1
|
White AJ, Boulet LM, Shafer BM, Vermeulen TD, Atwater TL, Stembridge M, Ainslie PN, Wilson RJA, Day TA, Foster GE. The coronary vascular response to the metaboreflex at low-altitude and during acute and prolonged high-altitude in males. J Appl Physiol (1985) 2022; 132:1327-1337. [PMID: 35482323 DOI: 10.1152/japplphysiol.00018.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myocardial oxygen delivery is primarily regulated through changes in vascular tone to match increased metabolic demands. In males, activation of the muscle metaboreflex during acute isocapnic hypoxia results in a paradoxical coronary vasoconstriction. Whether coronary blood velocity is reduced by metaboreflex activation following travel and/or adaptation to high-altitude is unknown. This study determined if the response of the coronary vasculature to muscle metaboreflex activation at low-altitude differs from acute (1/2 days) and prolonged (8/9 days) high-altitude. Healthy males (n=16) were recruited and performed isometric handgrip exercise (30 % max) followed by post-exercise circulatory occlusion (PECO) to isolate the muscle metaboreflex at low-altitude and following acute and prolonged high-altitude (3,800 m). Mean left anterior descending coronary artery blood velocity (LADvmean, transthoracic Doppler echocardiography), heart rate, mean arterial pressure (MAP), ventilation, and respired gases were assessed during baseline and PECO at all time-points. Coronary vascular conductance index (CVCi) was calculated as LADVmean/MAP. The change in LADvmean (acute altitude: -1.7 ± 3.9 cm/s, low-altitude: 2.6 ± 3.4 cm/s, P = 0.01) and CVCi (acute altitude: -0.05 ± 0.04 cm/s/mmHg, low-altitude: -0.01 ± 0.03 cm/s/mmHg, P = 0.005) induced by PECO differed significantly between acute high-altitude and low-altitude. The change in LADVmean and CVCi induced by PECO following prolonged high-altitude was not different from low-altitude. Our results suggest that coronary vasoconstriction with metaboreflex activation in males is greatest following acute ascent to high-altitude and restored to low-altitude levels following 8-9 days of acclimatization.
Collapse
Affiliation(s)
- Austin J White
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Taylor L Atwater
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen Edward Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| |
Collapse
|
2
|
Boulet LM, Atwater TL, Brown CV, Shafer BM, Vermeulen TD, Cotton PC, Day TA, Foster GE. Sex differences in the coronary vascular response to combined chemoreflex and metaboreflex stimulation in healthy humans. Exp Physiol 2021; 107:16-28. [PMID: 34788486 DOI: 10.1113/ep090034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Coronary blood flow in healthy humans is controlled by both local metabolic signalling and adrenergic activity: does the integration of these signals during acute hypoxia and adrenergic activation differ between sexes? What are the main findings and its importance? Both males and females exhibit an increase in coronary blood velocity in response to acute hypoxia, a response that is constrained by adrenergic stimulation in males but not females. These findings suggest that coronary blood flow control differs between males and females. ABSTRACT Coronary hyperaemia is mediated through multiple signalling pathways, including local metabolic messengers and adrenergic stimulation. This study aimed to determine whether the coronary vascular response to adrenergic stressors is different between sexes in normoxia and hypoxia. Young, healthy participants (n = 32; 16F) underwent three randomized trials of isometric handgrip exercise followed by post-exercise circulatory occlusion (PECO) to activate the muscle metaboreflex. End-tidal P O 2 was controlled at (1) normoxic levels throughout the trial, (2) 50 mmHg for the duration of the trial (hypoxia trial), or (3) 50 mmHg only during PECO (mixed trial). Mean left anterior descending coronary artery velocity (LADVmean ; transthoracic Doppler echocardiography), heart rate and blood pressure were assessed at baseline and during PECO. In normoxia, there was no change in LADVmean or cardiac workload induced by PECO in males and females. Acute hypoxia increased baseline LADVmean to a greater extent in males compared with females (P < 0.05), despite a similar increase in cardiac workload. The change in LADVmean induced by PECO was similar between sexes in normoxia (P = 0.31), greater in males during the mixed trial (male: 12.8 (7.7) cm/s vs. female: 8.1 (6.3) cm/s; P = 0.02) and reduced in males but not females in acute hypoxia (male: -4.8 (4.5) cm/s vs. female: 0.8 (6.2) cm/s; P = 0.006). In summary, sex differences in the coronary vasodilatory response to hypoxia were observed, and metaboreflex activation during hypoxia caused a paradoxical reduction in coronary blood velocity in males but not females.
