1
|
Andrade DC. Peripheral chemoreceptor, a new player in metabolic sensing during physical exertion: a hypothetical scenario. J Neurophysiol 2025; 133:193-202. [PMID: 39659070 DOI: 10.1152/jn.00503.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
The cardiorespiratory and metabolic response to exercise has been associated with meeting the organism's metabolic demands during physical exertion. Of note, an incremental exercise is characterized by 1) cardiodynamic phase related to cardiac output enhancement mainly determined by a positive chronotropic response, 2) ventilatory threshold one, associated with a significant contribution of cardiovascular and pulmonary ventilation, and 3) ventilatory threshold two, correlated with a tremendous increase in breathing and metabolic responses to exercise. Notably, it has been shown that the ventilatory response to exercise increases concomitantly with the release and accumulation of metabolites (i.e., lactate released from skeletal muscle). The principal peripheral chemoreceptors are the carotid bodies (CBs), allocated into the carotid bifurcation and demonstrated to respond to several stimuli, triggering autonomic and ventilatory responses. Indeed, in past and recent years, it has been shown that CB could respond to lactate in in vitro and in vivo preparations, eliciting an increase in CB activity and ventilation. However, not all evidence indicates that peripheral chemoreceptors respond to lactate. Thus, considering that CB chemoreceptors' role in lactate-dependent breathing response is not completely clear and their potential preponderance as metabolic sensors during exercise has not been thoroughly explored, the present review was focused on the possible role of CB chemoreceptors as metabolic sensors during physical exertion in a physiological context, proposing it as a new actor in exercise physiology.
Collapse
Affiliation(s)
- David C Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
2
|
Salazar-Ardiles C, Cornejo C, Paz C, Vasquez-Muñoz M, Arce-Alvarez A, Rodriguez-Fernandez M, Millet GP, Izquierdo M, Andrade DC. Effect of chronic exogenous oxytocin administration on exercise performance and cardiovagal control in hypobaric hypoxia in rats. Biol Res 2024; 57:88. [PMID: 39578887 PMCID: PMC11585223 DOI: 10.1186/s40659-024-00573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Outstanding exercise performance has been associated with an exacerbated vagal outflow. Nevertheless, during high-altitude hypobaric-hypoxia (HH), there is a baroreflex-dependent parasympathetic withdrawal and exercise performance deterioration. Notably, vagal control is pivotal in exercise performance, and exogenous oxytocin (OXY) administration has been shown to enhance parasympathetic drive; however, no evidence shows their role in exercise performance during HH. Then, this study aimed to examine the effect of prolonged exogenous oxytocin (OXY) administration on exercise performance during hypobaric hypoxia (HH) in rats. RESULTS A vehicle group (n = 6) and an OXY group (n = 6) performed incremental exercise and baroreflex tests during both normobaric normoxia (NN) and HH (PO2: 100 mmHg, simulated 3,500 m) prior (pre-) and after (post-) 14 days of administration. The results showed that at pre-, there were no significant differences in exercise performance between the two groups, while at post-, the OXY group exhibited similar performance between NN and HH, while the Vehicle group maintained a significant decline in performance at HH compared to NN. At post-, the Vehicle group also demonstrated a reset in the baroreflex and a worse bradycardic response in HH, which was reversed in the OXY group, while the hypoxic ventilatory response was similar in both groups. CONCLUSION The findings suggest prolonged OXY administration prevents impaired exercise performance and vagal control during short-term HH.
Collapse
Affiliation(s)
- Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Navarrabiomed, Hospital Universitario de Navarra (UHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Navarra, Spain
| | - Carlos Cornejo
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristobal Paz
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Manuel Vasquez-Muñoz
- Dirección de Docencia de Especialidades Médicas, Dirección de Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Alexis Arce-Alvarez
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastian, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (UHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Navarra, Spain
| | - David C Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.
