1
|
Turner CG, Stanhewicz AE, Nielsen KE, Otis JS, Feresin RG, Wong BJ. Oral contraceptive pill phase alters mechanisms contributing to cutaneous microvascular function in response to local heating. Am J Physiol Regul Integr Comp Physiol 2025; 328:R374-R385. [PMID: 39938890 DOI: 10.1152/ajpregu.00159.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The purpose of this study was to investigate the effect of oral contraceptive pill (OCP) phase on in vivo microvascular endothelium-dependent vasodilation and contributions of nitric oxide (NO), cyclooxygenase (COX), and endothelial-derived hyperpolarizing factors (EDHFs). Participants completed two experimental visits in random order, during the 1) low and 2) high hormone phase of the OCP cycle. Endothelium-dependent dilation was assessed in the cutaneous microvasculature via local heating at four intradermal microdialysis sites treated with: 1) lactated Ringer's (control), 2) 10 mM ketorolac (Keto, COX inhibitor), 3) 50 mM tetraethylammonium (TEA, calcium-activated potassium channel inhibitor), and 4) 10 mM ketorolac + 50 mM TEA (Keto + TEA). Perfusion of 20 mM Nω-nitro-l-arginine methyl ester (l-NAME) at each site was used to quantify the l-NAME-sensitive component of dilation, suggesting NO contribution. There was no effect of OCP phase on endothelium-dependent dilation (P = 0.75) or the l-NAME-sensitive component of the response (P = 0.09, d = 0.7) at control sites. Inhibition of COX increased baseline blood flow regardless of OCP phase (all P < 0.01). Control and Keto sites elicited greater endothelium-dependent dilation than TEA and Keto + TEA sites in both phases (all P < 0.0001). During the low hormone phase, the l-NAME-sensitive component was greater at control compared with TEA sites (P < 0.01). During the high hormone phase, the l-NAME-sensitive component was greater at Keto compared with TEA sites (P < 0.01). Within-participant differences between control and Keto sites support a phase-dependent restraint of NO activity via COX pathways (P = 0.01). These findings demonstrate that the OCP phase affects underlying mechanistic pathways contributing to cutaneous microvascular endothelial function.NEW & NOTEWORTHY This study investigates the effect of OCP phase on in vivo microvascular endothelium-dependent vasodilation and explores underlying mechanisms. Present findings suggest OCP phase does not affect overall microvascular endothelium-dependent dilation but does affect the underlying mechanisms. In women using OCP, there is a robust reliance on EDHF pathways and the COX pathway moderates basal microvascular blood flow and demonstrates a phase-dependent restraint of the NO pathway.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Karen E Nielsen
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
2
|
Wolf ST, Dillon GA, Alexander LM, Kenney WL, Stanhewicz AE. Quantification and interpretation of nitric oxide-dependent cutaneous vasodilation during local heating. J Appl Physiol (1985) 2024; 137:1418-1424. [PMID: 39417818 PMCID: PMC11573251 DOI: 10.1152/japplphysiol.00558.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Human cutaneous microdialysis approaches for assessing nitric oxide (NO)-dependent blood flow include local heating (LH) of the skin until a plateau is reached, followed by infusion of a NO synthase inhibitor such as NG-nitro-l-arginine methyl ester (l-NAME); however, varied methods of quantifying and expressing NO-dependent vasodilation can obfuscate data interpretation and reproducibility. We retrospectively assessed NO-dependent vasodilation during LH to 39°C or 42°C, calculated as the 1) absolute contribution of the NO-dependent component (along with baseline and the non-NO-dependent component) to the total cutaneous vascular conductance (CVC) response to LH, normalized to maximal CVC (%CVCmax); 2) difference in %CVCmax (Δ%CVCmax) between the LH plateau and post-NO synthase inhibition (l-NAME plateau; Δ%CVCmax = LH plateau - l-NAME plateau); 3) percentage of the LH plateau attributable to Δ%CVCmax (%plateau = Δ%CVCmax/LH plateau × 100); and 4) %plateau when correcting for baseline. The LH plateaus during 39°C and 42°C were 48 ± 17%CVCmax (9 ± 5% baseline; 2 ± 4% non-NO dependent; 36 ± 15% NO dependent) and 88 ± 10%CVCmax (15 ± 8% baseline; 9 ± 10% non-NO dependent; 64 ± 13% NO