1
|
Wolf ST, Dillon GA, Alexander LM, Kenney WL, Stanhewicz AE. Quantification and interpretation of nitric oxide-dependent cutaneous vasodilation during local heating. J Appl Physiol (1985) 2024; 137:1418-1424. [PMID: 39417818 PMCID: PMC11573251 DOI: 10.1152/japplphysiol.00558.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Human cutaneous microdialysis approaches for assessing nitric oxide (NO)-dependent blood flow include local heating (LH) of the skin until a plateau is reached, followed by infusion of a NO synthase inhibitor such as NG-nitro-l-arginine methyl ester (l-NAME); however, varied methods of quantifying and expressing NO-dependent vasodilation can obfuscate data interpretation and reproducibility. We retrospectively assessed NO-dependent vasodilation during LH to 39°C or 42°C, calculated as the 1) absolute contribution of the NO-dependent component (along with baseline and the non-NO-dependent component) to the total cutaneous vascular conductance (CVC) response to LH, normalized to maximal CVC (%CVCmax); 2) difference in %CVCmax (Δ%CVCmax) between the LH plateau and post-NO synthase inhibition (l-NAME plateau; Δ%CVCmax = LH plateau - l-NAME plateau); 3) percentage of the LH plateau attributable to Δ%CVCmax (%plateau = Δ%CVCmax/LH plateau × 100); and 4) %plateau when correcting for baseline. The LH plateaus during 39°C and 42°C were 48 ± 17%CVCmax (9 ± 5% baseline; 2 ± 4% non-NO dependent; 36 ± 15% NO dependent) and 88 ± 10%CVCmax (15 ± 8% baseline; 9 ± 10% non-NO dependent; 64 ± 13% NO dependent), respectively. The absolute contributions of the non-NO-dependent and NO-dependent components of the response (P < 0.0001) and the Δ%CVCmax (66 ± 14 vs. 38 ± 15%) were greater during 42°C compared with 39°C (all P ≤ 0.02); however, there were no differences between the two protocols in %plateau (75 ± 13 vs. 80 ± 10%; P = 0.57) or %plateauBL (88 ± 14 vs. 95 ± 8%; P = 0.31). For both protocols, the values were greater for %plateauBL versus Δ%CVCmax and %plateau (P ≤ 0.0001), and for %plateau versus Δ%CVCmax (P ≤ 0.05). Quantification of NO-dependent skin vasodilation responses to LH is dependent upon the mathematical approach and verbal description, which can meaningfully impact data interpretation and reproducibility.NEW & NOTEWORTHY Local heating protocols are commonly used in conjunction with intradermal microdialysis for assessing nitric oxide (NO)-dependent microvascular function in humans, but various methods used to quantify and describe NO-dependent vasodilation may impact data interpretation. We compared four approaches for quantifying NO-dependent cutaneous vasodilation during local heating at 39°C and 42°C. We identify discrepancies in calculated NO-dependent dilation responses that are dependent upon the mathematical approach and meaningfully impact data interpretation and reproducibility.
Collapse
Affiliation(s)
- S Tony Wolf
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Gabrielle A Dillon
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Department of Health and Kinesiology, University of Illinois, Urbana, Illinois, United States
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
2
|
Turner CG, Hayat MJ, Otis JS, Quyyumi AA, Wong BJ. The effect of endothelin a receptor inhibition and biological sex on cutaneous microvascular function in non-Hispanic Black and White young adults. Physiol Rep 2024; 12:e16149. [PMID: 39016164 PMCID: PMC11252828 DOI: 10.14814/phy2.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The purpose of this study was to investigate whether endothelin-A receptor (ETAR) inhibition in non-Hispanic Black (NHB) and White (NHW) young adults depends on biological sex. We recruited females during low hormone (n = 22) and high hormone (n = 22) phases, and males (n = 22). Participants self-identified as NHB (n = 33) or NHW (n = 33). Participants were instrumented with two microdialysis fibers: (1) lactated Ringer's (control) and (2) 500 nM BQ-123 (ETAR antagonist). Local heating was used to elicit cutaneous vasodilation, and an infusion of 20 mM L-NAME to quantify NO-dependent vasodilation. At control sites, NO-dependent vasodilation was lowest in NHB males (46 ± 13 %NO) and NHB females during low hormone phases (47 ± 12 %NO) compared to all NHW groups. Inhibition of ETAR increased NO-dependent vasodilation in NHB males (66 ± 13 %NO), in both groups of females during low hormone phases (NHW, control: 64 ± 12 %NO, BQ-123: 85 ± 11 %NO; NHB, BQ-123: 68 ± 13 %NO), and in NHB females during high hormone phases (control: 61 ± 11 %NO, BQ-123: 83 ± 9 %NO). There was no effect for ETAR inhibition in NHW males or females during high hormone phases. These data suggest the effect of ETAR inhibition on NO-dependent vasodilation is influenced by biological sex and racial identity.