| |
Collapse
|
3
|
Freire TC, Ferreira MS, De Angelis K, Paula-Ribeiro M. Respiratory, cardiovascular and musculoskeletal mechanisms involved in the pathophysiology of pulmonary hypertension: An updated systematic review of preclinical and clinical studies. Heart Lung 2024; 68:81-91. [PMID: 38941771 DOI: 10.1016/j.hrtlng.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Progressive exercise intolerance is a hallmark of pulmonary hypertension (pH), severely impacting patients' independence and quality of life (QoL). Accumulating evidence over the last decade shows that combined abnormalities in peripheral reflexes and target organs contribute to disease progression and exercise intolerance. OBJECTIVE The aim of this study was to review the literature of the last decade on the contribution of the cardiovascular, respiratory, and musculoskeletal systems to pathophysiology and exercise intolerance in pH. METHODS A systematic literature search was conducted using specific terms in PubMed, SciELO, and the Cochrane Library databases for original pre-clinical or clinical studies published between 2013 and 2023. Studies followed randomized controlled/non-randomized controlled and pre-post designs. RESULTS The systematic review identified 25 articles reporting functional or structural changes in the respiratory, cardiovascular, and musculoskeletal systems in pH. Moreover, altered biomarkers in these systems, lower cardiac baroreflex, and heightened peripheral chemoreflex activity seemed to contribute to functional changes associated with poor prognosis and exercise intolerance in pH. Potential therapeutic strategies acutely explored involved manipulating the baroreflex and peripheral chemoreflex, improving cardiovascular autonomic control via cardiac vagal control, and targeting specific pathways such as GPER1, GDF-15, miR-126, and the JMJD1C gene. CONCLUSION Information published in the last 10 years advances the notion that pH pathophysiology involves functional and structural changes in the respiratory, cardiovascular, and musculoskeletal systems and their integration with peripheral reflexes. These findings suggest potential therapeutic targets, yet unexplored in clinical trials, that could assist in improving exercise tolerance and QoL in patients with pH.
Collapse
Affiliation(s)
- Thaís C Freire
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Marília S Ferreira
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Kátia De Angelis
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
4
|
Alvarez-Araos P, Jiménez S, Salazar-Ardiles C, Núñez-Espinosa C, Paez V, Rodriguez-Fernandez M, Raberin A, Millet GP, Iturriaga R, Andrade DC. Baroreflex and chemoreflex interaction in high-altitude exposure: possible role on exercise performance. Front Physiol 2024; 15:1422927. [PMID: 38895516 PMCID: PMC11184637 DOI: 10.3389/fphys.2024.1422927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The hypoxic chemoreflex and the arterial baroreflex are implicated in the ventilatory response to exercise. It is well known that long-term exercise training increases parasympathetic and decreases sympathetic tone, both processes influenced by the arterial baroreflex and hypoxic chemoreflex function. Hypobaric hypoxia (i.e., high altitude [HA]) markedly reduces exercise capacity associated with autonomic reflexes. Indeed, a reduced exercise capacity has been found, paralleled by a baroreflex-related parasympathetic withdrawal and a pronounced chemoreflex potentiation. Additionally, it is well known that the baroreflex and chemoreflex interact, and during activation by hypoxia, the chemoreflex is predominant over the baroreflex. Thus, the baroreflex function impairment may likely facilitate the exercise deterioration through the reduction of parasympathetic tone following acute HA exposure, secondary to the chemoreflex activation. Therefore, the main goal of this review is to describe the main physiological mechanisms controlling baro- and chemoreflex function and their role in exercise capacity during HA exposure.