dependent), respectively. The absolute contributions of the non-NO-dependent and NO-dependent components of the response (P < 0.0001) and the Δ%CVCmax (66 ± 14 vs. 38 ± 15%) were greater during 42°C compared with 39°C (all P ≤ 0.02); however, there were no differences between the two protocols in %plateau (75 ± 13 vs. 80 ± 10%; P = 0.57) or %plateauBL (88 ± 14 vs. 95 ± 8%; P = 0.31). For both protocols, the values were greater for %plateauBL versus Δ%CVCmax and %plateau (P ≤ 0.0001), and for %plateau versus Δ%CVCmax (P ≤ 0.05). Quantification of NO-dependent skin vasodilation responses to LH is dependent upon the mathematical approach and verbal description, which can meaningfully impact data interpretation and reproducibility.NEW & NOTEWORTHY Local heating protocols are commonly used in conjunction with intradermal microdialysis for assessing nitric oxide (NO)-dependent microvascular function in humans, but various methods used to quantify and describe NO-dependent vasodilation may impact data interpretation. We compared four approaches for quantifying NO-dependent cutaneous vasodilation during local heating at 39°C and 42°C. We identify discrepancies in calculated NO-dependent dilation responses that are dependent upon the mathematical approach and meaningfully impact data interpretation and reproducibility.
Collapse
Affiliation(s)
- S Tony Wolf
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Gabrielle A Dillon
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Department of Health and Kinesiology, University of Illinois, Urbana, Illinois, United States
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Content VG, Williams AC, Alexander LM. Inhibition of nuclear factor-κB activation improves non-nitric oxide-mediated cutaneous microvascular function in reproductive-aged healthy women. Am J Physiol Heart Circ Physiol 2024; 327:H364-H369. [PMID: 38847757 PMCID: PMC11444226 DOI: 10.1152/ajpheart.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
The transcriptional regulator nuclear factor-κB (NF-κB) is a mediator of endothelial dysfunction. Inhibiting NF-κB with salsalate is used to investigate inflammatory mechanisms contributing to accelerated cardiovascular disease risk. However, in the absence of disease, inhibition of NF-κB can impact redox mechanisms, resulting in paradoxically decreased endothelial function. This study aimed to measure microvascular endothelial function during inhibition of the transcriptional regulator NF-κB in reproductive-aged healthy women. In a randomized, single-blind, crossover, placebo-controlled design, nine healthy women were randomly assigned oral salsalate (1,500 mg, twice daily) or placebo treatments for 5 days. Subjects underwent graded perfusion with the endothelium-dependent agonist acetylcholine (ACh, 10-10 to 10-1 M, 33°C) alone and in combination with 15 mM NG-nitro-l-arginine methyl ester [l-NAME; nonselective nitric oxide (NO) synthase inhibitor] through intradermal microdialysis. Laser-Doppler flux was measured over each microdialysis site, and cutaneous vascular conductance (CVC) was calculated as flux divided by mean arterial pressure and normalized to site-specific maximum (CVC%max; 28 mM sodium nitroprusside + 43°C). The l-NAME sensitive component was calculated as the difference between the areas under the dose-response curves. During the placebo and salsalate treatments, the l-NAME sites were reduced compared with the control sites (both P < 0.0001). Across treatments, there was a significant difference between the control and l-NAME sites, where both sites shifted upward following salsalate treatment (both P < 0.0001), whereas the l-NAME-sensitive component was not different (P = 0.94). These data demonstrate that inhibition of the transcriptional regulator NF-κB improves cutaneous microvascular function in reproductive-aged healthy women through non-NO-dependent mechanisms.NEW & NOTEWORTHY The transcription factor nuclear factor-κB (NF-κB) regulates multiple aspects of innate and adaptive immunity by encoding for genes that participate in inflammation and impact endothelial function following NF-κB inhibition with salsalate treatment. Our results show that cutaneous microvascular function is increased through non-nitric oxide (NO)-dependent mechanisms following salsalate treatment in reproductive-aged healthy women.