Collapse
Affiliation(s)
- Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Taylor L Atwater
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Paul C Cotton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| |
Collapse
|
3
|
Vermeulen TD, Boulet LM, Stembridge M, Williams AM, Anholm JD, Subedi P, Gasho C, Ainslie PN, Feigl EO, Foster GE. Influence of myocardial oxygen demand on the coronary vascular response to arterial blood gas changes in humans. Am J Physiol Heart Circ Physiol 2018; 315:H132-H140. [PMID: 29600897 DOI: 10.1152/ajpheart.00689.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It remains unclear if the human coronary vasculature is inherently sensitive to changes in arterial Po2 and Pco2 or if coronary vascular responses are the result of concomitant increases in myocardial O2 consumption/demand ([Formula: see text]). We hypothesized that the coronary vascular response to Po2 and Pco2 would be attenuated in healthy men when [Formula: see text] was attenuated with β1-adrenergic receptor blockade. Healthy men (age: 25 ± 1 yr, n = 11) received intravenous esmolol (β1-adrenergic receptor antagonist) or volume-matched saline in a double-blind, randomized crossover study and were exposed to poikilocapnic hypoxia, isocapnic hypoxia, and hypercapnic hypoxia. Measurements made at baseline and after 5 min of steady state at each gas manipulation included left anterior descending coronary blood velocity (LADV; Doppler echocardiography), heart rate, and arterial blood pressure. LADV values at the end of each hypoxic condition were compared between esmolol and placebo. The rate-pressure product (RPP) and left ventricular mechanical energy (MELV) were calculated as indexes of [Formula: see text]. All gas manipulations augmented RPP, MELV, and LADV, but only RPP and MELV were attenuated (4-18%) after β1-adrenergic receptor blockade ( P < 0.05). Despite attenuated RPP and MELV responses, β1-adrenergic receptor blockade did not attenuate the mean LADV vasodilatory response compared with placebo during poikilocapnic hypoxia (29.4 ± 2.2 vs. 27.3 ± 1.6 cm/s) and isocapnic hypoxia (29.5 ± 1.5 vs. 30.3 ± 2.2 cm/s). Hypercapnic hypoxia elicited a feedforward coronary dilation that was blocked by β1-adrenergic receptor blockade. These results indicate a direct influence of arterial Po2 on coronary vascular regulation that is independent of [Formula: see text]. NEW & NOTEWORTHY In humans, arterial hypoxemia led to an increase in epicardial coronary artery blood velocity. β1-Adrenergic receptor blockade did not diminish the hypoxemic coronary response despite reduced myocardial O2 demand. These data indicate hypoxemia can regulate coronary blood flow independent of myocardial O2 consumption. A plateau in the mean left anterior descending coronary artery blood velocity-rate-pressure product relationship suggested β1-adrenergic receptor-mediated, feedforward epicardial coronary artery dilation. In addition, we observed a synergistic effect of Po2 and Pco2 during hypercapnic hypoxia.
