyPISA RVol estimates and reference severity grades. CONCLUSION EasyPISA demonstrates promising results for fully automated integrated PISA measurements in MR, offering potential benefits in workload reduction and mitigating inter-observer variability in MR assessment.
Collapse
Affiliation(s)
- Sigurd Vangen Wifstad
- University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway.
| | - Henrik Agerup Kildahl
- University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway; Clinic of Thoracic Surgery, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Espen Holte
- University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway; Clinic of Cardiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Erik Andreas Rye Berg
- University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway; Clinic of Cardiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjørnar Grenne
- University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway; Clinic of Cardiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Øyvind Salvesen
- University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway
| | - Håvard Dalen
- University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway; Clinic of Cardiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lasse Lovstakken
- University of Science and Technology (NTNU), Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway
| |
Collapse
|
3
|
Lopez-Santana G, De Rosis A, Grant S, Venkateswaran R, Keshmiri A. Enhancing the implantation of mechanical circulatory support devices using computational simulations. Front Bioeng Biotechnol 2024; 12:1279268. [PMID: 38737533 PMCID: PMC11084291 DOI: 10.3389/fbioe.2024.1279268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction: Patients with end-stage heart failure (HF) may need mechanical circulatory support such as a left ventricular assist device (LVAD). However, there are a range of complications associated with LVAD including aortic regurgitation (AR) and thrombus formation. This study assesses whether the risk of developing aortic conditions can be minimised by optimising LVAD implantation technique. Methods: In this work, we evaluate the aortic flow patterns produced under different geometrical parameters for the anastomosis of the outflow graft (OG) to the aorta using computational fluid dynamics (CFD). A three-dimensional aortic model is created and the HeartMate III OG positioning is simulated by modifying (i) the distance from the anatomic ventriculo-arterial junction (AVJ) to the OG, (ii) the cardinal position around the aorta, and (iii) the angle between the aorta and the OG. The continuous LVAD flow and the remnant native cardiac cycle are used as inlet boundaries and the three-element Windkessel model is applied at the pressure outlets. Results: The analysis quantifies the impact of OG positioning on different haemodynamic parameters, including velocity, wall shear stress (WSS), pressure, vorticity and turbulent kinetic energy (TKE). We find that WSS on the aortic root (AoR) is around two times lower when the OG is attached to the coronal side of the aorta using an angle of 45° ± 10° at a distance of 55 mm. Discussion: The results show that the OG placement may significantly influence the haemodynamic patterns, demonstrating the potential application of CFD for optimising OG positioning to minimise the risk of cardiovascular complications after LVAD implantation.
Collapse
Affiliation(s)
- Gabriela Lopez-Santana
- School of Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Wythenshawe Hospital, Manchester, United Kingdom
| | - Alessandro De Rosis
- School of Engineering, The University of Manchester, Manchester, United Kingdom
| | - Stuart Grant
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rajamiyer Venkateswaran
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Wythenshawe Hospital, Manchester, United Kingdom
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Amir Keshmiri
- School of Engineering, The University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
4
|
Altes A, Vermes E, Levy F, Vancraeynest D, Pasquet A, Vincentelli A, Gerber BL, Tribouilloy C, Maréchaux S. Quantification of primary mitral regurgitation by echocardiography: A practical appraisal. Front Cardiovasc Med 2023; 10:1107724. [PMID: 36970355 PMCID: PMC10036770 DOI: 10.3389/fcvm.2023.1107724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate quantification of primary mitral regurgitation (MR) and its consequences on cardiac remodeling is of paramount importance to determine the best timing for surgery in these patients. The recommended echocardiographic grading of primary MR severity relies on an integrated multiparametric approach. It is expected that the large number of echocardiographic parameters collected would offer the possibility to check the measured values regarding their congruence in order to conclude reliably on MR severity. However, the use of multiple parameters to grade MR can result in potential discrepancies between one or more of them. Importantly, many factors beyond MR severity impact the values obtained for these parameters including technical settings, anatomic and hemodynamic considerations, patient's characteristics and echocardiographer' skills. Hence, clinicians involved in valvular diseases should be well aware of the respective strengths and pitfalls of each of MR grading methods by echocardiography. Recent literature highlighted the need for a reappraisal of the severity of primary MR from a hemodynamic perspective. The estimation of MR regurgitation fraction by indirect quantitative methods, whenever possible, should be central when grading the severity of these patients. The assessment of the MR effective regurgitant orifice area by the proximal flow convergence method should be used in a semi-quantitative manner. Furthermore, it is crucial to acknowledge specific clinical situations in MR at risk of misevaluation when grading severity such as late-systolic MR, bi-leaflet prolapse with multiple jets or extensive leak, wall-constrained eccentric jet or in older patients with complex MR mechanism. Finally, it is debatable whether the 4-grades classification of MR severity would be still relevant nowadays, since the indication for mitral valve (MV) surgery is discussed in clinical practice for patients with 3+ and 4+ primary MR based on symptoms, specific markers of adverse outcome and MV repair probability. Primary MR grading should be seen as a continuum integrating both quantification of MR and its consequences, even for patients with presumed "moderate" MR.