Collapse
Affiliation(s)
- Virginia G Content
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Auni C Williams
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Center for Healthy Aging, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
4
|
Aljadah M, Khan N, Beyer AM, Chen Y, Blanker A, Widlansky ME. Clinical Implications of COVID-19-Related Endothelial Dysfunction. JACC. ADVANCES 2024; 3:101070. [PMID: 39055276 PMCID: PMC11269277 DOI: 10.1016/j.jacadv.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Endothelial dysfunction represents a measurable and early manifestation of vascular disease. Emerging evidence suggests cardiovascular risk remains elevated after COVID-19 infection for at least 12 months, regardless of cardiovascular disease status prior to infection. We review the relationship between the severity of endothelial dysfunction and the severity of acute COVID-19 illness, the degree of impairment following recovery in both those with and without postacute sequalae SARS-CoV-2 infection, and current therapeutic efforts targeting endothelial function in patients following COVID-19 infection. We identify gaps in the literature to highlight specific areas where clinical research efforts hold promise for progress in understanding the connections between endothelial function, COVID-19, and clinical outcomes that will lead to beneficial therapeutics.
Collapse
Affiliation(s)
- Michael Aljadah
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nabeel Khan
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andreas M. Beyer
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yiliang Chen
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew Blanker
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael E. Widlansky
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Turner CG, Hayat MJ, Otis JS, Quyyumi AA, Wong BJ. The effect of endothelin a receptor inhibition and biological sex on cutaneous microvascular function in non-Hispanic Black and White young adults. Physiol Rep 2024; 12:e16149. [PMID: 39016164 PMCID: PMC11252828 DOI: 10.14814/phy2.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The purpose of this study was to investigate whether endothelin-A receptor (ETAR) inhibition in non-Hispanic Black (NHB) and White (NHW) young adults depends on biological sex. We recruited females during low hormone (n = 22) and high hormone (n = 22) phases, and males (n = 22). Participants self-identified as NHB (n = 33) or NHW (n = 33). Participants were instrumented with two microdialysis fibers: (1) lactated Ringer's (control) and (2) 500 nM BQ-123 (ETAR antagonist). Local heating was used to elicit cutaneous vasodilation, and an infusion of 20 mM L-NAME to quantify NO-dependent vasodilation. At control sites, NO-dependent vasodilation was lowest in NHB males (46 ± 13 %NO) and NHB females during low hormone phases (47 ± 12 %NO) compared to all NHW groups. Inhibition of ETAR increased NO-dependent vasodilation in NHB males (66 ± 13 %NO), in both groups of females during low hormone phases (NHW, control: 64 ± 12 %NO, BQ-123: 85 ± 11 %NO; NHB, BQ-123: 68 ± 13 %NO), and in NHB females during high hormone phases (control: 61 ± 11 %NO, BQ-123: 83 ± 9 %NO). There was no effect for ETAR inhibition in NHW males or females during high hormone phases. These data suggest the effect of ETAR inhibition on NO-dependent vasodilation is influenced by biological sex and racial identity.
Collapse
Affiliation(s)
- Casey G. Turner
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Brett J. Wong
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Wong BJ, Turner CG, Hayat MJ, Otis JS, Quyyumi AA. Inhibition of superoxide and iNOS augment cutaneous nitric oxide-dependent vasodilation in non-Hispanic black young adults. Physiol Rep 2024; 12:e16021. [PMID: 38639714 PMCID: PMC11027894 DOI: 10.14814/phy2.16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
We assessed the combined effect of superoxide and iNOS inhibition on microvascular function in non-Hispanic Black and non-Hispanic White participants (n = 15 per group). Participants were instrumented with four microdialysis fibers: (1) lactated Ringer's (control), (2) 10 μM tempol (superoxide inhibition), (3) 0.1 mM 1400 W (iNOS inhibition), (4) tempol + 1400 W. Cutaneous vasodilation was induced via local heating and NO-dependent vasodilation was quantified. At control sites, NO-dependent vasodilation was lower in non-Hispanic Black (45 ± 9% NO) relative to non-Hispanic White (79 ± 9% NO; p < 0.01; effect size, d = 3.78) participants. Tempol (62 ± 16% NO), 1400 W (78 ± 12% NO) and tempol +1400 W (80 ± 13% NO) increased NO-dependent vasodilation in non-Hispanic Black participants relative to control sites (all p < 0.01; d = 1.22, 3.05, 3.03, respectively). The effect of 1400 W (p = 0.04, d = 1.11) and tempol +1400 W (p = 0.03, d = 1.22) was greater than tempol in non-Hispanic Black participants. There was no difference between non-Hispanic Black and non-Hispanic White participants at 1400 W or tempol + 1400 W sites. These data suggest iNOS has a greater effect on NO-dependent vasodilation than superoxide in non-Hispanic Black participants.