Collapse
Affiliation(s)
- Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna, British Columbia , Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna, British Columbia , Canada
| | - Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Alexandra M Williams
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna, British Columbia , Canada
| | | | | | - Chris Gasho
- Loma Linda University , Loma Linda, California
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna, British Columbia , Canada
| | - Eric O Feigl
- Department of Physiology and Biophysics, University of Washington , Seattle, Washington
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna, British Columbia , Canada
| |
Collapse
|
4
|
Maman SR, Vargas AF, Ahmad TA, Miller AJ, Gao Z, Leuenberger UA, Proctor DN, Muller MD. Beta-1 vs. beta-2 adrenergic control of coronary blood flow during isometric handgrip exercise in humans. J Appl Physiol (1985) 2017; 123:337-343. [PMID: 28572492 DOI: 10.1152/japplphysiol.00106.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022] Open
Abstract
During exercise, β-adrenergic receptors are activated throughout the body. In healthy humans, the net effect of β-adrenergic stimulation is an increase in coronary blood flow. However, the role of vascular β1 vs. β2 receptors in coronary exercise hyperemia is not clear. In this study, we simultaneously measured noninvasive indexes of myocardial oxygen supply (i.e., blood velocity in the left anterior descending coronary artery; Doppler echocardiography) and demand [i.e., rate pressure product (RPP) = heart rate × systolic blood pressure) and tested the hypothesis that β1 blockade with esmolol improves coronary exercise hyperemia compared with nonselective β-blockade with propranolol. Eight healthy young men received intravenous infusions of esmolol, propranolol, and saline on three separate days in a single-blind, randomized, crossover design. During each infusion, subjects performed isometric handgrip exercise until fatigue. Blood pressure, heart rate, and coronary blood velocity (CBV) were measured continuously, and RPP was calculated. Changes in parameters from baseline were compared with paired t-tests. Esmolol (Δ = 3296 ± 1204) and propranolol (Δ = 2997 ± 699) caused similar reductions in peak RPP compared with saline (Δ = 5384 ± 1865). In support of our hypothesis, ΔCBV with esmolol was significantly greater than with propranolol (7.3 ± 2.4 vs. 4.5 ± 1.6 cm/s; P = 0.002). This effect was also evident when normalizing ΔCBV to ΔRPP. In summary, not only does selective β1 blockade reduce myocardial oxygen demand during exercise, but it also unveils β2-receptor-mediated coronary exercise hyperemia.NEW & NOTEWORTHY In this study, we evaluated the role of vascular β1 vs. β2 receptors in coronary exercise hyperemia in a single-blind, randomized, crossover study in healthy men. In response to isometric handgrip exercise, blood flow velocity in the left anterior descending coronary artery was significantly greater with esmolol compared with propranolol. These findings increase our understanding of the individual and combined roles of coronary β1 and β2 adrenergic receptors in humans.
Collapse
Affiliation(s)
- Stephan R Maman
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Alvaro F Vargas
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Tariq Ali Ahmad
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Amanda J Miller
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - David N Proctor
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania; and
| | - Matthew D Muller
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania; .,Master of Science in Anesthesia Program, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
5
|
Manou-Stathopoulou V, Goodwin CD, Patterson T, Redwood SR, Marber MS, Williams RP. The effects of cold and exercise on the cardiovascular system. Heart 2015; 101:808-20. [DOI: 10.1136/heartjnl-2014-306276] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Muller MD, Gao Z, McQuillan PM, Leuenberger UA, Sinoway LI. Coronary responses to cold air inhalation following afferent and efferent blockade. Am J Physiol Heart Circ Physiol 2014; 307:H228-35. [PMID: 24816257 DOI: 10.1152/ajpheart.00174.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cardiac ischemia and angina pectoris are commonly experienced during exertion in a cold environment. In the current study we tested the hypotheses that oropharyngeal afferent blockade (i.e., local anesthesia of the upper airway with lidocaine) as well as systemic β-adrenergic receptor blockade (i.e., intravenous propranolol) would improve the balance between myocardial oxygen supply and demand in response to the combined stimulus of cold air inhalation (-15 to -30°C) and isometric handgrip exercise (Cold + Grip). Young healthy subjects underwent Cold + Grip following lidocaine, propranolol, and control (no drug). Heart rate, blood pressure, and coronary blood flow velocity (CBV, from Doppler echocardiography) were continuously measured. Rate-pressure product (RPP) was calculated, and changes from baseline were compared between treatments. The change in RPP at the end of Cold + Grip was not different between lidocaine (2,441 ± 376) and control conditions (3,159 ± 626); CBV responses were also not different between treatments. With propranolol, heart rate (8 ± 1 vs. 14 ± 3 beats/min) and RPP responses to Cold + Grip were significantly attenuated. However, at peak exercise propranolol also resulted in a smaller ΔCBV (1.4 ± 0.8 vs. 5.3 ± 1.4 cm/s, P = 0.035), such that the relationship between coronary flow and cardiac metabolism was impaired under propranolol (0.43 ± 0.37 vs. 2.1 ± 0.63 arbitrary units). These data suggest that cold air breathing and isometric exercise significantly influence efferent control of coronary blood flow. Additionally, β-adrenergic vasodilation may play a significant role in coronary regulation during exercise.
