1
|
Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y. Chained occurrences of early afterdepolarizations may create a directional triggered activity to initiate reentrant ventricular tachyarrhythmias. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 261:108587. [PMID: 39837062 DOI: 10.1016/j.cmpb.2025.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND AND OBJECTIVE It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood. METHODS Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA. We examined how the configuration of islands (clusters) of myocytes with synchronously chained occurrence of EADs within the tissue, each EAD cluster size and stimulation from different directions impact the TA creation. RESULTS The presence of EAD clusters within the tissue created local regions of cardiomyocytes maintained at a depolarized membrane potential above 0 mV due to the chained occurrence of EADs. When the local area contained a concave surface border, the TA was created depending on its curvature. We found that the distance of EAD clusters was a critical factor for the development of EAD-mediated TA and polymorphic VT in long QT syndromes, that there existed a region of the distance favorable for the development of TA and VT, and that the TA was always created along the myocardial fiber orientation regardless of stimulating directions. CONCLUSION The chained occurrences of EADs may create a directional TA. Our findings provide deeper understandings of the cardiac arrhythmogenic substrates for preventing and treating arrhythmias.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuma Aoji
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| |
Collapse
|
2
|
Zhang Y, Zhang Z, Qu Z. Curvature-mediated source and sink effects on the genesis of premature ventricular complexes in long QT syndrome. Am J Physiol Heart Circ Physiol 2024; 326:H1350-H1365. [PMID: 38551483 PMCID: PMC11380949 DOI: 10.1152/ajpheart.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024]
Abstract
Premature ventricular complexes (PVCs) are spontaneous excitations occurring in the ventricles of the heart that are associated with ventricular arrhythmias and sudden cardiac death. Under long QT conditions, PVCs can be mediated by repolarization gradient (RG) and early afterdepolarizations (EADs), yet the effects of heterogeneities or geometry of the RG or EAD regions on PVC genesis remain incompletely understood. In this study, we use computer simulation to systematically investigate the effects of the curvature of the RG border region on PVC genesis under long QT conditions. We show that PVCs can be either promoted or suppressed by negative or positive RG border curvature depending on the source and sink conditions. When the origin of oscillation is in the source region and the source is too strong, a positive RG border curvature can promote PVCs by causing the source area to oscillate. When the origin of oscillation is in the sink region, a negative RG border curvature can promote PVCs by causing the sink area to oscillate. Furthermore, EAD-mediated PVCs are also promoted by negative border curvature. We also investigate the effects of wavefront curvature and show that PVCs are promoted by convex but suppressed by concave wavefronts; however, the effect of wavefront curvature is much smaller than that of RG border curvature. In conclusion, besides the increase of RG and occurrence of EADs caused by QT prolongation, the geometry of the RG border plays important roles in PVC genesis, which can greatly increase the risk of arrhythmias in cardiac diseases.NEW & NOTEWORTHY The effects of the curvature or geometry of the repolarization gradient region and wavefront curvature on the genesis of premature ventricular complexes are systematically investigated using computer modeling and simulation. Premature ventricular complexes can be promoted by either positive or negative curvature of the gradient region depending on the source and sink conditions. The underlying mechanisms of the curvature effects are revealed, which provides mechanistic insights into arrhythmogenesis in cardiac diseases.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, People's Republic of China
| | - Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, People's Republic of China
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
3
|
Tsuji Y, Yamazaki M, Shimojo M, Yanagisawa S, Inden Y, Murohara T. Mechanisms of torsades de pointes: an update. Front Cardiovasc Med 2024; 11:1363848. [PMID: 38504714 PMCID: PMC10948600 DOI: 10.3389/fcvm.2024.1363848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Torsades de Pointes (TdP) refers to a polymorphic ventricular tachycardia (VT) with undulating QRS axis that occurs in long QT syndrome (LQTS), although the term has been used to describe polymorphic ventricular tachyarrhythmias in which QT intervals are not prolonged, such as short-coupled variant of TdP currently known as short-coupled ventricular fibrillation (VF) and Brugada syndrome. Extensive works on LQTS-related TdP over more than 50 years since it was first recognized by Dessertennes who coined the French term meaning "twisting of the points", have led to current understanding of the electrophysiological mechanism that TdP is initiated by triggered activity due to early afterdepolarization (EAD) and maintained by reentry within a substrate of inhomogeneous repolarization. While a recently emerging notion that steep voltage gradients rather than EADs are crucial to generate premature ventricular contractions provides additions to the initiation mode, the research to elucidate the maintenance mechanism hasn't made much progress. The reentrant activity that produces the specific form of VT is not well characterized. We have conducted optical mapping in a rabbit model of electrical storm by electrical remodeling (QT prolongation) due to chronic complete atrioventricular block and demonstrated that a tissue-island with prolonged refractoriness due to enhanced late Na+ current (INa-L) contributes to the generation of drifting rotors in a unique manner, which may explain the ECG characteristic of TdP. Moreover, we have proposed that the neural Na+ channel NaV1.8-mediated INa-L may be a new player to form the substrate for TdP. Here we discuss TdP mechanisms by comparing the findings in electrical storm rabbits with recently published studies by others in simulation models and human and animal models of LQTS.
Collapse
Affiliation(s)
- Yukiomi Tsuji
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Yamazaki
- Department of Cardiology, Nagano Hospital, Soja and Medical Device Development and Regulation Research Center and Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Masafumi Shimojo
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Yanagisawa
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuya Inden
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Wang R, Qu Z, Huang X. Dissecting the roles of calcium cycling and its coupling with voltage in the genesis of early afterdepolarizations in cardiac myocyte models. PLoS Comput Biol 2024; 20:e1011930. [PMID: 38416778 PMCID: PMC10927084 DOI: 10.1371/journal.pcbi.1011930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
Early afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase of the action potential, which are known to be associated with lethal arrhythmias in the heart. There are two major hypotheses for EAD genesis based on experimental observations, i.e., the voltage (Vm)-driven and intracellular calcium (Ca)-driven mechanisms. In ventricular myocytes, Ca and Vm are bidirectionally coupled, which can affect each other's dynamics and result in new dynamics, however, the roles of Ca cycling and its coupling with Vm in the genesis of EADs have not been well understood. In this study, we use an action potential model that is capable of independent Vm and Ca oscillations to investigate the roles of Vm and Ca coupling in EAD genesis. Four different mechanisms of EADs are identified, which are either driven by Vm oscillations or Ca oscillations alone, or oscillations caused by their interactions. We also use 5 other ventricular action potential models to assess these EAD mechanisms and show that EADs in these models are mainly Vm-driven. These mechanistic insights from our simulations provide a theoretical base for understanding experimentally observed EADs and EAD-related arrhythmogenesis.