Collapse
Affiliation(s)
- Alexandre Altes
- GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille/Lille Catholic Hospitals, Heart Valve Center, Cardiology Department, ETHICS EA 7446, Lille Catholic University, Lille, France
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | - Franck Levy
- Department of Cardiology, Center Cardio-Thoracique de Monaco, Monaco, Monaco
| | - David Vancraeynest
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Agnès Pasquet
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - André Vincentelli
- Cardiac Surgery Department, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Bernhard L. Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | - Sylvestre Maréchaux
- GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille/Lille Catholic Hospitals, Heart Valve Center, Cardiology Department, ETHICS EA 7446, Lille Catholic University, Lille, France
| |
Collapse
|
5
|
Caballero A, Qin T, Hahn RT, McKay R, Sun W. Quantification of mitral regurgitation after transcatheter edge-to-edge repair: Comparison of echocardiography and patient-specific in silico models. Comput Biol Med 2022; 148:105855. [PMID: 35872413 DOI: 10.1016/j.compbiomed.2022.105855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Doppler echocardiographic (echo) assessment of residual mitral regurgitation (MR) after transcatheter edge-to-edge repair (TEER) is challenging and often subjective. This study aimed to evaluate the accuracy and feasibility of standardized quantitative echo methods for assessment of MR severity after MitraClip repair by comparing measurements against a reference MR severity obtained from patient-specific in silico models. METHODS Post-procedure hemodynamics were simulated under five different MitraClip configurations in previously validated patient-specific in silico models for the treatment of functional MR. The residual regurgitant volume was calculated as in clinical practice using four quantitative virtual echo methods: pulsed Doppler, volumetric, proximal isovelocity surface area (PISA) and vena contracta area (VCA). Multiple permutations were performed for each method. Virtual echo MR results were evaluated against reference MR values directly extracted from the 5 patient-specific in silico models. RESULTS The echo methods with the greatest accuracy were the three-dimensional (3D) volumetric method (r = 0.957, bias -0.8 ± 1.2 ml, p = 0.01), the 3D VCA method wherein velocity time integrals were evaluated for each jet assessed (r = 0.919, bias -1.5 ± 1.7 ml, p = 0.03), and the 3D PISA method integrating surface areas throughout systole (r = 0.98, bias -2.0 ± 0.9 ml, p = 0.003). The pulsed Doppler and 2D volumetric methods had technical limitations that may result in a high underestimation or overestimation of the MR severity after TEER. In the case of multiple regurgitant jets, a more accurate MR assessment was obtained when all significant jets were evaluated. CONCLUSIONS Clinically, the 3D volumetric, 3D VCA and 3D PISA methods gave the most accurate MR quantification after TEER. Three-dimensional echo technologies harbor the potential of becoming the non-invasive imaging tool of choice for MR quantification after complex transcatheter mitral interventions.