Collapse
Affiliation(s)
- Matthew D Muller
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Zhaohui Gao
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Patrick M McQuillan
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| |
Collapse
|
7
|
Muller MD, Gao Z, Patel HM, Heffernan MJ, Leuenberger UA, Sinoway LI. β-Adrenergic blockade enhances coronary vasoconstrictor response to forehead cooling. Am J Physiol Heart Circ Physiol 2014; 306:H910-7. [PMID: 24441550 DOI: 10.1152/ajpheart.00787.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Forehead cooling activates the sympathetic nervous system and can trigger angina pectoris in susceptible individuals. However, the effect of forehead cooling on coronary blood flow velocity (CBV) is not well understood. In this human experiment, we tested the hypotheses that forehead cooling reduces CBV (i.e., coronary vasoconstriction) and that this vasoconstrictor effect would be enhanced under systemic β-adrenergic blockade. A total of 30 healthy subjects (age range, 23-79 years) underwent Doppler echocardiography evaluation of CBV in response to 60 s of forehead cooling (1°C ice bag on forehead). A subset of subjects (n = 10) also underwent the procedures after an intravenous infusion of propranolol. Rate pressure product (RPP) was used as an index of myocardial oxygen demand. Consistent with our first hypothesis, forehead cooling reduced CBV from 19.5 ± 0.7 to 17.5 ± 0.8 cm/s (P < 0.001), whereas mean arterial pressure increased by 11 ± 2 mmHg (P < 0.001). Consistent with our second hypothesis, forehead cooling reduced CBV under propranolol despite a significant rise in RPP. The current studies indicate that forehead cooling elicits a sympathetically mediated pressor response and a reduction in CBV, and this effect is augmented under β-blockade. The results are consistent with sympathetic activation of β-receptor coronary vasodilation in humans, as has been demonstrated in animals.
Collapse
Affiliation(s)
- Matthew D Muller
- Pennsylvania State University College of Medicine, Pennsylvania State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | | | | | | | | | | |
Collapse
|
8
|
Gao Z, Muller MD, Sinoway LI, Leuenberger UA. Intravenous phentolamine abolishes coronary vasoconstriction in response to mild central hypovolemia. J Appl Physiol (1985) 2013; 116:216-21. [PMID: 24311747 DOI: 10.1152/japplphysiol.01048.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Animal studies indicate alpha-adrenergic coronary vasoconstriction helps maintain left ventricular function during physiological stress. Whether this process occurs in humans is unknown. In the current study, we used transthoracic Doppler echocardiography to test the effect of lower body negative pressure (LBNP) on coronary blood flow velocity (CBV, left anterior descending coronary artery) and myocardial function in eight young healthy subjects before and after systemic infusion of phentolamine, a nonselective alpha blocker. Heart rate (HR) and blood pressure (BP) were monitored on a beat-by-beat basis. Peak diastolic CBV and myocardial systolic and diastolic tissue velocities (Sm and Em), were quantified at baseline, and at -5 mmHg, -10 mmHg, and -15 mmHg LBNP. Coronary vascular resistance index (CVRI) was calculated as the quotient of diastolic BP and CBV. Phentolamine reduced baseline diastolic BP and increased HR but did not affect the reflex adjustments to LBNP. The reduction in CBV due to LBNP was blunted by phentolamine at -10 mmHg and -15 mmHg. Importantly, the increase in CVRI (i.e., coronary vasoconstriction) was abolished by phentolamine at -5 mmHg (0.21 ± 0.06 vs. 0.83 ± 0.13), -10 mmHg (0.24 ± 0.03 vs. 1.68 ± 0.31), and -15 mmHg (0.27 ± 0.10 vs. 2.34 ± 0.43). These data indicate that alpha-adrenergic coronary vasoconstriction is present during low levels of LBNP. With alpha blockade, more coronary flow is needed to maintain cardiac function. Our data suggest that alpha-adrenergic tone enhances coronary flow efficiency, presumably by redistributing flow from the epicardium to the endocardium.