Collapse
Affiliation(s)
- Rui Wang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Wang X, Landaw J, Qu Z. Intracellular ion accumulation in the genesis of complex action potential dynamics under cardiac diseases. Phys Rev E 2024; 109:024410. [PMID: 38491656 PMCID: PMC11325458 DOI: 10.1103/physreve.109.024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
Intracellular ions, including sodium (Na^{+}), calcium (Ca^{2+}), and potassium (K^{+}), etc., accumulate slowly after a change of the state of the heart, such as a change of the heart rate. The goal of this study is to understand the roles of slow ion accumulation in the genesis of cardiac memory and complex action-potential duration (APD) dynamics that can lead to lethal cardiac arrhythmias. We carry out numerical simulations of a detailed action potential model of ventricular myocytes under normal and diseased conditions, which exhibit memory effects and complex APD dynamics. We develop a low-dimensional iterated map (IM) model to describe the dynamics of Na^{+}, Ca^{2+}, and APD and use it to uncover the underlying dynamical mechanisms. The development of the IM model is informed by simulation results under the normal condition. We then use the IM model to perform linear stability analyses and computer simulations to investigate the bifurcations and complex APD dynamics, which depend on the feedback loops between APD and intracellular Ca^{2+} and Na^{+} concentrations and the steepness of the APD response to the ion concentrations. When the feedback between APD and Ca^{2+} concentration is positive, a Hopf bifurcation leading to periodic oscillatory behavior occurs as the steepness of the APD response to the ion concentrations increases. The negative feedback loop between APD and Na^{+} concentration is required for the Hopf bifurcation. When the feedback between APD and Ca^{2+} concentration is negative, period-doubling bifurcations leading to high periodicity and chaos occurs. In this case, Na^{+} accumulation plays little role in the dynamics. Finally, we carry out simulations of the detailed action potential model under two diseased conditions, which exhibit steep APD responses to ion concentrations. Under both conditions, Hopf bifurcations leading to slow oscillations or period-doubling bifurcations leading to high periodicity and chaotic APD dynamics occur, depending on the strength of the ion pump-Na^{+}-Ca^{2+} exchanger. Using functions reconstructed from the simulation data, the IM model accurately captures the bifurcations and dynamics under the two diseased conditions. In conclusion, besides using computer simulations of a detailed high-dimensional action-potential model to investigate the effects of slow ion accumulation and short-term memory on bifurcations and genesis of complex APD dynamics in cardiac myocytes under diseased conditions, this study also provides a low-dimensional mathematical tool, i.e., the IM model, to allow stability analyses for uncovering the underlying mechanisms.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Julian Landaw
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Zhang Z, Brugada P, Weiss JN, Qu Z. Phase 2 Re-Entry Without I to: Role of Sodium Channel Kinetics in Brugada Syndrome Arrhythmias. JACC Clin Electrophysiol 2023; 9:2459-2474. [PMID: 37831035 PMCID: PMC11348283 DOI: 10.1016/j.jacep.2023.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND In Brugada syndrome (BrS), phase 2 re-excitation/re-entry (P2R) induced by the transient outward potassium current (Ito) is a proposed arrhythmia mechanism; yet, the most common genetic defects are loss-of-function sodium channel mutations. OBJECTIVES The authors used computer simulations to investigate how sodium channel dysfunction affects P2R-mediated arrhythmogenesis in the presence and absence of Ito. METHODS Computer simulations were carried out in 1-dimensional cables and 2-dimensional tissue using guinea pig and human ventricular action potential models. RESULTS In the presence of Ito sufficient to generate robust P2R, reducing sodium current (INa) peak amplitude alone only slightly potentiated P2R. When INa inactivation kinetics were also altered to simulate reported effects of BrS mutations and sodium channel blockers, however, P2R occurred even in the absence of Ito. These effects could be potentiated by delaying L-type calcium channel activation or increasing ATP-sensitive potassium current, consistent with experimental and clinical findings. INa-mediated P2R also accounted for sex-related, day and night-related, and fever-related differences in arrhythmia risk in BrS patients. CONCLUSIONS Altered INa kinetics synergize powerfully with reduced INa amplitude to promote P2R-induced arrhythmias in BrS in the absence of Ito, establishing a robust mechanistic link between altered INa kinetics and the P2R-mediated arrhythmia mechanism.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, China; Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - James N Weiss
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
7
|
Dajani AHJ, Liu MB, Olaopa MA, Cao L, Valenzuela-Ripoll C, Davis TJ, Poston MD, Smith EH, Contreras J, Pennino M, Waldmann CM, Hoover DB, Lee JT, Jay PY, Javaheri A, Slavik R, Qu Z, Ajijola OA. Heterogeneous cardiac sympathetic innervation gradients promote arrhythmogenesis in murine dilated cardiomyopathy. JCI Insight 2023; 8:e157956. [PMID: 37815863 PMCID: PMC10721311 DOI: 10.1172/jci.insight.157956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Ventricular arrhythmias (VAs) in heart failure are enhanced by sympathoexcitation. However, radiotracer studies of catecholamine uptake in failing human hearts demonstrate a proclivity for VAs in patients with reduced cardiac sympathetic innervation. We hypothesized that this counterintuitive finding is explained by heterogeneous loss of sympathetic nerves in the failing heart. In a murine model of dilated cardiomyopathy (DCM), delayed PET imaging of sympathetic nerve density using the catecholamine analog [11C]meta-Hydroxyephedrine demonstrated global hypoinnervation in ventricular myocardium. Although reduced, sympathetic innervation in 2 distinct DCM models invariably exhibited transmural (epicardial to endocardial) gradients, with the endocardium being devoid of sympathetic nerve fibers versus controls. Further, the severity of transmural innervation gradients was correlated with VAs. Transmural innervation gradients were also identified in human left ventricular free wall samples from DCM versus controls. We investigated mechanisms underlying this relationship by in silico studies in 1D, 2D, and 3D models of failing and normal human hearts, finding that arrhythmogenesis increased as heterogeneity in sympathetic innervation worsened. Specifically, both DCM-induced myocyte electrical remodeling and spatially inhomogeneous innervation gradients synergistically worsened arrhythmogenesis. Thus, heterogeneous innervation gradients in DCM promoted arrhythmogenesis. Restoration of homogeneous sympathetic innervation in the failing heart may reduce VAs.
Collapse
Affiliation(s)
- Al-Hassan J. Dajani
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Michael B. Liu
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Michael A. Olaopa
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Lucian Cao
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Timothy J. Davis
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Megan D. Poston
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jaime Contreras
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Marissa Pennino
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Christopher M. Waldmann
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Donald B. Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jason T. Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Ali Javaheri
- Washington University School of Medicine, St. Louis, Missouri, USA
- John J. Cochran Veterans Hospital, St. Louis, Missouri, USA
| | - Roger Slavik
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Zhilin Qu
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
8
|
Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y. Theoretical prediction of early afterdepolarization-evoked triggered activity formation initiating ventricular reentrant arrhythmias. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107722. [PMID: 37515880 DOI: 10.1016/j.cmpb.2023.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Excessive prolongation of QT interval on ECGs in patients with congenital/acquired long QT syndrome and heart failure is a sign suggesting the development of early afterdepolarization (EAD), an abnormal repolarization in the action potential of ventricular cardiomyocytes. The development of EAD has been believed to be a trigger for fatal tachyarrhythmia, which can be a risk for sudden cardiac death. The role of EAD in triggering ventricular tachycardia (VT) remains unclear. The aim of this study was to elucidate the mechanism of EAD-induced triggered activity formation that leads to the VT such as Torsades de Pointes. METHODS We investigated the relationship between EAD and tachyarrhythmia initiation by constructing homogeneous myocardial sheet models consisting of the mid-myocardial cell version of a human ventricular myocyte model and performing simulations of excitation propagation. RESULTS A solitary island-like (clustering) occurrence of EADs in the homogeneous myocardial sheet could induce a focal excitation wave. However, reentrant excitation, an entity of tachyarrhythmia, was not able to be triggered regardless of the EAD cluster size when the focal excitation wave formed a repolarization potential difference boundary consisting of only a convex surface. The discontinuous distribution of multiple EAD clusters in the ventricular tissue formed a specific repolarization heterogeneity due to the repolarization potential difference, the shape of which depended on EAD cluster size and placed intervals. We found that the triggered activity was formed in such a manner that the repolarization potential difference boundary included a concave surface. CONCLUSIONS The formation of triggered activity that led to tachyarrhythmia required not only the occurrence of EAD onset-mediated focal excitation wave but also a repolarization heterogeneity-based specific repolarization potential difference boundary shape formed within the tissue.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuma Aoji
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| |
Collapse
|
9
|
Xiong LI, Garfinkel A. Are physiological oscillations physiological? J Physiol 2023. [PMID: 37622389 DOI: 10.1113/jp285015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Despite widespread and striking examples of physiological oscillations, their functional role is often unclear. Even glycolysis, the paradigm example of oscillatory biochemistry, has seen questions about its oscillatory function. Here, we take a systems approach to argue that oscillations play critical physiological roles, such as enabling systems to avoid desensitization, to avoid chronically high and therefore toxic levels of chemicals, and to become more resistant to noise. Oscillation also enables complex physiological systems to reconcile incompatible conditions such as oxidation and reduction, by cycling between them, and to synchronize the oscillations of many small units into one large effect. In pancreatic β-cells, glycolytic oscillations synchronize with calcium and mitochondrial oscillations to drive pulsatile insulin release, critical for liver regulation of glucose. In addition, oscillation can keep biological time, essential for embryonic development in promoting cell diversity and pattern formation. The functional importance of oscillatory processes requires a re-thinking of the traditional doctrine of homeostasis, holding that physiological quantities are maintained at constant equilibrium values, a view that has largely failed in the clinic. A more dynamic approach will initiate a paradigm shift in our view of health and disease. A deeper look into the mechanisms that create, sustain and abolish oscillatory processes requires the language of nonlinear dynamics, well beyond the linearization techniques of equilibrium control theory. Nonlinear dynamics enables us to identify oscillatory ('pacemaking') mechanisms at the cellular, tissue and system levels.
