1
|
Rajendran NK, Liu W, Cahill PA, Redmond EM. Alcohol and vascular endothelial function: Biphasic effect highlights the importance of dose. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1467-1477. [PMID: 37369447 PMCID: PMC10751391 DOI: 10.1111/acer.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Alcohol (ethanol) consumption has different influences on arterial disease, being protective or harmful depending on the amount and pattern of consumption. The mechanisms mediating these biphasic effects are unknown. Whereas endothelial cells play a critical role in maintaining arterial health, this study compared the effects of moderate and high alcohol concentrations on endothelial cell function. METHODS Human coronary artery endothelial cells (HCAEC) were treated with levels of ethanol associated with either low-risk/moderate drinking (i.e., 25 mM) or high-risk/heavy drinking (i.e., 50 mM) after which endothelial function was assessed. The effect of ethanol's primary metabolite acetaldehyde (10 and 25 μM) was also determined. RESULTS Moderate ethanol exposure (25 mM) improved HCAEC barrier integrity as determined by increased transendothelial electrical resistance (TEER), inhibited cell adhesion molecule (CAM) mRNA expression, decreased inflammatory cytokine (interferon-γ and interleukin 6) production, inhibited monocyte chemotactic protein-1 (MCP-1) expression and monocyte adhesion, and increased homeostatic Notch signaling. In contrast, exposure to high-level ethanol (50 mM) decreased TEER, increased CAM expression and inflammatory cytokine production, and stimulated MCP-1 and monocyte adhesion, with no effect on Notch signaling. Reactive oxygen species (ROS) generation and endothelial nitric oxide synthase activity were increased by both alcohol treatments, and to a greater extent in the 50 mM ethanol group. Acetaldehyde-elicited responses were generally the same as those of the high-level ethanol group. CONCLUSIONS Ethanol has biphasic effects on several endothelial functions such that a moderate level maintains the endothelium in a nonactivated state, whereas high-level ethanol causes endothelial dysfunction, as does acetaldehyde. These data show the importance of dose when considering ethanol's effects on arterial endothelium, and could explain, in part, the J-shaped relationship between alcohol concentration and atherosclerosis reported in some epidemiologic studies.
Collapse
Affiliation(s)
- Naresh K Rajendran
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Weimin Liu
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Rajendran NK, Liu W, Cahill PA, Redmond EM. Caveolin-1 inhibition mediates the opposing effects of alcohol on γ-secretase activity in arterial endothelial and smooth muscle cells. Physiol Rep 2023; 11:e15544. [PMID: 36635975 PMCID: PMC9837422 DOI: 10.14814/phy2.15544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 04/18/2023] Open
Abstract
Notch is important to vessel homeostasis. We investigated the mechanistic role of caveolin-1 (Cav-1) in mediating the effects of alcohol (Ethanol/EtOH) on the γ-secretase proteolytic activity necessary for Notch signaling in vascular cells. Human coronary artery endothelial cells (HCAEC) were treated with EtOH (0-50 mM), Notch ligand delta-like ligand 4 (Dll4), and the γ-secretase inhibitor DAPT. EtOH stimulated Notch signaling in HCAEC as evidenced by increased Notch receptor (N1, N4) and target gene (hrt2, hrt3) mRNA levels with the most robust response achieved at 25 mM EtOH. Ethanol (25 mM) stimulated γ-secretase proteolytic activity, to the same extent as Dll4, in HCAEC membranes. Ethanol inhibited Cav-1 mRNA and protein levels in HCAEC. Caveolin-1 negatively regulated γ-secretase activity in HCAEC as Cav-1 knockdown stimulated it, while Cav-1 overexpression inhibited it. Moreover, Cav-1 overexpression blocked the stimulatory effect of EtOH on γ-secretase activity in HCAEC. Although EtOH also inhibited Cav-1 expression in human coronary artery smooth muscle cells (HCASMC), EtOH inhibited γ-secretase activity in HCASMC in contrast to its effect in HCAEC. The inhibitory effect of EtOH on γ-secretase in HCASMC was mimicked by Cav-1 knockdown and prevented by Cav-1 overexpression, suggesting that in these cells Cav-1 positively regulates γ-secretase activity. In conclusion, EtOH differentially regulates γ-secretase activity in arterial EC and SMC, being stimulatory and inhibitory, respectively. These effects are both mediated by caveolin-1 inhibition which itself has opposite effects on γ-secretase in the two cell types. This mechanism may underlie, in part, the effects of moderate drinking on atherosclerosis.