Collapse
Affiliation(s)
- Zhaohui Gao
- Penn State Hershey Heart and Vascular Institute, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | | | | |
Collapse
|
9
|
Monahan KD, Feehan RP, Sinoway LI, Gao Z. Contribution of sympathetic activation to coronary vasodilatation during the cold pressor test in healthy men: effect of ageing. J Physiol 2013; 591:2937-47. [PMID: 23478134 DOI: 10.1113/jphysiol.2013.251298] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The sympathetic nervous system is an important regulator of coronary blood flow. The cold pressor test (CPT) is a powerful sympathoexcitatory stressor. We tested the hypotheses that: (1) CPT-induced sympathetic activation elicits coronary vasodilatation in young adults that is impaired with advancing age and (2) combined α- and β-adrenergic blockade diminishes/abolishes these age-related differences. Vascular responses of the left anterior descending artery to the CPT were determined by transthoracic Doppler echocardiography before (pre-blockade) and during (post-blockade) systemic co-administration of α- and β-adrenergic antagonists in young (n = 9; 26 ± 1 years old, mean ± SEM) and older healthy men (n = 9; 66 ± 2 years old). Coronary vascular resistance (CVR; mean arterial pressure/coronary blood velocity) was used as an index of vascular tone. CPT decreased CVR (i.e. coronary vasodilatation occurred) in young ( -33 ± 6%), but not older men ( -3 ± 4%; P < 0.05 vs. young) pre-blockade. Adrenergic blockade abolished CPT-induced coronary vasodilatation in young men ( -33 ± 6% vs. 0 ± 6%, pre-blockade vs. post-blockade, respectively; P < 0.05) such that responses post-blockade mirrored those of older men ( -3 ± 4% vs. 8 ± 9%; both P > 0.05 compared to young pre-blockade). Impaired CPT-induced coronary vasodilatation could not be explained by a reduced stimulus for vasodilatation as group and condition effects persisted when CVR responses were expressed relative to myocardial oxygen demand (rate-pressure product). These data indicate that the normal coronary vascular response to sympathetic activation in young men is pronounced vasodilatation and this effect is lost with age as the result of an adrenergic mechanism. These findings may help explain how acute sympathoexcitation may precipitate angina and coronary ischaemic events, particularly in older adults.
Collapse
Affiliation(s)
- Kevin D Monahan
- Penn State Hershey Heart and Vascular Institute, The Milton S. Hershey Medical Center, 500 University Dr., Hershey, PA 17033-2390, USA.
| | | | | | | |
Collapse
|
10
|
Nerla R, Tarzia P, Sestito A, Di Monaco A, Infusino F, Matera D, Greco F, Tacchino RM, Lanza GA, Crea F. Effect of bariatric surgery on peripheral flow-mediated dilation and coronary microvascular function. Nutr Metab Cardiovasc Dis 2012; 22:626-634. [PMID: 21186109 DOI: 10.1016/j.numecd.2010.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/30/2010] [Accepted: 10/08/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS To assess the effects of bariatric surgery (BS) on peripheral endothelial function and on coronary microvascular dilator function. METHODS AND RESULTS We studied 50 morbidly obese patients (age 38 ± 9, 13 M) who underwent BS and 20 comparable obese controls (age 41 ± 11, 6 M) without any evidence of cardiovascular disease. Peripheral vascular dilator function was assessed by brachial artery diameter changes in response to post-ischemic forearm hyperaemia (flow-mediated dilation, FMD). Coronary microvascular function was assessed by measuring coronary blood flow (CBF) velocity response to i.v. adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery by transthoracic Doppler echocardiography. The tests were performed at baseline and at 3-month follow-up. At baseline, FMD and CBF response to adenosine and CPT were similar in the 2 groups. Compared to baseline, FMD at follow-up improved significantly in BS patients (5.9 ± 2.7% to 8.8 ± 2.4%, p < 0.01), but not in controls (6.3 ± 3.2% vs. 6.4 ± 3.1%, p = 0.41). Similarly, a significant improvement of CBF response to adenosine (1.63 ± 0.47 to 2.45 ± 0.57, p < 0.01) and to CPT (1.43 ± 0.26 to 2.13 ± 0.55, p < 0.01) was observed in BS patients but not in controls (1.55 ± 0.38 vs. 1.53 ± 0.37, p = 0.85; and 1.37 ± 0.26 vs. 1.34 ± 0.21, p = 0.48, respectively). The favourable vascular effects of BS were similar independently of the presence and changes of other known cardiovascular risk factors and of basal values and changes of serum C-reactive protein levels. CONCLUSIONS Our data show that, in morbidly obese patients, together with peripheral endothelial function, BS also improves coronary microvascular function. These effects suggest global improvement of vascular function which can contribute significantly to the reduction of cardiovascular risk by BS reported in previous studies.