Collapse
Affiliation(s)
- Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Ochs AR, Boyle PM. Optogenetic Modulation of Arrhythmia Triggers: Proof-of-Concept from Computational Modeling. Cell Mol Bioeng 2023; 16:243-259. [PMID: 37810996 PMCID: PMC10550900 DOI: 10.1007/s12195-023-00781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Early afterdepolarizations (EADs) are secondary voltage depolarizations associated with reduced repolarization reserve (RRR) that can trigger lethal arrhythmias. Relating EADs to triggered activity is difficult to study, so the ability to suppress or provoke EADs would be experimentally useful. Here, we use computational simulations to assess the feasibility of subthreshold optogenetic stimulation modulating the propensity for EADs (cell-scale) and EAD-associated ectopic beats (organ-scale). Methods We modified a ventricular ionic model by reducing rapid delayed rectifier potassium (0.25-0.1 × baseline) and increasing L-type calcium (1.0-3.5 × baseline) currents to create RRR conditions with varying severity. We ran simulations in models of single cardiomyocytes and left ventricles from post-myocardial infarction patient MRI scans. Optogenetic stimulation was simulated using either ChR2 (depolarizing) or GtACR1 (repolarizing) opsins. Results In cell-scale simulations without illumination, EADs were seen for 164 of 416 RRR conditions. Subthreshold stimulation of GtACR1 reduced EAD incidence by up to 84.8% (25/416 RRR conditions; 0.1 μW/mm2); in contrast, subthreshold ChR2 excitation increased EAD incidence by up to 136.6% (388/416 RRR conditions; 50 μW/mm2). At the organ scale, we assumed simultaneous, uniform illumination of the epicardial and endocardial surfaces. GtACR1-mediated suppression (10-50 μW/mm2) and ChR2-mediated unmasking (50-100 μW/mm2) of EAD-associated ectopic beats were feasible in three distinct ventricular models. Conclusions Our findings suggest that optogenetics could be used to silence or provoke both EADs and EAD-associated ectopic beats. Validation in animal models could lead to exciting new experimental regimes and potentially to novel anti-arrhythmia treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00781-z.
Collapse
Affiliation(s)
- Alexander R. Ochs
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
| | - Patrick M. Boyle
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
11
|
Alexander C, Bishop MJ, Gilchrist RJ, Burton FL, Smith GL, Myles RC. Initiation of ventricular arrhythmia in the acquired long QT syndrome. Cardiovasc Res 2023; 119:465-476. [PMID: 35727943 PMCID: PMC10064840 DOI: 10.1093/cvr/cvac103] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
AIMS Long QT syndrome (LQTS) carries a risk of life-threatening polymorphic ventricular tachycardia (Torsades de Pointes, TdP) and is a major cause of premature sudden cardiac death. TdP is induced by R-on-T premature ventricular complexes (PVCs), thought to be generated by cellular early-afterdepolarisations (EADs). However, EADs in tissue require cellular synchronisation, and their role in TdP induction remains unclear. We aimed to determine the mechanism of TdP induction in rabbit hearts with acquired LQTS (aLQTS). METHODS AND RESULTS Optical mapping of action potentials (APs) and intracellular Ca2+ was performed in Langendorff-perfused rabbit hearts (n = 17). TdP induced by R-on-T PVCs was observed during aLQTS (50% K+/Mg++ & E4031) conditions in all hearts (P < 0.0001 vs. control). Islands of AP prolongation bounded by steep voltage gradients (VGs) were consistently observed before arrhythmia and peak VGs were more closely related to the PVC upstroke than EADs, both temporally (7 ± 5 ms vs. 44 ± 27 ms, P < 0.0001) and spatially (1.0 ± 0.7 vs. 3.6 ± 0.9 mm, P < 0.0001). PVCs were initiated at estimated voltages of ∼ -40 mV and had upstroke dF/dtmax and Vm-Ca2+ dynamics compatible with ICaL activation. Computational simulations demonstrated that PVCs could arise directly from VGs, through electrotonic triggering of ICaL. In experiments and the model, sub-maximal L-type Ca2+ channel (LTCC) block (200 nM nifedipine and 90% gCaL, respectively) abolished both PVCs and TdP in the continued presence of aLQTS. CONCLUSION These data demonstrate that ICaL activation at sites displaying steep VGs generates the PVCs which induce TdP, providing a mechanism and rationale for LTCC blockers as a novel therapeutic approach in LQTS.
Collapse
Affiliation(s)
- Cherry Alexander
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Rebecca J Gilchrist
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
12
|
Lin J, Qu Z, Huang X. Bifurcations to transient and oscillatory excitations in inhomogeneous excitable media: Insights into arrhythmogenesis in long QT syndrome. Phys Rev E 2023; 107:034402. [PMID: 37073009 PMCID: PMC10583175 DOI: 10.1103/physreve.107.034402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 04/20/2023]
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death. Understanding the mechanisms of arrhythmia initiation is important for developing effective therapeutics for prevention. Arrhythmias can be induced via premature external stimuli or occur spontaneously via dynamical instabilities. Computer simulations have shown that a large repolarization gradient due to regional prolongation of the action potential duration can result in instabilities leading to premature excitations and arrhythmias, but the bifurcation remains to be elucidated. In this study we carry out numerical simulations and linear stability analyses using a one-dimensional heterogeneous cable consisting of the FitzHugh-Nagumo model. We show that a Hopf bifurcation leads to local oscillations, which, once their amplitudes are large enough, lead to spontaneous propagating excitations. Depending on the degree of heterogeneities, these excitations can range from one to many and to be sustained oscillations, manifesting as premature ventricular contractions (PVCs) and sustained arrhythmias. The dynamics depends on the repolarization gradient and the length of the cable. Complex dynamics is also induced by the repolarization gradient. The mechanistic insights from the simple model may help in the understanding of the genesis of PVCs and arrhythmias in long QT syndrome.
Collapse
Affiliation(s)
- Jianying Lin
- Department of physics, South China University of Technology, Guangzhou 510641, China
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Xiaodong Huang
- Department of physics, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
13
|
You T, Xie Y, Luo C, Zhang K, Zhang H. Mechanistic insights into spontaneous transition from cellular alternans to ventricular fibrillation. Physiol Rep 2023; 11:e15619. [PMID: 36863774 PMCID: PMC9981424 DOI: 10.14814/phy2.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/04/2023] Open
Abstract
T-wave alternans (TWA) has been used for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death (SCD) in multiple clinical settings; however, possible mechanism(s) underlying the spontaneous transition from cellular alternans reflected by TWA to arrhythmias in impaired repolarization remains unclear. The healthy guinea pig ventricular myocytes under E-4031 blocking IKr (0.1 μM, N = 12; 0.3 μM, N = 10; 1 μM, N = 10) were evaluated using whole-cell patch-clamp. The electrophysiological properties of isolated perfused guinea pig hearts under E-4031 (0.1 μM, N = 5; 0.3 μM, N = 5; 1 μM, N = 5) were evaluated using dual- optical mapping. The amplitude/threshold/restitution curves of action potential duration (APD) alternans and potential mechanism(s) underlying the spontaneous transition of cellular alternans to ventricular fibrillation (VF) were examined. There were longer APD80 and increased amplitude and threshold of APD alternans in E-4031 group compared with baseline group, which was reflected by more pronounced arrhythmogenesis at the tissue level, and were associated with steep restitution curves of the APD and the conduction velocity (CV). Conduction of AP alternans augmented tissue's functional spatiotemporal heterogeneity of regional AP/Ca alternans, as well as the AP/Ca dispersion, leading to localized uni-directional conduction block that spontaneous facilitated the formation of reentrant excitation waves without the need for additional premature stimulus. Our results provide a possible mechanism for the spontaneous transition from cardiac electrical alternans in cellular action potentials and intercellular conduction without the involvement of premature excitations, and explain the increased susceptibility to ventricular arrhythmias in impaired repolarization. In this study, we implemented voltage-clamp and dual-optical mapping approaches to investigate the underlying mechanism(s) for the arrhythmogenesis of cardiac alternans in the guinea pig heart at cellular and tissue levels. Our results demonstrated a spontaneous development of reentry from cellular alternans, arising from a combined actions of restitution properties of action potential duration, conduction velocity of excitation wave and interplay between alternants of action potential and the intracellular Ca handling. We believe this study provides new insights into underlying the mechanism, by which cellular cardiac alternans spontaneously evolves into cardiac arrhythmias.