Collapse
Affiliation(s)
- Brett J. Wong
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Casey G. Turner
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- Department of Population Health Sciences, School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiology Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Freeberg KA, Ludwig KR, Chonchol M, Seals DR, Rossman MJ. NAD +-boosting compounds enhance nitric oxide production and prevent oxidative stress in endothelial cells exposed to plasma from patients with COVID-19. Nitric Oxide 2023; 140-141:1-7. [PMID: 37657532 PMCID: PMC10840929 DOI: 10.1016/j.niox.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), induces vascular endothelial dysfunction, but the mechanisms are unknown. We tested the hypothesis that the "circulating milieu" (plasma) of patients with COVID-19 would cause endothelial cell dysfunction (characterized by lower nitric oxide (NO) production), which would be linked to greater reactive oxygen species (ROS) bioactivity and depletion of the critical metabolic co-substrate, nicotinamide adenine dinucleotide (NAD+). We also investigated if treatment with NAD+-boosting compounds would prevent COVID-19-induced reductions in endothelial cell NO bioavailability and oxidative stress. Human aortic endothelial cells (HAECs) were exposed to plasma from men and women (age 18-85 years) who were hospitalized and tested positive (n = 34; 20 M) or negative (n = 13; 10 M) for COVID-19. HAECs exposed to plasma from patients with COVID-19 also were co-incubated with NAD+ precursors nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN). Acetylcholine-stimulated NO production was 27% lower and ROS bioactivity was 54% higher in HAECs exposed to plasma from patients with COVID-19 (both p < 0.001 vs. control); these responses were independent of age and sex. NAD+ concentrations were 30% lower in HAECs exposed to plasma from patients with COVID-19 (p = 0.001 vs. control). Co-incubation with NR abolished COVID-19-induced reductions in NO production and oxidative stress (both p > 0.05 vs. control). Co-treatment with NMN produced similar results. Our findings suggest the circulating milieu of patients with COVID-19 promotes endothelial cell dysfunction, characterized by lower NO bioavailability, greater ROS bioactivity, and NAD+ depletion. Supplementation with NAD+ precursors may exert a protective effect against COVID-19-evoked endothelial cell dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Kaitlin A Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
8
|
Faconti L, Farukh B, McNally RJ, Brett S, Chowienczyk PJ. Impaired β 2 -adrenergic endothelium-dependent vasodilation in patients previously hospitalized with coronavirus disease 2019. J Hypertens 2023; 41:951-957. [PMID: 37016904 DOI: 10.1097/hjh.0000000000003420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
AIM The pulse wave response to salbutamol (PWRS) - change in augmentation index (AIx) - provides a means to assess endothelial vasodilator function in vivo . Endothelial dysfunction plays a relevant role in the pathogenesis of hypertension and cardiovascular disease and appears to underlie many of the complications of coronavirus disease 2019 (COVID-19). However, to what degree this persists after recovery is unknown. METHODS Individuals previously hospitalized with COVID-19, those recovered from mild symptoms and seronegative controls with well known risk factors for endothelial dysfunction were studied. To assess the involvement of nitric oxide-cyclic guanosine monophosphate pathway (NO-cGMP) on PWRS, sildenafil was also administrated in a subsample. RESULTS One hundred and one participants (60 men) aged 47.8 ± 14.1 (mean ± SD) years of whom 33 were previously hospitalized with COVID-19 were recruited. Salbutamol had minimal effect on haemodynamics including blood pressure and heart rate. It reduced AIx in controls ( n = 34) and those recovered from mild symptoms of COVID-19 ( n = 34) but produced an increase in AIx in those previously hospitalized: mean change [95% confidence interval] -2.85 [-5.52, -0.188] %, -2.32 [-5.17,0.54] %, and 3.03 [0.06, 6.00] % for controls, those recovered from mild symptoms and those previously hospitalized, respectively ( P = 0.001). In a sub-sample ( n = 22), sildenafil enhanced PWRS (change in AIx 0.05 [-2.15,2.24] vs. -3.96 [-7.01. -2.18], P = 0.006) with no significant difference between hospitalized ( n = 12) and nonhospitalized participants ( n = 10). CONCLUSIONS In patients previously hospitalized with COVID-19, there is long-lasting impairment of endothelial function as measured by the salbutamol-induced stimulation of the NO-cGMP pathway that may contribute to cardiovascular complications.