Collapse
Affiliation(s)
- R Nerla
- Dipartimento di Medicina Cardiovascolare, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Muller MD, Gao Z, Mast JL, Blaha CA, Drew RC, Leuenberger UA, Sinoway LI. Aging attenuates the coronary blood flow response to cold air breathing and isometric handgrip in healthy humans. Am J Physiol Heart Circ Physiol 2012; 302:H1737-46. [PMID: 22345567 DOI: 10.1152/ajpheart.01195.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this echocardiography study was to measure peak coronary blood flow velocity (CBV(peak)) and left ventricular function (via tissue Doppler imaging) during separate and combined bouts of cold air inhalation (-14 ± 3°C) and isometric handgrip (30% maximum voluntary contraction). Thirteen young adults and thirteen older adults volunteered to participate in this study and underwent echocardiographic examination in the left lateral position. Cold air inhalation was 5 min in duration, and isometric handgrip (grip protocol) was 2 min in duration; a combined stimulus (cold + grip protocol) and a cold pressor test (hand in 1°C water) were also performed. Heart rate, blood pressure, O(2) saturation, and inspired air temperature were monitored on a beat-by-beat basis. The rate-pressure product (RPP) was used as an index of myocardial O(2) demand, and CBV(peak) was used as an index of myocardial O(2) supply. The RPP response to the grip protocol was significantly blunted in older subjects (Δ1,964 ± 396 beats·min(-1)·mmHg) compared with young subjects (Δ3,898 ± 452 beats·min(-1)·mmHg), and the change in CBV(peak) was also blunted (Δ6.3 ± 1.2 vs. 11.2 ± 2.0 cm/s). Paired t-tests showed that older subjects had a greater change in the RPP during the cold + grip protocol [Δ2,697 ± 391 beats·min(-1)·mmHg compared with the grip protocol alone (Δ2,115 ± 375 beats·min(-1)·mmHg)]. An accentuated RPP response to the cold + grip protocol (compared with the grip protocol alone) without a concomitant increase in CBV(peak) may suggest a dissociation between the O(2) supply and demand in the coronary circulation. In conclusion, older adults have blunted coronary blood flow responses to isometric exercise.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Muller MD, Gao Z, Drew RC, Herr MD, Leuenberger UA, Sinoway LI. Effect of cold air inhalation and isometric exercise on coronary blood flow and myocardial function in humans. J Appl Physiol (1985) 2011; 111:1694-702. [PMID: 21940852 PMCID: PMC3233893 DOI: 10.1152/japplphysiol.00909.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/16/2011] [Indexed: 11/22/2022] Open
Abstract
The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O(2) saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O(2) demand, whereas CBV was used as an index of myocardial O(2) supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol (P = 0.045), but the increase in CBV was significantly less (P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
13
|
Gao Z, Wilson TE, Drew RC, Ettinger J, Monahan KD. Altered coronary vascular control during cold stress in healthy older adults. Am J Physiol Heart Circ Physiol 2011; 302:H312-8. [PMID: 22003058 DOI: 10.1152/ajpheart.00297.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular-related mortality increases in the cold winter months, particularly in older adults. Previously, we reported that determinants of myocardial O(2) demand, such as the rate-pressure product, increase more in older adults compared with young adults during cold stress. The aim of the present study was to determine if aging influences the coronary hemodynamic response to cold stress in humans. Transthoracic Doppler echocardiography was used to noninvasively measure peak coronary blood velocity in the left anterior descending artery before and during acute (20 min) whole body cold stress in 10 young adults (25 ± 1 yr) and 11 older healthy adults (65 ± 2 yr). Coronary vascular resistance (diastolic blood pressure/peak coronary blood velocity), coronary perfusion time fraction (coronary perfusion time/R-R interval), and left ventricular wall stress were calculated. We found that cooling (via a water-perfused suit) increased left ventricular wall stress, a primary determinant of myocardial O(2) consumption, in both young and older adults, although the magnitude of this increase was nearly twofold greater in older adults (change of 9.1 ± 3.5% vs. 17.6 ± 3.2%, P < 0.05, change from baseline in young and older adults and young vs. older adults). Despite the increased myocardial O(2) demand during cooling, coronary vasodilation (decreased coronary vascular resistance) occurred only in young adults (3.22 ± 0.23 to 2.85 ± 0.18 mmHg·cm(-1)·s(-1), P < 0.05) and not older adults (3.97 ± 0.24 to 3.79 ± 0.27 mmHg·cm(-1)·s(-1), P > 0.05). Consistent with a blunted coronary vascular response, absolute coronary perfusion time tended to decrease (P = 0.13) and coronary perfusion time fraction decreased (P < 0.05) during cooling in older adults but not young adults. Collectively, these data suggest that older adults demonstrate an altered coronary hemodynamic response to acute cold stress.