Collapse
Affiliation(s)
- Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; PAI+ Research Group, Energetics and Mechanics Department, Universidad Autónoma de Occidente, Cali, Colombia
| | - Tongran Qin
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Rebecca T Hahn
- Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Raymond McKay
- Cardiology Department, The Hartford Hospital, Hartford, CT, USA
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Toma M, Singh-Gryzbon S, Frankini E, Wei Z(A, Yoganathan AP. Clinical Impact of Computational Heart Valve Models. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3302. [PMID: 35591636 PMCID: PMC9101262 DOI: 10.3390/ma15093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| | - Elisabeth Frankini
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Zhenglun (Alan) Wei
- Department of Biomedical Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Ajit P. Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| |
Collapse
|
7
|
Yu C, Che Y, Sun G, Zhao X, Liu B. Research on Diagnosis Architecture of Cardiovascular Diseases Based on Multimedical Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9123332. [PMID: 35186117 PMCID: PMC8849969 DOI: 10.1155/2022/9123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the effect of a multi-image source 3D modeling imaging examination system on the diagnosis of cardiovascular diseases in cardiac surgery. METHODS The data of 680 confirmed patients and 1590 suspected patients in the cardiac surgery department of all hospitals of a large chain hospital management group were selected. All patients gave the examination results of multiple image sources and independent examination results of multiple image sources, respectively, their examination sensitivity, specificity, and reliability were compared, and the treatment efficiency and nursing satisfaction of the virtual reference group were deduced in MATLAB. Perform the bivariate t-test and comparative statistics in SPSS. RESULTS The multi-image source 3D modeling examination system had higher examination sensitivity, specificity, and reliability and higher examination sensitivity in the early stage of the disease. It was deduced that the clinical efficiency and nursing satisfaction based on the examination results were significantly improved (t < 10.000, p < 0.01). CONCLUSION The multi-image source 3D modeling imaging examination system is suitable for the diagnosis of cardiovascular diseases in cardiac surgery.
Collapse
Affiliation(s)
- Chunying Yu
- Radiology Department, Shaanxi Normal University Hospital, Xi'an, Shaanxi 710062, China
| | - Yani Che
- Radiophysics Department, Qingdao Central Hospital, Qingdao, Shandong 266042, China
| | - Guifang Sun
- Radiology Department, Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China
| | - Xipeng Zhao
- Molecular Imaging Department, Qingdao Central Hospital, Qingdao, Shandong 266042, China
| | - Bin Liu
- Radiology Department, Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China
| |
Collapse
|
8
|
Computational Analysis of Virtual Echocardiographic Assessment of Functional Mitral Regurgitation for Validation of Proximal Isovelocity Surface Area Methods. J Am Soc Echocardiogr 2021; 34:1211-1223. [PMID: 34214636 DOI: 10.1016/j.echo.2021.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mitral regurgitation (MR) quantification by the proximal isovelocity surface area (PISA) method remains challenging. Using computer models, the authors evaluated the accuracy of different PISA methods and quantified their errors. METHODS Five functional MR computer models of different geometric and tethering abnormalities were created, validated, and treated as phantom models, from which the reference values were directly obtained. Virtual two-dimensional (2D) PISA and three-dimensional (3D) PISA (both peak and integrated values) were performed on these phantom models. By comparing virtual PISA results with reference values, the accuracy of different PISA methods was evaluated, and their sources of errors were quantified. RESULTS Compared with reference values of regurgitant flow rate, excellent correlations were found for true PISA (r = 0.99, bias = 32.3 ± 35.3 mL/sec), 3D PISA (r = 0.97, bias = -24.4 ± 55.5 mL/sec), followed by multiplane 2D hemicylindrical PISA (r = 0.88, bias = -24.1 ± 85.4 mL/sec) and hemiellipsoidal PISA (r = 0.91, bias = -55.7 ± 96.6 mL/sec). Weaker correlations were found for single-plane 2D hemispherical PISA (parasternal long-axis: r = 0.71, bias = -77.6 ± 124.5 mL/sec; apical two-chamber: r = 0.69, bias = -52.0 ± 122.0 mL/sec; apical four-chamber: r = 0.82, bias = -65.5 ± 107.3 mL/sec). For regurgitant volume quantification, integrated PISA was more accurate than peak PISA. The bias of 3D PISA improved from -12.7 ± 7.8 mL (peak PISA) to -2.1 ± 5.3 mL (integrated PISA). CONCLUSIONS For functional MR quantification, 2D hemispherical PISA had significant underestimation, multiplane 2D hemiellipsoidal and hemicylindrical PISA showed improved accuracy, and 3D PISA was the most accurate. The PISA method is subject to both systematic underestimation due to the Doppler angle effect and systematic overestimation when regurgitant flow is not perpendicular to PISA contour. Integrated PISA is able to capture dynamic MR and is therefore more accurate than peak PISA. The sum of regurgitant flow rates is the most feasible way to perform integrated PISA.