Collapse
Affiliation(s)
- Naresh K. Rajendran
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Weimin Liu
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Paul A. Cahill
- Vascular Biology and Therapeutics Laboratory, School of BiotechnologyDublin City UniversityDublinIreland
| | - Eileen M. Redmond
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
3
|
Yin Q, He M, Huang L, Zhang X, Zhan J, Hu J. lncRNA ZFAS1 promotes ox-LDL induced EndMT through miR-150-5p/Notch3 signaling axis. Microvasc Res 2021; 134:104118. [PMID: 33278458 DOI: 10.1016/j.mvr.2020.104118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
EndMT is an active contributor to atherosclerosis pathology, and lncRNAs is widely involved in the occurrence and development of atherosclerosis. The purpose of this study was to investigate the regulatory mechanisms of ZFAS1 in EndMT of atherosclerosis. Here, the ApoE-/- mice were feed with high-fat diet to establish the atherosclerosis model, and HUVECs was stimulated with ox-LDL to induce EndMT. RT-PCR and western blot were used to detect the mRNA and protein expression, respectively. The expression of EndMT markers were detected by immune-fluorescence. The relationships among ZFAS1, miR-150-5p and Notch3 were evaluated by luciferase reporter assay. The role of ZFAS1 in EndMT and its dependence on miR-150-5p/Notch3 axis was further detected by knocking down or over-expressing ZFAS1. We found that ZFAS1 and Notch3 were upregulated while miR-150-5p was downregulated in atherosclerosis mice and ox-LDL-treated HUVECs. The expression of CD31 and vWF were significant decreased, while the α-SMA and vimentin were significant increased in ox-LDL-treated HUVECs, and overexpression of ZFAS1 enhanced the effect of ox-LDL on HUVECs. Further, ZFAS1 functions as a ceRNA to increase Notch3 expression through sponging miR-150-5p, and miR-150-5p mimic or si-Notch3 could reverse LV-ZFAS1-mediated EndMT. In summary, lncRNA ZFAS1 promotes ox-LDL induced HUVECs EndMT through regulating miR-150-5p/Notch3 axis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Epithelial-Mesenchymal Transition/drug effects
- Gene Expression Regulation
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Lipoproteins, LDL/toxicity
- Male
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Qiulin Yin
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92 Aiguo Road, Nanchang 330006, Jiangxi, China
| | - Mingyan He
- Department of gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China
| | - Li Huang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92 Aiguo Road, Nanchang 330006, Jiangxi, China
| | - Xuehong Zhang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92 Aiguo Road, Nanchang 330006, Jiangxi, China
| | - Junfeng Zhan
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92 Aiguo Road, Nanchang 330006, Jiangxi, China
| | - Jing Hu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92 Aiguo Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
4
|
Peterson SM, Turner JE, Harrington A, Davis-Knowlton J, Lindner V, Gridley T, Vary CPH, Liaw L. Notch2 and Proteomic Signatures in Mouse Neointimal Lesion Formation. Arterioscler Thromb Vasc Biol 2018; 38:1576-1593. [PMID: 29853569 PMCID: PMC6023756 DOI: 10.1161/atvbaha.118.311092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Vascular remodeling is associated with complex molecular changes, including increased Notch2, which promotes quiescence in human smooth muscle cells. We used unbiased protein profiling to understand molecular signatures related to neointimal lesion formation in the presence or absence of Notch2 and to test the hypothesis that loss of Notch2 would increase neointimal lesion formation because of a hyperproliferative injury response. Approach and Results— Murine carotid arteries isolated at 6 or 14 days after ligation injury were analyzed by mass spectrometry using a data-independent acquisition strategy in comparison to uninjured or sham injured arteries. We used a tamoxifen-inducible, cell-specific Cre recombinase strain to delete the Notch2 gene in smooth muscle cells. Vessel morphometric analysis and immunohistochemical staining were used to characterize lesion formation, assess vascular smooth muscle cell proliferation, and validate proteomic findings. Loss of Notch2 in smooth muscle cells leads to protein profile changes in the vessel wall during remodeling but does not alter overall lesion morphology or cell proliferation. Loss of smooth muscle Notch2 also decreases the expression of enhancer of rudimentary homolog, plectin, and annexin A2 in vascular remodeling. Conclusions— We identified unique protein signatures that represent temporal changes in the vessel wall during neointimal lesion formation in the presence and absence of Notch2. Overall lesion formation was not affected with loss of smooth muscle Notch2, suggesting compensatory pathways. We also validated the regulation of known injury- or Notch-related targets identified in other vascular contexts, providing additional insight into conserved pathways involved in vascular remodeling.
Collapse
Affiliation(s)
- Sarah M Peterson
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.)
| | - Jacqueline E Turner
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Anne Harrington
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Jessica Davis-Knowlton
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Volkhard Lindner
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Thomas Gridley
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Calvin P H Vary
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Lucy Liaw
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.) .,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| |
Collapse
|