Collapse
Affiliation(s)
- Zhaohui Gao
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, 17033-2390, USA
| | | | | | | | | |
Collapse
|
14
|
Momen A, Gao Z, Cohen A, Khan T, Leuenberger UA, Sinoway LI. Coronary vasoconstrictor responses are attenuated in young women as compared with age-matched men. J Physiol 2011; 588:4007-16. [PMID: 20807793 DOI: 10.1113/jphysiol.2010.192492] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent work in humans suggests coronary vasoconstriction occurs with static handgrip with a time course that suggests a sympathetic constrictor mechanism. These findings are consistent with animal studies that suggest this effect helps maintain transmural myocardial perfusion. It is known that oestrogen can attenuate sympathetic responsiveness, however it is not known if sympathetic constrictor responses vary in men and women. To examine this issue we studied young men (n = 12; 28 ± 1 years) and women (n = 14; 30 ± 1 years). Coronary blood flow velocity (CBV; Duplex Ultrasound), heart rate (ECG) and blood pressure (BP; Finapres) were measured during static handgrip (20 s) at 10% and 70% of maximum voluntary contraction. Measurements were also obtained during graded lower body negative pressure (LBNP; activates baroreflex-mediated sympathetic system) and the cold pressor test (CPT; a non-specific sympathetic stimulus). A coronary vascular resistance index (CVR) was calculated as diastolic BP/CBV. Increases in CVR with handgrip were greater in men vs. women (1.25 ± 0.49 vs. 0.26 ± 0.38 units; P < 0.04) and CBV tended to fall in men but not in women (−0.9 ± 0.9 vs. 1.7 ± 0.8 cm s−1; P < 0.01). Changes in CBV with handgrip were linked to the myocardial oxygen consumption in women but not in men. CBV reductions were greater in men vs. women during graded LBNP (P < 0.04). Men and women had similar coronary responses to CPT (P = n.s.). We conclude that coronary vasoconstrictor tone is greater in men than women during static handgrip and LBNP.
Collapse
Affiliation(s)
- Afsana Momen
- Penn State Heart & Vascular Institute, Penn State College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
15
|
Greene ER. Noninvasive transthoracic and transesophageal Doppler echocardiographic measurements of human coronary blood flow velocity: In vitro flow phantom validation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:3784-7. [PMID: 21096876 DOI: 10.1109/iembs.2010.5627566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coronary angiography is limited in assessing the hemodynamic significance of a coronary lesion or the state of the coronary microcirculation. Noninvasive transthoracic (TTE) and transesophageal (TEE) Doppler echocardiography have been used to measure coronary blood flow velocity and coronary flow reserve and thus the physiology of the coronary vasculature (normal, stable or unstable lesions). A fundamental, in vitro validation of these methods with a tissue and blood mimicking flow phantom has not been reported. Accordingly, Bland-Altman 95% confidence levels for precision (repeated measures) and accuracy (comparison with time collection) were determined for both TTE and TEE measurements of simulated coronary diastolic blood velocities in 2 mm and 4 mm vessels at the normal in vivo depths of 40 mm and 60 mm. The Doppler angle was set at 45 degrees and flow velocities were varied within a normal in vivo range of 0- 150 cm/s. Confidence levels for precisions and accuracies were similar between TTE and TEE and ranged from ± 6 cm/s to ± 13 cm/s or approximately 10-15% over the range of the measured velocities. These in vitro results in a controlled flow phantom suggest that technically adequate TTE and TEE can be used to reliably measure epicardial coronary conduit artery blood flow velocities.
Collapse
Affiliation(s)
- E R Greene
- Departments of Biology and Chemistry and Computer and Mathematical Sciences, New Mexico, USA
| |
Collapse
|