Collapse
Affiliation(s)
- Pablo Alvarez-Araos
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Sergio Jiménez
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristian Núñez-Espinosa
- Escuela de Medicina de la Universidad de Magallanes, Punta Arenas, Chile
- Centro Asistencial de Docencia e Investigación (CADI-UMAG), Santiago, Chile
| | - Valeria Paez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rodrigo Iturriaga
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
5
|
Kataoka Y, Sales ARK, Rodrigues AG, Goes-Santos BR, Azevedo LF, Groehs RV, Silva EO, Santos LS, Oliveira PA, Jordão CP, Andrade ACM, Lobo DML, Rondon E, Toschi-Dias E, Alves MJNN, Almeida DR, Negrão CE. Abnormal neurovascular control during central and peripheral chemoreceptors stimulation in heart failure patients with preserved ejection fraction. Clin Auton Res 2024; 34:363-374. [PMID: 38878143 DOI: 10.1007/s10286-024-01041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/20/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Central and peripheral chemoreceptors are hypersensitized in patients with heart failure with reduced ejection fraction. Whether this autonomic alteration occurs in patients with heart failure with preserved ejection fraction (HFpEF) remains little known. We test the hypothesis that the central and peripheral chemoreflex control of muscle sympathetic nerve activity (MSNA) is altered in HFpEF. METHODS Patients aged 55-80 years with symptoms of heart failure, body mass index ≤ 35 kg/m2, left ventricular ejection fraction > 50%, left atrial volume index > 34 mL/m2, left ventricular early diastolic filling velocity and early diastolic tissue velocity of mitral annulus ratio (E/e' index) ≥ 13, and BNP levels > 35 pg/mL were included in the study (HFpEF, n = 9). Patients without heart failure with preserved ejection fraction (non-HFpEF, n = 9), aged-paired, were also included in the study. Peripheral chemoreceptors stimulation (10% O2 and 90% N2, with CO2 titrated) and central chemoreceptors stimulation (7% CO2 and 93% O2) were conducted for 3 min. MSNA was evaluated by microneurography technique, and forearm blood flow (FBF) by venous occlusion plethysmography. RESULTS During hypoxia, MSNA responses were greater (p < 0.001) and FBF responses were lower in patients with HFpEF (p = 0.006). Likewise, MSNA responses during hypercapnia were higher (p < 0.001) and forearm vascular conductance (FVC) levels were lower (p = 0.030) in patients with HFpEF. CONCLUSIONS Peripheral and central chemoreflex controls of MSNA are hypersensitized in patients with HFpEF, which seems to contribute to the increase in MSNA in these patients. In addition, peripheral and central chemoreceptors stimulation in patients with HFpEF causes muscle vasoconstriction.
Collapse
Affiliation(s)
- Yufuko Kataoka
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Allan R K Sales
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Amanda G Rodrigues
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
- Research and Education Institute, Hospital Sirio Libanes, São Paulo, Brazil
| | - Beatriz R Goes-Santos
- School of Physical Education, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luciene F Azevedo
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Raphaela V Groehs
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Edna O Silva
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luciana S Santos
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Patricia A Oliveira
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Camila P Jordão
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Ana C M Andrade
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Denise M L Lobo
- Physiotherapy Unit, Fametro University Center (Unifametro), Fortaleza, Ceará, Brazil
| | - Eduardo Rondon
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Edgar Toschi-Dias
- Psychology, Development and Public Policy Program, Catholic University of Santos, São Paulo, Brazil
| | - Maria Janieire N N Alves
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil
| | - Dirceu R Almeida
- Division of Cardiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos E Negrão
- Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo, CEP 05403-904, Brazil.