Collapse
|
9
|
Fluid-Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics. BIOLOGY 2021; 10:biology10030185. [PMID: 33801566 PMCID: PMC8001855 DOI: 10.3390/biology10030185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid-structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid-structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid-structure interactions in complex biological systems.
Collapse
|
10
|
Quantification of regurgitation in mitral valve prolapse with automated real time echocardiographic 3D proximal isovelocity surface area: multimodality consistency and role of eccentricity index. Int J Cardiovasc Imaging 2021; 37:1947-1959. [PMID: 33616785 PMCID: PMC8255267 DOI: 10.1007/s10554-021-02179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/30/2021] [Indexed: 10/25/2022]
Abstract
Three-dimensional transthoracic echocardiography (3D-TTE) provides a semi-automated proximal isovelocity surface area method (3D-PISA) to obtain quantitative parameters. Data assessing regurgitation severity in mitral valve prolapse (MVP) are scarce, so we assessed the 3D-PISA method compared with 2D-PISA and cardiovascular magnetic resonance (CMR) and the role of an eccentricity index. We evaluated the 3D-PISA method for assessing MR in 54 patients with MVP (57 ± 14 years; 42 men; 12 mild/mild-moderate; 12 moderate-severe; and 30 severe MR). Role of an asymmetric (i.e. eccentricity index ≥ 1.25) flow convergence region (FCR) and inter-modality consistency were then assessed. 3D-PISA derived regurgitant volume (RVol) showed a good correlation with 2D-PISA and CMR derived parameters (r = 0.86 and r = 0.81, respectively). The small mean differences with 2D-PISA derived RVol did not reach statistical significance in overall population (5.7 ± 23 ml, 95% CI - 0.6 to 12; p = 0.08) but differed in those with asymmetric 3D-FCR (n = 21; 2D-PISA: 72 ± 36 ml vs. 3D-PISA: 93 ± 47 ml; p = 0.001). RVol mean values were higher using PISA methods (CMR 57 ± 33 ml; 2D-PISA 73 ± 39 ml; and 3D-PISA 79 ± 45 ml) and an overestimation was observed when CMR was used as reference (2D-PISA vs. CMR: mean difference: 15.8 ml [95% CI 10-22, p < 0.001]; and 3D-PISA vs. CMR: 21.5 ml [95% CI 14-29, p < 0.001]). Intra- and inter-observer reliability was excellent (ICC 0.91-0.99), but with numerically lower coefficient of variation for 3D-PISA (8%-10% vs. 2D-PISA: 12%-16%). 3D-PISA method for assessing regurgitation in MVP may enable analogous evaluation compared to standard 2D-PISA, but with overestimation in case of asymmetric FCR or when CMR is used as reference method.