Collapse
Affiliation(s)
- Casey G. Turner
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Brett J. Wong
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Wong BJ, Turner CG, Hayat MJ, Otis JS, Quyyumi AA. Inhibition of superoxide and iNOS augment cutaneous nitric oxide-dependent vasodilation in non-Hispanic black young adults. Physiol Rep 2024; 12:e16021. [PMID: 38639714 PMCID: PMC11027894 DOI: 10.14814/phy2.16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
We assessed the combined effect of superoxide and iNOS inhibition on microvascular function in non-Hispanic Black and non-Hispanic White participants (n = 15 per group). Participants were instrumented with four microdialysis fibers: (1) lactated Ringer's (control), (2) 10 μM tempol (superoxide inhibition), (3) 0.1 mM 1400 W (iNOS inhibition), (4) tempol + 1400 W. Cutaneous vasodilation was induced via local heating and NO-dependent vasodilation was quantified. At control sites, NO-dependent vasodilation was lower in non-Hispanic Black (45 ± 9% NO) relative to non-Hispanic White (79 ± 9% NO; p < 0.01; effect size, d = 3.78) participants. Tempol (62 ± 16% NO), 1400 W (78 ± 12% NO) and tempol +1400 W (80 ± 13% NO) increased NO-dependent vasodilation in non-Hispanic Black participants relative to control sites (all p < 0.01; d = 1.22, 3.05, 3.03, respectively). The effect of 1400 W (p = 0.04, d = 1.11) and tempol +1400 W (p = 0.03, d = 1.22) was greater than tempol in non-Hispanic Black participants. There was no difference between non-Hispanic Black and non-Hispanic White participants at 1400 W or tempol + 1400 W sites. These data suggest iNOS has a greater effect on NO-dependent vasodilation than superoxide in non-Hispanic Black participants.
Collapse
Affiliation(s)
- Brett J. Wong
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Casey G. Turner
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- Department of Population Health Sciences, School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiology Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Martin ZT, Akins JD, Merlau ER, Kolade JO, Al-Daas IO, Cardenas N, Vu JK, Brown KK, Brothers RM. The acute effect of whole-body heat therapy on peripheral and cerebral vascular reactivity in Black and White females. Microvasc Res 2023; 148:104536. [PMID: 37024072 PMCID: PMC10908357 DOI: 10.1016/j.mvr.2023.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Among females in the U.S., Black females suffer the most from cardiovascular disease and stroke. While the reasons for this disparity are multifactorial, vascular dysfunction likely contributes. Chronic whole-body heat therapy (WBHT) improves vascular function, but few studies have examined its acute effect on peripheral or cerebral vascular function, which may help elucidate chronic adaptative mechanisms. Furthermore, no studies have investigated this effect in Black females. We hypothesized that Black females would have lower peripheral and cerebral vascular function relative to White females and that one session of WBHT would mitigate these differences. Eighteen young, healthy Black (n = 9; 21 ± 3 yr; BMI: 24.7 ± 4.5 kg/m2) and White (n = 9; 27 ± 3 yr; BMI: 24.8 ± 4.1 kg/m2) females underwent one 60 min session of WBHT (49 °C water via a tube-lined suit). Pre- and 45 min post-testing measures included post-occlusive forearm reactive hyperemia (peripheral microvascular function, RH), brachial artery flow-mediated dilation (peripheral macrovascular function, FMD), and cerebrovascular reactivity (CVR) to hypercapnia. Prior to WBHT, there were no differences in RH, FMD, or CVR (p > 0.05 for all). WBHT improved peak RH in both groups (main effect of WBHT: 79.6 ± 20.1 cm/s to 95.9 ± 30.0 cm/s; p = 0.004, g = 0.787) but not Δ blood velocity (p > 0.05 for both groups). WBHT improved FMD in both groups (6.2 ± 3.4 % to 8.8 ± 3.7 %; p = 0.016, g = 0.618) but had no effect on CVR in either group (p = 0.077). These data indicate that one session of WBHT acutely improves peripheral micro- and macrovascular but not cerebral vascular function in Black and White females.