Collapse
Affiliation(s)
- Tingting You
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of NeurosurgeryXinqiao Hospital, Army Medical UniversityChongqingChina
| | - Yulong Xie
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Cunjin Luo
- School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
| | - Kevin Zhang
- School of MedicineImperial College of LondonLondonUK
| | - Henggui Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
14
|
Qu Z, Liu MB, Olcese R, Karagueuzian H, Garfinkel A, Chen PS, Weiss JN. R-on-T and the initiation of reentry revisited: Integrating old and new concepts. Heart Rhythm 2022; 19:1369-1383. [PMID: 35364332 PMCID: PMC11334931 DOI: 10.1016/j.hrthm.2022.03.1224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Initiation of reentry requires 2 factors: (1) a triggering event, most commonly focal excitations such as premature ventricular complexes (PVCs); and (2) a vulnerable substrate with regional dispersion of refractoriness and/or excitability, such as occurs during the T wave of the electrocardiogram when some areas of the ventricle have repolarized and recovered excitability but others have not. When the R wave of a PVC coincides in time with the T wave of the previous beat, this timing can lead to unidirectional block and initiation of reentry, known as the R-on-T phenomenon. Classically, the PVC triggering reentry has been viewed as arising focally from 1 region and propagating into another region whose recovery is delayed, resulting in unidirectional conduction block and reentry initiation. However, more recent evidence indicates that PVCs also can arise from the T wave itself. In the latter case, the PVC initiating reentry is not a separate event from the T wave but rather is causally generated from the repolarization gradient that manifests as the T wave. We call the former an "R-to-T" mechanism and the latter an "R-from-T" mechanism, which are initiation mechanisms distinct from each other. Both are important components of the R-on-T phenomenon and need to be taken into account when designing antiarrhythmic strategies. Strategies targeting suppression of triggers alone or vulnerable substrate alone may be appropriate in some instances but not in others. Preventing R-from-T arrhythmias requires suppressing the underlying dynamic tissue instabilities responsible for producing both triggers and substrate vulnerability simultaneously. The same principles are likely to apply to supraventricular arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Hrayr Karagueuzian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alan Garfinkel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Integrative Biology and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
15
|
Geng Z, Jin L, Huang Y, Wu X. Rate dependence of early afterdepolarizations in the His-Purkinje system: A simulation study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106665. [PMID: 35172249 DOI: 10.1016/j.cmpb.2022.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Early afterdepolarizations (EADs) are associated with a variety of arrhythmias and have the property of rate dependence. EADs can occur in Purkinje cells while the effect of rate dependence of EADs in the His-Purkinje system has not been fully investigated. In order to reveal the rate dependence of EADs in the His-Purkinje system and its effect on ventricular electrical activities, the simulation research was carried out in this manuscript. METHODS This manuscript first studied the relationship between the occurrence of EADs and stimulation cycle length on the DiFranNoble cell model. Then, the relationship between the rate dependence of EADs and the conduction block of the His-Purkinje system at slow heart rates was studied on the rabbit whole ventricular model including the His-Purkinje system, and its mechanism was analyzed from multiple angles. RESULTS ① The rate dependence of EADs is related to the inconsistency of EADs occurrence in the His-Purkinje system. When the stimulation cycle length is long or short enough, EADs either occur or not occur stably in the His-Purkinje system, while in a certain stimulation cycle length window, the chaotic state of EADs will be observed. ② The key subcellular factors x-gate is an important mechanism involved to the rate dependence of EADs in the His-Purkinje system. ③ The discrete distribution of x-gate values and the "source-sink" mechanism lead to the inconsistency of EADs in the His-Purkinje system. The prolonged action potential duration caused by EADs can lead to conduction block at slow heart rates. CONCLUSION The rate dependence of EADs in Purkinje system can lead to disordered ventricular electrical activity.
Collapse
Affiliation(s)
- Zihui Geng
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Lian Jin
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yanqi Huang
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, Shanghai Engineering Research Center of Assistive Devices, Yiwu Research Institute of Fudan University, 322000, Chengbei Road, Yiwu City, 322000 Zhejiang, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
16
|
Wang L, Wada Y, Ballan N, Schmeckpeper J, Huang J, Rau CD, Wang Y, Gepstein L, Knollmann BC. Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2021; 161:130-138. [PMID: 34400182 PMCID: PMC9809541 DOI: 10.1016/j.yjmcc.2021.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising tool for disease modeling and drug development. However, hiPSC-CMs remain functionally immature, which hinders their utility as a model of human cardiomyocytes. OBJECTIVE To improve the electrophysiological maturation of hiPSC-CMs. METHODS AND RESULTS On day 16 of cardiac differentiation, hiPSC-CMs were treated with 100 nmol/L triiodothyronine (T3) and 1 μmol/L Dexamethasone (Dex) or vehicle for 14 days. On day 30, vehicle- and T3 + Dex-treated hiPSC-CMs were dissociated and replated either as cell sheets or single cells. Optical mapping and patch-clamp technique were used to examine the electrophysiological properties of vehicle- and T3 + Dex-treated hiPSC-CMs. Compared to vehicle, T3 + Dex-treated hiPSC-CMs had a slower spontaneous beating rate, more hyperpolarized resting membrane potential, faster maximal upstroke velocity, and shorter action potential duration. Changes in spontaneous activity and action potential were mediated by decreased hyperpolarization-activated current (If) and increased inward rectifier potassium currents (IK1), sodium currents (INa), and the rapidly and slowly activating delayed rectifier potassium currents (IKr and IKs, respectively). Furthermore, T3 + Dex-treated hiPSC-CM cell sheets (hiPSC-CCSs) exhibited a faster conduction velocity and shorter action potential duration than the vehicle. Inhibition of IK1 by 100 μM BaCl2 significantly slowed conduction velocity and prolonged action potential duration in T3 + Dex-treated hiPSC-CCSs but had no effect in the vehicle group, demonstrating the importance of IK1 for conduction velocity and action potential duration. CONCLUSION T3 + Dex treatment is an effective approach to rapidly enhance electrophysiological maturation of hiPSC-CMs.
Collapse
Affiliation(s)
- Lili Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA,Correspondence to: Lili Wang, Ph.D., Division of Clinical Pharmacology, Vanderbilt University Medical Center, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232-0575 Or Bjorn C. Knollmann, MD, Ph.D., Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt, University Medical Center, Medical Research Building IV, Rm. 1265, 2215B Garland Ave, Nashville, TN 37232-0575,
| | - Yuko Wada
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA
| | - Nimer Ballan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649, Haifa 3109601, Israel
| | - Jeffrey Schmeckpeper
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA
| | - Jijun Huang
- Department of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Christoph Daniel Rau
- Department of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Yibin Wang
- Department of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Lior Gepstein
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649, Haifa 3109601, Israel,Cardiology Department, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, 2 Efron St. POB 9649, Haifa, 3109601, Israel
| | - Bjorn C. Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA,Correspondence to: Lili Wang, Ph.D., Division of Clinical Pharmacology, Vanderbilt University Medical Center, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232-0575 Or Bjorn C. Knollmann, MD, Ph.D., Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt, University Medical Center, Medical Research Building IV, Rm. 1265, 2215B Garland Ave, Nashville, TN 37232-0575,
| |
Collapse
|
17
|
Premont A, Balthes S, Marr CM, Jeevaratnam K. Fundamentals of arrhythmogenic mechanisms and treatment strategies for equine atrial fibrillation. Equine Vet J 2021; 54:262-282. [PMID: 34564902 DOI: 10.1111/evj.13518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Atrial fibrillation (AF) is the most common pathological arrhythmia in horses. Although it is not usually a life-threatening condition on its own, it can cause poor performance and make the horse unsafe to ride. It is a complex multifactorial disease influenced by both genetic and environmental factors including exercise training, comorbidities or ageing. The interactions between all these factors in horses are still not completely understood and the pathophysiology of AF remains poorly defined. Exciting progress has been recently made in equine cardiac electrophysiology in terms of diagnosis and documentation methods such as cardiac mapping, implantable electrocardiogram (ECG) recording devices or computer-based ECG analysis that will hopefully improve our understanding of this disease. The available pharmaceutical and electrophysiological treatments have good efficacy and lead to a good prognosis for AF, but recurrence is a frequent issue that veterinarians have to face. This review aims to summarise our current understanding of equine cardiac electrophysiology and pathophysiology of equine AF while providing an overview of the mechanism of action for currently available treatments for equine AF.