Collapse
Affiliation(s)
- Luca Faconti
- King's College London, Department of Clinical Pharmacology, St Thomas' Hospital, London, UK
| | | | | | | | | |
Collapse
|
9
|
Plaut S. “Long COVID-19” and viral “fibromyalgia-ness”: Suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front Med (Lausanne) 2023; 10:952278. [PMID: 37089610 PMCID: PMC10117846 DOI: 10.3389/fmed.2023.952278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
The coronavirus pandemic has led to a wave of chronic disease cases; “Long COVID-19” is recognized as a new medical entity and resembles “fibromyalgia” which, likewise, lacks a clear mechanism. Observational studies indicate that up to 30%–40% of convalescent COVID-19 patients develop chronic widespread pain and fatigue and fulfill the 2016 diagnostic criteria for “fibromyalgia.” A recent study suggested a theoretical neuro-biomechanical model (coined “Fascial Armoring”) to help explain the pathogenesis and cellular pathway of fibromyalgia, pointing toward mechanical abnormalities in connective tissue and fascia, driven by contractile myo/fibroblasts and altered extracellular matrix remodeling with downstream corresponding neurophysiological aberrations. This may help explain several of fibromyalgia’s manifestations such as pain, distribution of pain, trigger points/tender spots, hyperalgesia, chronic fatigue, cardiovascular abnormalities, metabolic abnormalities, autonomic abnormalities, small fiber neuropathy, various psychosomatic symptoms, lack of obvious inflammation, and silent imaging investigations. Pro-inflammatory and pro-fibrotic pathways provide input into this mechanism via stimulation of proto/myofibroblasts. In this hypothesis and theory paper the theoretical model of Fascial Armoring is presented to help explain the pathogenesis and manifestations of “long COVID-19” as a disease of immuno-rheumo-psycho-neurology. The model is also used to make testable experimental predictions on investigations and predict risk and relieving factors.