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Zucker IH, Herring N, Wang HJ. Editorial: Cardiovascular physiology and pathology of cardio-pulmonary and peripheral sensory nerves. Front Physiol 2023; 14:1188800. [PMID: 37064900 PMCID: PMC10103080 DOI: 10.3389/fphys.2023.1188800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
7
|
Fuertes-Kenneally L, Manresa-Rocamora A, Blasco-Peris C, Ribeiro F, Sempere-Ruiz N, Sarabia JM, Climent-Paya V. Effects and Optimal Dose of Exercise on Endothelial Function in Patients with Heart Failure: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2023; 9:8. [PMID: 36739344 PMCID: PMC9899305 DOI: 10.1186/s40798-023-00553-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Exercise-based cardiac rehabilitation (CR) is considered an effective treatment for enhancing endothelial function in patients with heart failure (HF). However, recent studies have been published and the optimal "dose" of exercise required to increase the benefits of exercise-based CR programmes on endothelial function is still unknown. OBJECTIVES (a) To estimate the effect of exercise-based CR on endothelial function, assessed by flow-mediated dilation (FMD), in patients with HF; (b) to determine whether high-intensity interval training (HIIT) is better than moderate-intensity training (MIT) for improving FMD; and (c) to investigate the influence of exercise modality (i.e. resistance exercise vs. aerobic exercise and combined exercise vs. aerobic exercise) on the improvement of endothelial function. METHODS Electronic searches were carried out in PubMed, Embase, and Scopus up to February 2022. Random-effects models of between-group mean differences were estimated. Heterogeneity analyses were performed by means of the chi-square test and I2 index. Subgroup analyses and meta-regressions were used to test the influence of potential moderator variables on the effect of exercise. RESULTS We found a FMD increase of 3.09% (95% confidence interval [CI] = 2.01, 4.17) in favour of aerobic-based CR programmes compared with control groups in patients with HF and reduced ejection fraction (HFrEF). However, the results of included studies were inconsistent (p < .001; I2 = 95.2%). Higher FMD improvement was found in studies which were randomised, reported radial FMD, or performed higher number of training sessions a week. Moreover, HIIT enhanced FMD to a greater extent than MIT (2.35% [95% CI = 0.49, 4.22]) in patients with HFrEF. Insufficient data prevented pooled analyses for the effect of exercise in patients with HF and preserved ejection fraction and the influence of exercise modality on the improvement of endothelial function. CONCLUSION Aerobic-based CR is a non-pharmacological treatment for enhancing endothelial function in patients with HFrEF. However, higher training frequency and HIIT induce greater adaptation of endothelial function in these patients, which should betaken into consideration when designing exercise-based CR programmes. Trial registration The protocol was prospectively registered on the PROSPERO database (CRD42022304687).
Collapse
Affiliation(s)
- Laura Fuertes-Kenneally
- grid.513062.30000 0004 8516 8274Institute for Health and Biomedical Research of Alicante (ISABIAL), 03010 Alicante, Spain ,Cardiology Department, Alicante General University Hospital (HGUA), 03010 Alicante, Spain
| | - Agustín Manresa-Rocamora
- grid.513062.30000 0004 8516 8274Institute for Health and Biomedical Research of Alicante (ISABIAL), 03010 Alicante, Spain ,grid.26811.3c0000 0001 0586 4893Department of Sport Sciences, Sports Research Centre, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Carles Blasco-Peris
- grid.513062.30000 0004 8516 8274Institute for Health and Biomedical Research of Alicante (ISABIAL), 03010 Alicante, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Physical Education and Sport, University of Valencia, 46010 Valencia, Spain
| | - Fernando Ribeiro
- grid.7311.40000000123236065Institute of Biomedicine‑iBiMED and School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Noemí Sempere-Ruiz
- grid.513062.30000 0004 8516 8274Institute for Health and Biomedical Research of Alicante (ISABIAL), 03010 Alicante, Spain ,grid.26811.3c0000 0001 0586 4893Department of Sport Sciences, Sports Research Centre, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - José Manuel Sarabia
- grid.513062.30000 0004 8516 8274Institute for Health and Biomedical Research of Alicante (ISABIAL), 03010 Alicante, Spain ,grid.26811.3c0000 0001 0586 4893Department of Sport Sciences, Sports Research Centre, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Vicente Climent-Paya
- grid.513062.30000 0004 8516 8274Institute for Health and Biomedical Research of Alicante (ISABIAL), 03010 Alicante, Spain ,Cardiology Department, Alicante General University Hospital (HGUA), 03010 Alicante, Spain
| |
Collapse
|
8
|