Collapse
Affiliation(s)
- Antoine Premont
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samantha Balthes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Celia M Marr
- Rossdales Equine Hospital and Diagnostic Centre, Newmarket, UK
| | | |
Collapse
|
18
|
Zaza A, Lodola F. Phosphodiesterase 5: A Novel Therapeutic Target in Long QT Syndrome. Circ Res 2021; 129:666-668. [PMID: 34473532 DOI: 10.1161/circresaha.121.319851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Antonio Zaza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Francesco Lodola
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
19
|
Zhang Z, Qu Z. Life and death saddles in the heart. Phys Rev E 2021; 103:062406. [PMID: 34271754 PMCID: PMC10066710 DOI: 10.1103/physreve.103.062406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Saddle points are responsible for threshold phenomena of many biological systems. In the heart, saddle points determine the normal excitability and conduction, but are also responsible for certain abnormal action potential behaviors associated with lethal arrhythmias. We investigate the dynamical mechanisms for the genesis of lethal extra heartbeats in heterogeneous cardiac tissue under two diseased conditions. For both conditions, the lethal events occur when the system is close to the saddle point, implying the pivotal role of the saddle point in cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA.,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Zhang Z, Qu Z. Mechanisms of phase-3 early afterdepolarizations and triggered activities in ventricular myocyte models. Physiol Rep 2021; 9:e14883. [PMID: 34110715 PMCID: PMC8191176 DOI: 10.14814/phy2.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022] Open
Abstract
Early afterdepolarizations (EADs) are abnormal depolarizations during the repolarizing phase of the action potential, which are associated with cardiac arrhythmogenesis. EADs are classified into phase-2 and phase-3 EADs. Phase-2 EADs occur during phase 2 of the action potential, with takeoff potentials typically above -40 mV. Phase-3 EADs occur during phase 3 of the action potential, with takeoff potential between -70 and -50 mV. Since the amplitude of phase-3 EADs can be as large as that of a regular action potential, they are also called triggered activities (TAs). This also makes phase-3 EADs and TAs much more arrhythmogenic than phase-2 EADs since they can propagate easily in tissue. Although phase-2 EADs have been widely observed, phase-3 EADs and TAs have been rarely demonstrated in isolated ventricular myocytes. Here we carry out computer simulations of three widely used ventricular action potential models to investigate the mechanisms of phase-3 EADs and TAs. We show that when the T-type Ca2+ current (ICa,T ) is absent (e.g., in normal ventricular myocytes), besides the requirement of increasing inward currents and reducing outward currents as for phase-2 EADs, the occurrence of phase-3 EADs and TAs requires a substantially large increase of the L-type Ca2+ current and the slow component of the delayed rectifier K+ current. The presence of ICa,T (e.g., in neonatal and failing ventricular myocytes) can greatly reduce the thresholds of these two currents for phase-3 EADs and TAs. This implies that ICa,T may play an important role in arrhythmogenesis in cardiac diseases.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhilin Qu
- Department of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Department of Computational MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
21
|
Shaihov-Teper O, Ram E, Ballan N, Brzezinski RY, Naftali-Shani N, Masoud R, Ziv T, Lewis N, Schary Y, Levin-Kotler LP, Volvovitch D, Zuroff EM, Amunts S, Regev-Rudzki N, Sternik L, Raanani E, Gepstein L, Leor J. Extracellular Vesicles From Epicardial Fat Facilitate Atrial Fibrillation. Circulation 2021; 143:2475-2493. [PMID: 33793321 DOI: 10.1161/circulationaha.120.052009] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The role of epicardial fat (eFat)-derived extracellular vesicles (EVs) in the pathogenesis of atrial fibrillation (AF) has never been studied. We tested the hypothesis that eFat-EVs transmit proinflammatory, profibrotic, and proarrhythmic molecules that induce atrial myopathy and fibrillation. METHODS We collected eFat specimens from patients with (n=32) and without AF (n=30) during elective heart surgery. eFat samples were grown as organ cultures, and the culture medium was collected every 2 days. We then isolated and purified eFat-EVs from the culture medium, and analyzed the EV number, size, morphology, specific markers, encapsulated cytokines, proteome, and microRNAs. Next, we evaluated the biological effects of unpurified and purified EVs on atrial mesenchymal stromal cells and endothelial cells in vitro. To establish a causal association between eFat-EVs and vulnerability to AF, we modeled AF in vitro using induced pluripotent stem cell-derived cardiomyocytes. RESULTS Microscopic examination revealed excessive inflammation, fibrosis, and apoptosis in fresh and cultured eFat tissues. Cultured explants from patients with AF secreted more EVs and harbored greater amounts of proinflammatory and profibrotic cytokines, and profibrotic microRNA, as well, than those without AF. The proteomic analysis confirmed the distinctive profile of purified eFat-EVs from patients with AF. In vitro, purified and unpurified eFat-EVs from patients with AF had a greater effect on proliferation and migration of human mesenchymal stromal cells and endothelial cells, compared with eFat-EVs from patients without AF. Last, whereas eFat-EVs from patients with and without AF shortened the action potential duration of induced pluripotent stem cell-derived cardiomyocytes, only eFat-EVs from patients with AF induced sustained reentry (rotor) in induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS We show, for the first time, a distinctive proinflammatory, profibrotic, and proarrhythmic signature of eFat-EVs from patients with AF. Our findings uncover another pathway by which eFat promotes the development of atrial myopathy and fibrillation.
Collapse
Affiliation(s)
- Olga Shaihov-Teper
- Neufeld and Tamman Cardiovascular Research Institutes (O.S.-T., R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., J.L.), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Eilon Ram
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center (E. Ram, E.M.Z., S.A., L.S., E. Raanani), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Nimer Ballan
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion Institute of Technology, Israel (N.B., L.G.)
| | - Rafael Y Brzezinski
- Neufeld and Tamman Cardiovascular Research Institutes (O.S.-T., R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., J.L.), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Nili Naftali-Shani
- Neufeld and Tamman Cardiovascular Research Institutes (O.S.-T., R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., J.L.), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Rula Masoud
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel (R.M.)
| | - Tamar Ziv
- Smoler Proteomics Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel (T.Z.)
| | - Nir Lewis
- Neufeld and Tamman Cardiovascular Research Institutes (O.S.-T., R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., J.L.), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Yeshai Schary
- Neufeld and Tamman Cardiovascular Research Institutes (O.S.-T., R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., J.L.), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - La-Paz Levin-Kotler
- Neufeld and Tamman Cardiovascular Research Institutes (O.S.-T., R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., J.L.), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - David Volvovitch
- Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Elchanan M Zuroff
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center (E. Ram, E.M.Z., S.A., L.S., E. Raanani), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Sergei Amunts
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center (E. Ram, E.M.Z., S.A., L.S., E. Raanani), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel (N.R.-R.)
| | - Leonid Sternik
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center (E. Ram, E.M.Z., S.A., L.S., E. Raanani), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Ehud Raanani
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center (E. Ram, E.M.Z., S.A., L.S., E. Raanani), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| | - Lior Gepstein
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion Institute of Technology, Israel (N.B., L.G.)
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes (O.S.-T., R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., J.L.), Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Israel.,Heart Center, Sheba Medical Center, Tel Hashomer, Israel (O.S.-T., E. Ram, R.Y.B., N.N.-S., N.L., Y.S., L.-P.L.-K., D.V., E.M.Z., S.A., L.S., E. Raanani, J.L.)
| |
Collapse
|
22
|
Heitmann S, Shpak A, Vandenberg JI, Hill AP. Arrhythmogenic effects of ultra-long and bistable cardiac action potentials. PLoS Comput Biol 2021; 17:e1008683. [PMID: 33591969 PMCID: PMC7909657 DOI: 10.1371/journal.pcbi.1008683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/26/2021] [Accepted: 01/08/2021] [Indexed: 12/04/2022] Open
Abstract
Contemporary accounts of the initiation of cardiac arrhythmias typically rely on after-depolarizations as the trigger for reentrant activity. The after-depolarizations are usually triggered by calcium entry or spontaneous release within the cells of the myocardium or the conduction system. Here we propose an alternative mechanism whereby arrhythmias are triggered autonomously by cardiac cells that fail to repolarize after a normal heartbeat. We investigated the proposal by representing the heart as an excitable medium of FitzHugh-Nagumo cells where a proportion of cells were capable of remaining depolarized indefinitely. As such, those cells exhibit bistable membrane dynamics. We found that heterogeneous media can tolerate a surprisingly large number of bistable cells and still support normal rhythmic activity. Yet there is a critical limit beyond which the medium is persistently arrhythmogenic. Numerical analysis revealed that the critical threshold for arrhythmogenesis depends on both the strength of the coupling between cells and the extent to which the abnormal cells resist repolarization. Moreover, arrhythmogenesis was found to emerge preferentially at tissue boundaries where cells naturally have fewer neighbors to influence their behavior. These findings may explain why atrial fibrillation typically originates from tissue boundaries such as the cuff of the pulmonary vein. Cardiac fibrillation is a medical condition where normal heart function is compromised as electrical activity becomes disordered. How fibrillation arises spontaneously is not fully understood. It is generally thought to be triggered by premature depolarization of the cardiac action potential in one or more cells. Those premature beats, known as after-depolarizations, subsequently initiate a self-sustaining rotor in the otherwise normal heart tissue. In this study, we propose an alternative mechanism whereby arrhythmias are initiated by cardiac cells that fail to repolarize of their own accord but still operate normally when embedded in functional heart tissue. We find that such cells can act as focal ectopic sources under appropriate conditions of inter-cellular coupling. Moreover, those cells are more prone to initiating arrhythmia when they are located on natural tissue boundaries. This may explain why atrial fibrillation typically originates from the site where the pulmonary vein attaches to the wall of the heart.