Collapse
|
10
|
Turner CG, Hayat MJ, Grosch C, Quyyumi AA, Otis JS, Wong BJ. Endothelin A receptor inhibition increases nitric oxide-dependent vasodilation independent of superoxide in non-Hispanic Black young adults. J Appl Physiol (1985) 2023; 134:891-899. [PMID: 36892887 PMCID: PMC10042601 DOI: 10.1152/japplphysiol.00739.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Young non-Hispanic Black adults have reduced microvascular endothelial function compared with non-Hispanic White counterparts, but the mechanisms are not fully elucidated. The purpose of this study was to investigate the effect of endothelin-1 A receptor (ETAR) and superoxide on cutaneous microvascular function in young non-Hispanic Black (n = 10) and White (n = 10) adults. Participants were instrumented with four intradermal microdialysis fibers: 1) lactated Ringer's (control), 2) 500 nM BQ-123 (ETAR antagonist), 3) 10 μM tempol (superoxide dismutase mimetic), and 4) BQ-123 + tempol. Skin blood flow was assessed via laser-Doppler flowmetry (LDF), and each site underwent rapid local heating from 33°C to 39°C. At the plateau of local heating, 20 mM l-NAME [nitric oxide (NO) synthase inhibitor] was infused to quantify NO-dependent vasodilation. Data are means ± standard deviation. NO-dependent vasodilation was decreased in non-Hispanic Black compared with non-Hispanic White young adults (P < 0.01). NO-dependent vasodilation was increased at BQ-123 sites (73 ± 10% NO) and at BQ-123 + tempol sites (71 ± 10%NO) in non-Hispanic Black young adults compared with control (53 ± 13%NO, P = 0.01). Tempol alone had no effect on NO-dependent vasodilation in non-Hispanic Black young adults (63 ± 14%NO, P = 0.18). NO-dependent vasodilation at BQ-123 sites was not statistically different between non-Hispanic Black and White (80 ± 7%NO) young adults (P = 0.15). ETAR contributes to reduced NO-dependent vasodilation in non-Hispanic Black young adults independent of superoxide, suggesting a greater effect on NO synthesis rather than NO scavenging via superoxide.NEW & NOTEWORTHY Endothelin-1 A receptors (ETARs) have been shown to reduce endothelial function independently and through increased production of superoxide. We show that independent ETAR inhibition increases microvascular endothelial function in non-Hispanic Black young adults. However, administration of a superoxide dismutase mimetic alone and in combination with ETAR inhibition had no effect on microvascular endothelial function suggesting that, in the cutaneous microvasculature, the negative effects of ETAR in non-Hispanic Black young adults are independent of superoxide production.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Matthew J Hayat
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Caroline Grosch
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
11
|
Turner CG, Stanhewicz AE, Nielsen KE, Otis JS, Feresin RG, Wong BJ. Effects of biological sex and oral contraceptive pill use on cutaneous microvascular endothelial function and nitric oxide-dependent vasodilation in humans. J Appl Physiol (1985) 2023; 134:858-867. [PMID: 36861674 PMCID: PMC10042598 DOI: 10.1152/japplphysiol.00586.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The purpose of this study was to evaluate in vivo endothelial function and nitric oxide (NO)-dependent vasodilation between women in either menstrual or placebo pill phases of their respective hormonal exposure [either naturally cycling (NC) or using oral contraceptive pills (OCPs)] and men. A planned subgroup analysis was then completed to assess endothelial function and NO-dependent vasodilation between NC women, women using OCP, and men. Endothelium-dependent and NO-dependent vasodilation were assessed in the cutaneous microvasculature using laser-Doppler flowmetry, a rapid local heating protocol (39°C, 0.1 °C/s), and pharmacological perfusion through intradermal microdialysis fibers. Data are represented as means ± standard deviation. Men displayed greater endothelium-dependent vasodilation (plateau, men: 71 ± 16 vs. women: 52 ± 20%CVCmax, P < 0.01), but lower NO-dependent vasodilation (men: 52 ± 11 vs. women: 63 ± 17%NO, P = 0.05) compared with all women. Subgroup analysis revealed NC women had lower endothelium-dependent vasodilation (plateau, NC women: 48 ± 21%CVCmax, P = 0.01) but similar NO-dependent vasodilation (NC women: 52 ± 14%NO, P > 0.99), compared with men. Endothelium-dependent vasodilation did not differ between women using OCP and men (P = 0.12) or NC women (P = 0.64), but NO-dependent vasodilation was significantly greater in women using OCP (74 ± 11%NO) than both NC women and men (P < 0.01 for both). This study highlights the importance of directly quantifying NO-dependent vasodilation in cutaneous microvascular studies. This study also provides important implications for experimental design and data interpretation.NEW & NOTEWORTHY This study supports differences in microvascular endothelial function and nitric oxide (NO)-dependent vasodilation between women in low hormone phases of two hormonal exposures and men. However, when separated into subgroups of hormonal exposure, women during placebo pills of oral contraceptive pill (OCP) use have greater NO-dependent vasodilation than naturally cycling women in their menstrual phase and men. These data improve knowledge of sex differences and the effect of OCP use on microvascular endothelial function.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Karen E Nielsen