Neder JA, Phillips DB, O'Donnell DE, Dempsey JA. Excess ventilation and exertional dyspnoea in heart failure and pulmonary hypertension. Eur Respir J 2022; 60:13993003.00144-2022. [PMID: 35618273 DOI: 10.1183/13993003.00144-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Increased ventilation relative to metabolic demands, indicating alveolar hyperventilation and/or increased physiological dead space (excess ventilation), is a key cause of exertional dyspnoea. Excess ventilation has assumed a prominent role in the functional assessment of patients with heart failure (HF) with reduced (HFrEF) or preserved (HFpEF) ejection fraction, pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). We herein provide the key pieces of information to the caring physician to 1) gain unique insights into the seeds of patients' shortness of breath and 2) develop a rationale for therapeutically lessening excess ventilation to mitigate this distressing symptom. Reduced bulk oxygen transfer induced by cardiac output limitation and/or right ventricle-pulmonary arterial uncoupling increase neurochemical afferent stimulation and (largely chemo-) receptor sensitivity, leading to alveolar hyperventilation in HFrEF, PAH and small-vessel, distal CTEPH. As such, interventions geared to improve central haemodynamics and/or reduce chemosensitivity have been particularly effective in lessening their excess ventilation. In contrast, 1) high filling pressures in HFpEF and 2) impaired lung perfusion leading to ventilation/perfusion mismatch in proximal CTEPH conspire to increase physiological dead space. Accordingly, 1) decreasing pulmonary capillary pressures and 2) mechanically unclogging larger pulmonary vessels (pulmonary endarterectomy and balloon pulmonary angioplasty) have been associated with larger decrements in excess ventilation. Exercise training has a strong beneficial effect across diseases. Addressing some major unanswered questions on the link of excess ventilation with exertional dyspnoea under the modulating influence of pharmacological and nonpharmacological interventions might prove instrumental to alleviate the devastating consequences of these prevalent diseases.
Collapse
Affiliation(s)
- J Alberto Neder
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Devin B Phillips
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Denis E O'Donnell
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Dept of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Andrade DC, Díaz-Jara E, Toledo C, Schwarz KG, Pereyra KV, Díaz HS, Marcus NJ, Ortiz FC, Ríos-Gallardo AP, Ortolani D, Del Rio R. Exercise intolerance in volume overload heart failure is associated with low carotid body mediated chemoreflex drive. Sci Rep 2021; 11:14458. [PMID: 34262072 PMCID: PMC8280104 DOI: 10.1038/s41598-021-93791-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Mounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program. At the conclusion of the training program, exercise tolerant HF rats (HF + EX-T) exhibited improvements in cardiac systolic function and reductions in HCVR, sympathetic tone, and arrhythmias. In contrast, HF rats that were exercise intolerant (HF + EX-inT) exhibited worse diastolic dysfunction, and showed no improvements in cardiac systolic function, HCVR, sympathetic tone, or arrhythmias at the conclusion of the training program. In addition, HF + EX-inT rats had impaired HVR which was associated with increased arrhythmia susceptibility and mortality during hypoxic challenges (~ 60% survival). Finally, we observed that exercise tolerance in HF rats was related to carotid body (CB) function as CB ablation resulted in impaired exercise capacity in HF + EX-T rats. Our results indicate that: (i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and (ii) loss of CB chemoreflex sensitivity contributes to EX-inT in HF.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Dept. of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Fernando C Ortiz
- Mechanism of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Angélica P Ríos-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
10
|
Arce-Álvarez A, Veliz C, Vazquez-Muñoz M, von Igel M, Alvares C, Ramirez-Campillo R, Izquierdo M, Millet GP, Del Rio R, Andrade DC. Hypoxic Respiratory Chemoreflex Control in Young Trained Swimmers. Front Physiol 2021; 12:632603. [PMID: 33716781 PMCID: PMC7953139 DOI: 10.3389/fphys.2021.632603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/27/2022] Open
Abstract
During an apnea, changes in PaO2 activate peripheral chemoreceptors to increase respiratory drive. Athletes with continuous apnea, such as breath-hold divers, have shown a decrease in hypoxic ventilatory response (HVR), which could explain the long apnea times; however, this has not been studied in swimmers. We hypothesize that the long periods of voluntary apnea in swimmers is related to a decreased HVR. Therefore, we sought to determine the HVR and cardiovascular adjustments during a maximum voluntary apnea in young-trained swimmers. In fifteen trained swimmers and twenty-seven controls we studied minute ventilation (VE), arterial saturation (SpO2), heart rate (HR), and autonomic response [through heart rate variability (HRV) analysis], during acute chemoreflex activation (five inhalations of pure N2) and maximum voluntary apnea test. In apnea tests, the maximum voluntary apnea time and the end-apnea HR were higher in swimmers than in controls (p < 0.05), as well as a higher low frequency component of HRV (p < 0.05), than controls. Swimmers showed lower HVR than controls (p < 0.01) without differences in cardiac hypoxic response (CHR). We conclude that swimmers had a reduced HVR response and greater maximal voluntary apnea duration, probably due to decreased HVR.