Collapse
Affiliation(s)
- Stewart Heitmann
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- * E-mail:
| | - Anton Shpak
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- Victor Chang Cardiac Research Institute Innovation Centre, Darlinghurst, NSW, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, UNSW Sydney, Kensington, NSW, Australia
| | - Adam P. Hill
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- Victor Chang Cardiac Research Institute Innovation Centre, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
23
|
Zhang Z, Liu MB, Huang X, Song Z, Qu Z. Mechanisms of Premature Ventricular Complexes Caused by QT Prolongation. Biophys J 2020; 120:352-369. [PMID: 33333033 DOI: 10.1016/j.bpj.2020.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
QT prolongation, due to lengthening of the action potential duration in the ventricles, is a major risk factor of lethal ventricular arrhythmias. A widely known consequence of QT prolongation is the genesis of early afterdepolarizations (EADs), which are associated with arrhythmias through the generation of premature ventricular complexes (PVCs). However, the vast majority of the EADs observed experimentally in isolated ventricular myocytes are phase-2 EADs, and whether phase-2 EADs are mechanistically linked to PVCs in cardiac tissue remains an unanswered question. In this study, we investigate the genesis of PVCs using computer simulations with eight different ventricular action potential models of various species. Based on our results, we classify PVCs as arising from two distinct mechanisms: repolarization gradient (RG)-induced PVCs and phase-2 EAD-induced PVCs. The RG-induced PVCs are promoted by increasing RG and L-type calcium current and are insensitive to gap junction coupling. EADs are not required for this PVC mechanism. In a paced beat, a single or multiple PVCs can occur depending on the properties of the RG. In contrast, phase-2 EAD-induced PVCs occur only when the RG is small and are suppressed by increasing RG and more sensitive to gap junction coupling. Unlike with RG-induced PVCs, in each paced beat, only a single EAD-induced PVC can occur no matter how many EADs in an action potential. In the wide parameter ranges we explore, RG-induced PVCs can be observed in all models, but the EAD-induced PVCs can only be observed in five of the eight models. The links between these two distinct PVC mechanisms and arrhythmogenesis in animal experiments and clinical settings are discussed.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
24
|
Chu Z, Yang D, Huang X. Conditions for the genesis of early afterdepolarization in a model of a ventricular myocyte. CHAOS (WOODBURY, N.Y.) 2020; 30:043105. [PMID: 32357650 DOI: 10.1063/1.5133086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Early afterdepolarization (EAD) is a major arrhythmogenic factor in the long QT syndrome (LQTS), whose conditions for genesis have puzzled people for several decades. Here, we employ the phase I Luo-Rudy ventricular myocyte model to investigate EAD using methods from nonlinear dynamics and provide valuable insights into EAD genesis from a physical perspective. Two major results are obtained: (i) Sufficient parametric conditions for EAD are analytically determined and then used to analyze in detail the effects of the physiological parameters. (ii) The normal form of the Hopf bifurcation that leads to EAD is derived and then used to determine whether the Hopf bifurcation is subcritical or supercritical for EAD genesis and the corresponding amplitude and period of the EAD oscillation. Our work here paves the way for further studies of more complicated multi-scale dynamics of EAD and may lead to effective treatments for LQTS arrhythmias.
Collapse
Affiliation(s)
- Zhikun Chu
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Dongping Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
25
|
Liu MB, Vandersickel N, Panfilov AV, Qu Z. R-From-T as a Common Mechanism of Arrhythmia Initiation in Long QT Syndromes. Circ Arrhythm Electrophysiol 2019; 12:e007571. [PMID: 31838916 PMCID: PMC6924944 DOI: 10.1161/circep.119.007571] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long QT syndromes (LQTS) arise from many genetic and nongenetic causes with certain characteristic ECG features preceding polymorphic ventricular tachyarrhythmias (PVTs). However, how the many molecular causes result in these characteristic ECG patterns and how these patterns are mechanistically linked to the spontaneous initiation of PVT remain poorly understood. METHODS Anatomic human ventricle and simplified tissue models were used to investigate the mechanisms of spontaneous initiation of PVT in LQTS. RESULTS Spontaneous initiation of PVT was elicited by gradually ramping up ICa,L to simulate the initial phase of a sympathetic surge or by changing the heart rate, reproducing the different genotype-dependent clinical ECG features. In LQTS type 2 (LQT2) and LQTS type 3 (LQT3), T-wave alternans was observed followed by premature ventricular complexes (PVCs). Compensatory pauses occurred resulting in short-long-short sequences. As ICa,L increased further, PVT episodes occurred, always preceded by a short-long-short sequence. However, in LQTS type 1 (LQT1), once a PVC occurred, it always immediately led to an episode of PVT. Arrhythmias in LQT2 and LQT3 were bradycardia dependent, whereas those in LQT1 were not. In all 3 genotypes, PVCs always originated spontaneously from the steep repolarization gradient region and manifested on ECG as R-on-T. We call this mechanism R-from-T, to distinguish it from the classic explanation of R-on-T arrhythmogenesis in which an exogenous PVC coincidentally encounters a repolarizing region. In R-from-T, the PVC and the T wave are causally related, where steep repolarization gradients combined with enhanced ICa,L lead to PVCs emerging from the T wave. Since enhanced ICa,L was required for R-from-T to occur, suppressing window ICa,L effectively prevented arrhythmias in all 3 genotypes. CONCLUSIONS Despite the complex molecular causes, these results suggest that R-from-T is likely a common mechanism for PVT initiation in LQTS. Targeting ICa,L properties, such as suppressing window ICa,L or preventing excessive ICa,L increase, could be an effective unified therapy for arrhythmia prevention in LQTS.
Collapse
Affiliation(s)
- Michael B. Liu
- Department of Medicine (M.B.L., Z.Q.), University of California, Los Angeles
| | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Belgium (N.V., A.V.P.)
| | - Alexander V. Panfilov
- Department of Physics and Astronomy, Ghent University, Belgium (N.V., A.V.P.)
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia (A.V.P.)
| | - Zhilin Qu
- Department of Medicine (M.B.L., Z.Q.), University of California, Los Angeles
- Department of Biomathematics (Z.Q.), University of California, Los Angeles
| |
Collapse
|
26
|
Landaw J, Qu Z. Bifurcations Caused by Feedback between Voltage and Intracellular Ion Concentrations in Ventricular Myocytes. PHYSICAL REVIEW LETTERS 2019; 123:218101. [PMID: 31809131 PMCID: PMC7042026 DOI: 10.1103/physrevlett.123.218101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 05/04/2023]
Abstract
We develop an iterated map model to describe the bifurcations and complex dynamics caused by the feedback between voltage and intracellular Ca^{2+} and Na^{+} concentrations in paced ventricular myocytes. Voltage and Ca^{2+} can form either a positive or a negative feedback loop, while voltage and Na^{+} form a negative feedback loop. Under certain diseased conditions, when the feedback between voltage and Ca^{2+} is positive, Hopf bifurcations occur, leading to periodic oscillatory behaviors. When this feedback is negative, period-doubling bifurcation routes to alternans and chaos occur.