Collapse
|
11
|
Caballero A, Mao W, McKay R, Hahn RT, Sun W. A Comprehensive Engineering Analysis of Left Heart Dynamics After MitraClip in a Functional Mitral Regurgitation Patient. Front Physiol 2020; 11:432. [PMID: 32457650 PMCID: PMC7221026 DOI: 10.3389/fphys.2020.00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Percutaneous edge-to-edge mitral valve (MV) repair using MitraClip has been recently established as a treatment option for patients with heart failure and functional mitral regurgitation (MR), which significantly expands the number of patients that can be treated with this device. This study aimed to quantify the morphologic, hemodynamic and structural changes, and evaluate the biomechanical interaction between the MitraClip and the left heart (LH) complex of a heart failure patient with functional MR using a fluid-structure interaction (FSI) modeling framework. MitraClip implantation using lateral, central and double clip positions, as well as combined annuloplasty procedures were simulated in a patient-specific LH model that integrates detailed anatomic structures, incorporates age- and gender-matched non-linear elastic material properties, and accounts for mitral chordae tethering. Our results showed that antero-posterior distance, mitral annulus spherecity index, anatomic regurgitant orifice area, and anatomic opening orifice area decreased by up to 28, 39, 52, and 71%, respectively, when compared to the pre-clip model. MitraClip implantation immediately decreased the MR severity and improved the hemodynamic profile, but imposed a non-physiologic configuration and loading on the mitral apparatus, with anterior and posterior leaflet stress significantly increasing up to 210 and 145% during diastole, respectively. For this patient case, while implanting a combined central clip and ring resulted in the highest reduction in the regurgitant volume (46%), this configuration also led to mitral stenosis. Patient-specific computer simulations as used here can be a powerful tool to examine the complex device-host biomechanical interaction, and may be useful to guide device positioning for potential favorable clinical outcomes.
Collapse
Affiliation(s)
- Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Wenbin Mao
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Raymond McKay
- Division of Cardiology, The Hartford Hospital, Hartford, CT, United States
| | - Rebecca T. Hahn
- Division of Cardiology, Columbia University Medical Center, New York, NY, United States
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Caballero A, Mao W, McKay R, Sun W. The Impact of Self-Expandable Transcatheter Aortic Valve Replacement on Concomitant Functional Mitral Regurgitation: A Comprehensive Engineering Analysis. STRUCTURAL HEART-THE JOURNAL OF THE HEART TEAM 2020; 4:179-191. [PMID: 33728393 DOI: 10.1080/24748706.2020.1740365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Mitral regurgitation (MR) is present in a large proportion of patients who undergo transcatheter aortic valve replacement (TAVR). However, existing clinical data on the impact of TAVR on early post-procedural MR severity are contradictory. Using a comprehensive computational engineering methodology, this study aimed to evaluate quantitatively the structural and hemodynamic impact of TAVR on aortic-mitral continuity and MR severity in a rigorously developed and validated patient-specific left heart (LH) computer model with aortic stenosis and concomitant functional MR. Methods TAVR procedure was virtually simulated using a self-expandable valve (SEV) at three implantation heights. Pre- and post-TAVR LH dynamics as well as intra-operative biomechanics were analyzed. Results No significant differences in early MR improvement (<10%) were noted at the three implantation depths when compared to the pre-TAVR state. The high deployment model resulted in the highest stress in the native aortic leaflets, lowest stent-tissue contact force, highest aortic-mitral angle, and highest MR reduction for this patient case. When comparing SEV vs. balloon-expandable valve (BEV) performance at an optimal implantation height, the SEV gave a higher regurgitant volume ⋅ than the pre-TAVR model (40.49 vs 37.59 ml), while the BEV model gave the lowest regurgitant volume (33.84 vs 37.59 ml). Conclusions Contact force, aortic-mitral angle, and valve annuli compression were identified as possible mechanistic parameters that may suggest avenues for acute MR improvement. Albeit a single patient parametric study, it is our hope that such detailed engineering analysis could shed some light into the underlying biomechanical mechanisms of TAVR impact on MR.
Collapse
Affiliation(s)
- Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Wenbin Mao
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Raymond McKay
- Division of Cardiology, The Hartford Hospital, Hartford, Connecticut, USA
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|