Collapse
Affiliation(s)
- Zachary T Martin
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - John D Akins
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Emily R Merlau
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - John O Kolade
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Iman O Al-Daas
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Natalia Cardenas
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Joshua K Vu
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Kyrah K Brown
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
5
|
Turner CG, Hayat MJ, Grosch C, Quyyumi AA, Otis JS, Wong BJ. Endothelin A receptor inhibition increases nitric oxide-dependent vasodilation independent of superoxide in non-Hispanic Black young adults. J Appl Physiol (1985) 2023; 134:891-899. [PMID: 36892887 PMCID: PMC10042601 DOI: 10.1152/japplphysiol.00739.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Young non-Hispanic Black adults have reduced microvascular endothelial function compared with non-Hispanic White counterparts, but the mechanisms are not fully elucidated. The purpose of this study was to investigate the effect of endothelin-1 A receptor (ETAR) and superoxide on cutaneous microvascular function in young non-Hispanic Black (n = 10) and White (n = 10) adults. Participants were instrumented with four intradermal microdialysis fibers: 1) lactated Ringer's (control), 2) 500 nM BQ-123 (ETAR antagonist), 3) 10 μM tempol (superoxide dismutase mimetic), and 4) BQ-123 + tempol. Skin blood flow was assessed via laser-Doppler flowmetry (LDF), and each site underwent rapid local heating from 33°C to 39°C. At the plateau of local heating, 20 mM l-NAME [nitric oxide (NO) synthase inhibitor] was infused to quantify NO-dependent vasodilation. Data are means ± standard deviation. NO-dependent vasodilation was decreased in non-Hispanic Black compared with non-Hispanic White young adults (P < 0.01). NO-dependent vasodilation was increased at BQ-123 sites (73 ± 10% NO) and at BQ-123 + tempol sites (71 ± 10%NO) in non-Hispanic Black young adults compared with control (53 ± 13%NO, P = 0.01). Tempol alone had no effect on NO-dependent vasodilation in non-Hispanic Black young adults (63 ± 14%NO, P = 0.18). NO-dependent vasodilation at BQ-123 sites was not statistically different between non-Hispanic Black and White (80 ± 7%NO) young adults (P = 0.15). ETAR contributes to reduced NO-dependent vasodilation in non-Hispanic Black young adults independent of superoxide, suggesting a greater effect on NO synthesis rather than NO scavenging via superoxide.NEW & NOTEWORTHY Endothelin-1 A receptors (ETARs) have been shown to reduce endothelial function independently and through increased production of superoxide. We show that independent ETAR inhibition increases microvascular endothelial function in non-Hispanic Black young adults. However, administration of a superoxide dismutase mimetic alone and in combination with ETAR inhibition had no effect on microvascular endothelial function suggesting that, in the cutaneous microvasculature, the negative effects of ETAR in non-Hispanic Black young adults are independent of superoxide production.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Matthew J Hayat
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Caroline Grosch
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
6
|
SenthilKumar G, Gutierrez-Huerta CA, Freed JK, Beyer AM, Fancher IS, LeBlanc AJ. New developments in translational microcirculatory research. Am J Physiol Heart Circ Physiol 2022; 323:H1167-H1175. [PMID: 36306213 PMCID: PMC9678417 DOI: 10.1152/ajpheart.00566.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/28/2023]
Abstract
Microvascular disease plays a critical role in systemic end-organ dysfunction, and treatment of microvascular pathologies may greatly reduce cardiovascular morbidity and mortality. The Call for Papers collection: New Developments in Translational Microcirculatory Research highlights key advances in our understanding of the role of microvessels in the development of chronic diseases as well as therapeutic strategies to enhance microvascular function. This Mini Review provides a concise summary of these advances and draws from other relevant research to provide the most up-to-date information on the influence of cutaneous, cerebrovascular, coronary, and peripheral microcirculation on the pathophysiology of obesity, hypertension, cardiovascular aging, peripheral artery disease, and cognitive impairment. In addition to these disease- and location-dependent research articles, this Call for Papers includes state-of-the-art reviews on coronary endothelial function and assessment of microvascular health in different organ systems, with an additional focus on establishing rigor and new advances in clinical trial design. These articles, combined with original research evaluating cellular, exosomal, pharmaceutical, exercise, heat, and dietary interventional therapies, establish the groundwork for translating microcirculatory research from bench to bedside. Although numerous studies in this collection are focused on human microcirculation, most used robust preclinical models to probe mechanisms of pathophysiology and interventional benefits. Future work focused on translating these findings to humans are necessary for finding clinical strategies to prevent and treat microvascular dysfunction.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cristhian A Gutierrez-Huerta
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K Freed
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Amanda Jo LeBlanc
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
7
|
Xu C, Sellke FW, Abid MR. Assessments of microvascular function in organ systems. Am J Physiol Heart Circ Physiol 2022; 322:H891-H905. [PMID: 35333121 PMCID: PMC9037705 DOI: 10.1152/ajpheart.00589.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/23/2023]
Abstract
Microvascular disease plays critical roles in the dysfunction of all organ systems, and there are many methods available to assess the microvasculature. These methods can either assess the target organ directly or assess an easily accessible organ such as the skin or retina so that inferences can be extrapolated to the other systems and/or related diseases. Despite the abundance of exploratory research on some of these modalities and their possible applications, there is a general lack of clinical use. This deficiency is likely due to two main reasons: the need for standardization of protocols to establish a role in clinical practice or the lack of therapies targeted toward microvascular dysfunction. Also, there remain some questions to be answered about the coronary microvasculature, as it is complex, heterogeneous, and difficult to visualize in vivo even with advanced imaging technology. This review will discuss novel approaches that are being used to assess microvasculature health in several key organ systems, and evaluate their clinical utility and scope for further development.
Collapse
Affiliation(s)
- Cynthia Xu
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|