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
13
|
SenthilKumar G, Gutierrez-Huerta CA, Freed JK, Beyer AM, Fancher IS, LeBlanc AJ. New developments in translational microcirculatory research. Am J Physiol Heart Circ Physiol 2022; 323:H1167-H1175. [PMID: 36306213 PMCID: PMC9678417 DOI: 10.1152/ajpheart.00566.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/28/2023]
Abstract
Microvascular disease plays a critical role in systemic end-organ dysfunction, and treatment of microvascular pathologies may greatly reduce cardiovascular morbidity and mortality. The Call for Papers collection: New Developments in Translational Microcirculatory Research highlights key advances in our understanding of the role of microvessels in the development of chronic diseases as well as therapeutic strategies to enhance microvascular function. This Mini Review provides a concise summary of these advances and draws from other relevant research to provide the most up-to-date information on the influence of cutaneous, cerebrovascular, coronary, and peripheral microcirculation on the pathophysiology of obesity, hypertension, cardiovascular aging, peripheral artery disease, and cognitive impairment. In addition to these disease- and location-dependent research articles, this Call for Papers includes state-of-the-art reviews on coronary endothelial function and assessment of microvascular health in different organ systems, with an additional focus on establishing rigor and new advances in clinical trial design. These articles, combined with original research evaluating cellular, exosomal, pharmaceutical, exercise, heat, and dietary interventional therapies, establish the groundwork for translating microcirculatory research from bench to bedside. Although numerous studies in this collection are focused on human microcirculation, most used robust preclinical models to probe mechanisms of pathophysiology and interventional benefits. Future work focused on translating these findings to humans are necessary for finding clinical strategies to prevent and treat microvascular dysfunction.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cristhian A Gutierrez-Huerta
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K Freed
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Amanda Jo LeBlanc
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
14
|
Dillon GA, Stanhewicz AE, Serviente C, Flores VA, Stachenfeld N, Alexander LM. Seven days of statin treatment improves nitric-oxide mediated endothelial-dependent cutaneous microvascular function in women with endometriosis. Microvasc Res 2022; 144:104421. [PMID: 35970408 PMCID: PMC9527706 DOI: 10.1016/j.mvr.2022.104421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Endometriosis is associated with systemic inflammation and increased risk of cardiovascular disease (CVD). Endothelial dysfunction is one of the first manifestations of CVD but is unexplored in women with endometriosis. HMG-CoA-reductase inhibitors (statins) exert potent anti-inflammatory effects, and have been proposed as an adjunctive therapy in women with endometriosis. We hypothesized that microvascular endothelial function would be impaired in otherwise healthy women with endometriosis mediated by reduced nitric oxide (NO)-dependent dilation and that short term statin administration would improve endothelial function. METHODS In 8 healthy control (HC: 33 ± 9 yr) and 8 women with endometriosis (EN: 34 ± 9 yr), laser-Doppler flux (LDF) was measured continuously during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine (Ach: 10-10-10-1 M) alone and in combination with the NO synthase inhibitor (L-NAME: 0.015 M). 6 EN repeated the microdialysis experiment following 7 days of oral atorvastatin treatment (10 mg). Cutaneous vascular conductance was calculated (CVC = LDF*mmHg-1) and normalized to site-specific maximum (28 mM sodium nitroprusside, 43 °C). The NO-dependent dilation was calculated as the difference between the areas under the dose response curves. RESULTS Ach-induced vasodilation was blunted in women with endometriosis (main effect p < 0.01), indicating impaired endothelial function. NO-dependent vasodilation was also reduced in women with endometriosis (HC: 217 ± 120.3 AUC vs. EN: 88 ± 97 AUC, p = 0.03). Oral atorvastatin improved Ach-induced (main effect p < 0.01) and NO-dependent (295 ± 153 AUC; p = 0.05) vasodilation in women with endometriosis. CONCLUSION Microcirculatory endothelium-dependent vasodilation is impaired in women with endometriosis, mediated in part by reductions in NO. Short-term oral atorvastatin improved endothelium-dependent vasodilation, suggesting that statin therapy may be a viable intervention strategy to mitigate accelerated CVD risk in women with endometriosis.