Collapse
Affiliation(s)
- Alexis Arce-Álvarez
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
| | - Carlos Veliz
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Manuel Vazquez-Muñoz
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.,Unidad de Estadística, Departamento de Calidad, Clínica Santa María, Santiago, Chile
| | - Magdalena von Igel
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Cristian Alvares
- Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
| | - Rodrigo Ramirez-Campillo
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
| | - Mikel Izquierdo
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
11
|
Grotle AK, Macefield VG, Farquhar WB, O'Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 2020; 228:102698. [PMID: 32861944 DOI: 10.1016/j.autneu.2020.102698] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Autonomic alterations at the onset of exercise are critical to redistribute cardiac output towards the contracting muscles while preventing a fall in arterial pressure due to excessive vasodilation within the contracting muscles. Neural mechanisms responsible for these adjustments include central command, the exercise pressor reflex, and arterial and cardiopulmonary baroreflexes. The exercise pressor reflex evokes reflex increases in sympathetic activity to the heart and systemic vessels and decreases in parasympathetic activity to the heart, which increases blood pressure (BP), heart rate, and total peripheral resistance through vasoconstriction of systemic vessels. In this review, we discuss recent advancements in our understanding of exercise pressor reflex function in health and disease. Specifically, we discuss emerging evidence suggesting that sympathetic vasoconstrictor drive to the contracting and non-contracting skeletal muscle is differentially controlled by central command and the metaboreflex in healthy conditions. Further, we discuss evidence from animal and human studies showing that cardiovascular diseases, including hypertension, diabetes, and heart failure, lead to an altered exercise pressor reflex function. We also provide an update on the mechanisms thought to underlie this altered exercise pressor reflex function in each of these diseases. Although these mechanisms are complex, multifactorial, and dependent on the etiology of the disease, there is a clear consensus that several mechanisms are involved. Ultimately, approaches targeting these mechanisms are clinically significant as they provide alternative therapeutic strategies to prevent adverse cardiovascular events while also reducing symptoms of exercise intolerance.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America.
| |
Collapse
|
12
|
Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol 2020; 598:33-59. [PMID: 31671478 DOI: 10.1113/jp278864] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 08/25/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
13
|
Paneroni M, Pasini E, Comini L, Vitacca M, Schena F, Scalvini S, Venturelli M. Skeletal Muscle Myopathy in Heart Failure: the Role of Ejection Fraction. Curr Cardiol Rep 2018; 20:116. [PMID: 30259199 DOI: 10.1007/s11886-018-1056-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review summarizes: (1) the structural and functional features coupled with pathophysiological factors responsible of skeletal muscle myopathy (SMM) in both heart failure with reduced (HFrEF) and preserved (HFpEF) ejection fraction and (2) the role of exercise as treatment of SMM in these HF-related phenotypes. RECENT FINDINGS The recent literature showed two main phenotypes of heart failure (HF): (1) HFrEF primarily due to a systolic dysfunction of the left ventricle and (2) HFpEF, mainly related to a diastolic dysfunction. Exercise intolerance is one of most disabling symptoms of HF and it is shown that persists after the normalization of the central hemodynamic impairments by therapy and/or cardiac surgery including heart transplant. A specific skeletal muscle myopathy (SMM) has been defined as one of the main causes of exercise intolerance in HF. The SMM has been well described in the last 20 years in the HFrEF; on the contrary, few studies are available in HFpEF. Recent evidences have revealed that exercise training counteracts HF-related SMM and in turn ameliorates exercise intolerance.
Collapse
Affiliation(s)
- Mara Paneroni
- Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Evasio Pasini
- Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Laura Comini
- Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | | | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37100, Verona, Italy
| | | | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37100, Verona, Italy.
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|