Collapse
Affiliation(s)
- Julian Landaw
- Department of Medicine and Department of Biomathematics, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine and Department of Biomathematics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
27
|
Kim TY, Jeng P, Hwang J, Pfeiffer Z, Patel D, Cooper LL, Kossidas K, Centracchio J, Peng X, Koren G, Qu Z, Choi BR. Short-Long Heart Rate Variation Increases Dispersion of Action Potential Duration in Long QT Type 2 Transgenic Rabbit Model. Sci Rep 2019; 9:14849. [PMID: 31619700 PMCID: PMC6795902 DOI: 10.1038/s41598-019-51230-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
The initiation of polymorphic ventricular tachycardia in long QT syndrome type 2 (LQT2) has been associated with a characteristic ECG pattern of short-long RR intervals. We hypothesize that this characteristic pattern increases APD dispersion in LQT2, thereby promoting arrhythmia. We investigated APD dispersion and its dependence on two previous cycle lengths (CLs) in transgenic rabbit models of LQT2, LQT1, and their littermate controls (LMC) using random stimulation protocols. The results show that the short-long RR pattern was associated with a larger APD dispersion in LQT2 but not in LQT1 rabbits. The multivariate analyses of APD as a function of two previous CLs (APDn = C + α1CLn−1 + α2CLn−2) showed that α1 (APD restitution slope) is largest and heterogeneous in LQT2 but uniform in LQT1, enhancing APD dispersion under long CLn−1 in LQT2. The α2 (short-term memory) was negative in LQT2 while positive in LQT1, and the spatial pattern of α1 was inversely correlated to α2 in LQT2, which explains why a short-long combination causes a larger APD dispersion in LQT2 but not in LQT1 rabbits. In conclusion, short-long RR pattern increased APD dispersion only in LQT2 rabbits through heterogeneous APD restitution and the short-term memory, underscoring the genotype-specific triggering of arrhythmias in LQT syndrome.
Collapse
Affiliation(s)
- Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Paul Jeng
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - JungMin Hwang
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Zachary Pfeiffer
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Divyang Patel
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Leroy L Cooper
- Biology Department, Vassar College, Poughkeepsie, NY, USA
| | - Konstantinos Kossidas
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jason Centracchio
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Xuwen Peng
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
28
|
Neira V, Enriquez A, Simpson C, Baranchuk A. Update on long QT syndrome. J Cardiovasc Electrophysiol 2019; 30:3068-3078. [PMID: 31596038 DOI: 10.1111/jce.14227] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 12/24/2022]
Abstract
Long QT syndrome (LQTS) is an inherited disorder characterized by a prolonged QT interval in the 12-lead electrocardiogram and increased risk of malignant arrhythmias in patients with a structurally normal heart. Since its first description in the 1950s, advances in molecular genetics have greatly improved our understanding of the cause and mechanisms of this disease. Sixteen genes linked to LQTS have been described and genetic testing had become an integral part of the diagnosis and risk stratification. This article provides an updated review of the genetic basis, diagnosis, and clinical management of LQTS.
Collapse
Affiliation(s)
- Víctor Neira
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Andrés Enriquez
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Chris Simpson
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
29
|
Paradoxical Effects of Sodium-Calcium Exchanger Inhibition on Torsade de Pointes and Early Afterdepolarization in a Heart Failure Rabbit Model. J Cardiovasc Pharmacol 2019; 72:97-105. [PMID: 29738372 DOI: 10.1097/fjc.0000000000000598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium homeostasis plays an important role in development of early afterdepolarizations (EADs) and torsade de pointes (TdP). The role of sodium-calcium exchanger (NCX) inhibition in genesis of secondary Ca rise and EAD-TdP is still debated. Dual voltage and intracellular Ca optical mapping were conducted in 6 control and 9 failing rabbit hearts. After baseline electrophysiological and optical mapping studies, E4031 was given to simulate long QT syndrome. ORM-10103 was then administrated to examine the electrophysiological effects on EAD-TdP development. E4031 enhanced secondary Ca rise, EADs development, and TdP inducibility in both control and failing hearts. The results showed that ORM-10103 reduced premature ventricular beats but was unable to suppress the inducibility of TdP or EADs. The electrophysiological effects of ORM-10103 included prolongation of action potential duration (APD) and increased APD heterogeneity in failing hearts. ORM-10103 had a neutral effect on the amplitude of secondary Cai rise in control and heart failure groups. In this model, most EADs generated from long-short APD junction area. In conclusion, highly selective NCX inhibition with ORM-10103 reduced premature ventricular beat burden but was unable to suppress secondary Ca rise, EADs development, or inducibility of TdP. The possible electrophysiological mechanisms include APD prolongation and increased APD heterogeneity.
Collapse
|
30
|
Huang X, Song Z, Qu Z. Determinants of early afterdepolarization properties in ventricular myocyte models. PLoS Comput Biol 2018; 14:e1006382. [PMID: 30475801 PMCID: PMC6283611 DOI: 10.1371/journal.pcbi.1006382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Early afterdepolarizations (EADs) are spontaneous depolarizations during the repolarization phase of an action potential in cardiac myocytes. It is widely known that EADs are promoted by increasing inward currents and/or decreasing outward currents, a condition called reduced repolarization reserve. Recent studies based on bifurcation theories show that EADs are caused by a dual Hopf-homoclinic bifurcation, bringing in further mechanistic insights into the genesis and dynamics of EADs. In this study, we investigated the EAD properties, such as the EAD amplitude, the inter-EAD interval, and the latency of the first EAD, and their major determinants. We first made predictions based on the bifurcation theory and then validated them in physiologically more detailed action potential models. These properties were investigated by varying one parameter at a time or using parameter sets randomly drawn from assigned intervals. The theoretical and simulation results were compared with experimental data from the literature. Our major findings are that the EAD amplitude and takeoff potential exhibit a negative linear correlation; the inter-EAD interval is insensitive to the maximum ionic current conductance but mainly determined by the kinetics of ICa,L and the dual Hopf-homoclinic bifurcation; and both inter-EAD interval and latency vary largely from model to model. Most of the model results generally agree with experimental observations in isolated ventricular myocytes. However, a major discrepancy between modeling results and experimental observations is that the inter-EAD intervals observed in experiments are mainly between 200 and 500 ms, irrespective of species, while those of the mathematical models exhibit a much wider range with some models exhibiting inter-EAD intervals less than 100 ms. Our simulations show that the cause of this discrepancy is likely due to the difference in ICa,L recovery properties in different mathematical models, which needs to be addressed in future action potential model development. Early afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase of action potential in cardiac myocytes, arising from a dual Hopf-homoclinic bifurcation. The same bifurcations are also responsible for certain types of bursting behaviors in other cell types, such as beta cells and neuronal cells. EADs are known to play important role in the genesis of lethal arrhythmias and have been widely studied in both experiments and computer models. However, a detailed comparison between the properties of EADs observed in experiments and those from mathematical models have not been carried out. In this study, we performed theoretical analyses and computer simulations of different ventricular action potential models as well as different species to investigate the properties of EADs and compared these properties to those observed in experiments. While the EAD properties in the action potential models capture many of the EAD properties seen in experiments, the inter-EAD intervals in the computer models differ a lot from model to model, and some of them show very large discrepancy with those observed in experiments. This discrepancy needs to be addressed in future cardiac action potential model development.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Wang W, Zhang S, Ni H, Garratt CJ, Boyett MR, Hancox JC, Zhang H. Mechanistic insight into spontaneous transition from cellular alternans to arrhythmia-A simulation study. PLoS Comput Biol 2018; 14:e1006594. [PMID: 30500818 PMCID: PMC6291170 DOI: 10.1371/journal.pcbi.1006594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/12/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023] Open
Abstract
Cardiac electrical alternans (CEA), manifested as T-wave alternans in ECG, is a clinical biomarker for predicting cardiac arrhythmias and sudden death. However, the mechanism underlying the spontaneous transition from CEA to arrhythmias remains incompletely elucidated. In this study, multiscale rabbit ventricular models were used to study the transition and a potential role of INa in perpetuating such a transition. It was shown CEA evolved into either concordant or discordant action potential (AP) conduction alternans in a homogeneous one-dimensional tissue model, depending on tissue AP duration and conduction velocity (CV) restitution properties. Discordant alternans was able to cause conduction failure in the model, which was promoted by impaired sodium channel with either a reduced or increased channel current. In a two-dimensional homogeneous tissue model, a combined effect of rate- and curvature-dependent CV broke-up alternating wavefronts at localised points, facilitating a spontaneous transition from CEA to re-entry. Tissue inhomogeneity or anisotropy further promoted break-up of re-entry, leading to multiple wavelets. Similar observations have also been seen in human atrial cellular and tissue models. In conclusion, our results identify a mechanism by which CEA spontaneously evolves into re-entry without a requirement for premature ventricular complexes or pre-existing tissue heterogeneities, and demonstrated the important pro-arrhythmic role of impaired sodium channel activity. These findings are model-independent and have potential human relevance.
Collapse
Affiliation(s)
- Wei Wang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Shanzhuo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haibo Ni
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Clifford J. Garratt
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Mark R. Boyett
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
32
|
Suarez K, Mack R, Hardegree EL, Chiles C, Banchs JE, Gonzalez MD. Isoproterenol suppresses recurrent torsades de pointes in a patient with long QT syndrome type 2. HeartRhythm Case Rep 2018; 4:576-579. [PMID: 30581736 PMCID: PMC6301889 DOI: 10.1016/j.hrcr.2018.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Keith Suarez
- Division of Cardiology, Department of Medicine, Baylor Scott & White Health, Scott & White Memorial Hospital, Temple, Texas
| | - Ryan Mack
- Division of Cardiology, Department of Medicine, Baylor Scott & White Health, Scott & White Memorial Hospital, Temple, Texas
| | - Evan L Hardegree
- Division of Cardiology, Department of Medicine, Baylor Scott & White Health, Scott & White Memorial Hospital, Temple, Texas
| | - Christopher Chiles
- Division of Cardiology, Department of Medicine, Baylor Scott & White Health, Scott & White Memorial Hospital, Temple, Texas
| | - Javier E Banchs
- Division of Cardiology, Department of Medicine, Baylor Scott & White Health, Scott & White Memorial Hospital, Temple, Texas
| | - Mario D Gonzalez
- Penn State Heart & Vascular Institute, Penn State Hershey Health, Hershey, Pennsylvania
| |
Collapse
|
33
|
Teplenin AS, Dierckx H, de Vries AAF, Pijnappels DA, Panfilov AV. Paradoxical Onset of Arrhythmic Waves from Depolarized Areas in Cardiac Tissue Due to Curvature-Dependent Instability. PHYSICAL REVIEW. X 2018; 8:021077. [PMID: 30210937 PMCID: PMC6130777 DOI: 10.1103/physrevx.8.021077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The generation of abnormal excitations in pathological regions of the heart is a main trigger for lethal cardiac arrhythmias. Such abnormal excitations, also called ectopic activity, often arise from areas with local tissue heterogeneity or damage accompanied by localized depolarization. Finding the conditions that lead to ectopy is important to understand the basic biophysical principles underlying arrhythmia initiation and might further refine clinical procedures. In this study, we are the first to address the question of how geometry of the abnormal region affects the onset of ectopy using a combination of experimental, in silico, and theoretical approaches. We paradoxically find that, for any studied geometry of the depolarized region in optogenetically modified monolayers of cardiac cells, primary ectopic excitation originates at areas of maximal curvature of the boundary, where the stimulating electrotonic currents are minimal. It contradicts the standard critical nucleation theory applied to nonlinear waves in reaction-diffusion systems, where a higher stimulus is expected to produce excitation more easily. Our in silico studies reveal that the nonconventional ectopic activity is caused by an oscillatory instability at the boundary of the damaged region, the occurrence of which depends on the curvature of that boundary. The onset of this instability is confirmed using the Schrödinger equation methodology proposed by Rinzel and Keener [SIAM J. Appl. Math. 43, 907 (1983)]. Overall, we show distinctively novel insight into how the geometry of a heterogeneous cardiac region determines ectopic activity, which can be used in the future to predict the conditions that can trigger cardiac arrhythmias.
Collapse
Affiliation(s)
- Alexander S. Teplenin
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Dierckx
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Antoine A. F. de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniël A. Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander V. Panfilov
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
34
|
Shaheen N, Shiti A, Huber I, Shinnawi R, Arbel G, Gepstein A, Setter N, Goldfracht I, Gruber A, Chorna SV, Gepstein L. Human Induced Pluripotent Stem Cell-Derived Cardiac Cell Sheets Expressing Genetically Encoded Voltage Indicator for Pharmacological and Arrhythmia Studies. Stem Cell Reports 2018; 10:1879-1894. [PMID: 29754959 PMCID: PMC5989818 DOI: 10.1016/j.stemcr.2018.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
Fulfilling the potential of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes for studying conduction and arrhythmogenesis requires development of multicellular models and methods for long-term repeated tissue phenotyping. We generated confluent hiPSC-derived cardiac cell sheets (hiPSC-CCSs), expressing the genetically encoded voltage indicator ArcLight. ArcLight-based optical mapping allowed generation of activation and action-potential duration (APD) maps, which were validated by mapping the same hiPSC-CCSs with the voltage-sensitive dye, Di-4-ANBDQBS. ArcLight mapping allowed long-term assessment of electrical remodeling in the hiPSC-CCSs and evaluation of drug-induced conduction slowing (carbenoxolone, lidocaine, and quinidine) and APD prolongation (quinidine and dofetilide). The latter studies also enabled step-by-step depiction of drug-induced arrhythmogenesis ("torsades de pointes in the culture dish") and its prevention by MgSO4 and rapid pacing. Phase-mapping analysis allowed biophysical characterization of spiral waves induced in the hiPSC-CCSs and their termination by electrical cardioversion and overdrive pacing. In conclusion, ArcLight mapping of hiPSC-CCSs provides a powerful tool for drug testing and arrhythmia investigation. Optical mapping of hiPSC-derived cardiac cell sheets expressing ArcLight Evaluating effects of drugs and time (weeks) on conduction and APD Mapping drug-induced TdP and electrically induced spiral waves (rotors) Evaluating interventions aiming to prevent or terminate arrhythmias in the model
Collapse
Affiliation(s)
- Naim Shaheen
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Assad Shiti
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Irit Huber
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Rami Shinnawi
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Gil Arbel
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Amira Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Noga Setter
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Idit Goldfracht
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Amit Gruber
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Snizhanna V Chorna
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel
| | - Lior Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel, POB 9649, Haifa 3109601, Israel; Cardiolology Department, Rambam Health Care Campus, Haliya Hashniya St 8, Haifa 3109601, Israel.
| |
Collapse
|
35
|
Liu W, Kim TY, Huang X, Liu MB, Koren G, Choi BR, Qu Z. Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT syndrome. J Physiol 2018; 596:1341-1355. [PMID: 29377142 DOI: 10.1113/jp275492] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS T-wave alternans (TWA) and T-wave lability (TWL) are precursors of ventricular arrhythmias in long QT syndrome; however, the mechanistic link remains to be clarified. Computer simulations show that action potential duration (APD) prolongation and slowed heart rates promote APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos can exacerbate pre-existing or induce de novo APD dispersion, which combines with enhanced ICa,L to result in premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs can directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or further exacerbate the APD dispersion to cause spontaneous initiation of ventricular arrhythmias. Experiments conducted in transgenic long QT rabbits show that PVC alternans occurs at slow heart rates, preceding spontaneous intuition of ventricular arrhythmias. ABSTRACT T-wave alternans (TWA) and irregular beat-to-beat T-wave variability or T-wave lability (TWL), the ECG manifestations of action potential duration (APD) alternans and variability, are precursors of ventricular arrhythmias in long QT syndromes. TWA and TWL in patients tend to occur at normal heart rates and are usually potentiated by bradycardia. Whether or how TWA and TWL at normal or slow heart rates are causally linked to arrhythmogenesis remains unknown. In the present study, we used computer simulations and experiments of a transgenic rabbit model of long QT syndrome to investigate the underlying mechanisms. Computer simulations showed that APD prolongation and slowed heart rates caused early afterdepolarization-mediated APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos exacerbated pre-existing APD dispersion and, in addition, APD chaos could also induce APD dispersion de novo via chaos desynchronization. Increased APD dispersion, combined with substantially enhanced ICa,L , resulted in a tissue-scale dynamical instability that gave rise to the spontaneous occurrence of unidirectionally propagating premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs could directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or could block the following sinus beat to result in a longer RR interval, which further exacerbated the APD dispersion giving rise to the spontaneous occurrence of ventricular arrhythmias. Slow heart rate-induced PVC alternans was observed in experiments of transgenic LQT2 rabbits under isoproterenol, which was associated with increased APD dispersion and spontaneous occurrence of ventricular arrhythmias, in agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Weiqing Liu
- Department of Medicine, University of California, Los Angeles, California, USA.,School of Science, Jiangxi University of Science and Technology, Ganzhou, China
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Xiaodong Huang
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Physics, South China University of Technology, Guangzhou, China
| | - Michael B Liu
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Biomathematics, University of California, Los Angeles, California, USA
| |
Collapse
|