Collapse
Affiliation(s)
- Gabrielle A Dillon
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States of America; Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States of America
| | - Anna E Stanhewicz
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States of America; Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, United States of America
| | - Corinna Serviente
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States of America; Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States of America; Department of Kinesiology, University of Massachusetts Amherst, MA, United States of America; Institute for Applied Life Sciences, University of Massachusetts Amherst, MA, United States of America
| | - Valerie A Flores
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States of America
| | - Nina Stachenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States of America; John B. Pierce Laboratory, Yale University, New Haven, CT, United States of America
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States of America; Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States of America.
| |
Collapse
|
15
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a global pandemic impacting 254 million people in 190 countries. Comorbidities, particularly cardiovascular disease, diabetes, and hypertension, increase the risk of infection and poor outcomes. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme-2 receptor, generating inflammation and cytokine storm, often resulting in multiorgan failure. The mechanisms and effects of COVID-19 on patients with high-risk diabetes are not yet completely understood. In this review, we discuss the variety of coronaviruses, structure of SARS-CoV-2, mutations in SARS-CoV-2 spike proteins, receptors associated with viral host entry, and disease progression. Furthermore, we focus on possible mechanisms of SARS-CoV-2 in diabetes, leading to inflammation and heart failure. Finally, we discuss existing therapeutic approaches, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
16
|
Nandadeva D, Skow RJ, Grotle AK, Stephens BY, Young BE, Fadel PJ. Impact of COVID-19 on Ambulatory Blood Pressure in Young Adults: A Cross-sectional Analysis Investigating Time Since Diagnosis. J Appl Physiol (1985) 2022; 133:183-190. [PMID: 35708703 PMCID: PMC9291414 DOI: 10.1152/japplphysiol.00216.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous studies have reported detrimental effects of COVID-19 on the peripheral vasculature. However, reports on blood pressure (BP) are inconsistent, and measurements are made only in the laboratory setting. To date, no studies have measured ambulatory BP. In addition, in previous studies, time since COVID-19 diagnosis among participants varied across a wide range, potentially contributing to the inconsistent BP results. Thus, we aimed to perform a comprehensive assessment of BP and BP variability using ambulatory and laboratory (brachial and central) measurements in young adults who had COVID-19. We hypothesized that ambulatory BP would be elevated post-COVID-19 and that measures of BP would be inversely related with time since diagnosis. Twenty-eight young adults who had COVID-19 [11 ± 6 (range 3–22) wk since diagnosis] and 10 controls were studied. Ambulatory daytime, nighttime, and 24-h systolic BP, diastolic BP, and mean BP were not different between the control and COVID groups (e.g., daytime systolic BP: control, 122 ± 12 mmHg; COVID, 122 ± 10 mmHg; P = 0.937). Similar results were observed for laboratory BPs (all P > 0.05). However, ambulatory daytime, nighttime, and 24-h BPs as well as laboratory brachial BPs were inversely correlated with time since COVID-19 diagnosis (e.g., daytime systolic BP: r = −0.444; P = 0.044, nighttime systolic BP: r = −0.518; P = 0.016). Ambulatory and laboratory-measured BP variability were not different between groups nor correlated with time since diagnosis. Collectively, these data suggest that adverse effects of COVID-19 on BP in young adults are minimal and likely transient. NEW & NOTEWORTHY We report for the first time that ambulatory daytime, nighttime, and 24-h blood pressure (BP), as well as laboratory BP, were not different between control and COVID participants. However, a significant inverse relationship with time since COVID-19 diagnosis was found (i.e., greater BP with more recent infection). Ambulatory and laboratory BP variability were unaffected and not related with diagnosis time. These findings suggest that COVID-19 may exert only short-lasting effects on BP in young adults.
Collapse
Affiliation(s)
- Damsara Nandadeva
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Rachel J Skow
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Ann-Katrin Grotle
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Brandi Y Stephens
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| |
Collapse
|
17
|
Xu C, Sellke FW, Abid MR. Assessments of microvascular function in organ systems. Am J Physiol Heart Circ Physiol 2022; 322:H891-H905. [PMID: 35333121 PMCID: PMC9037705 DOI: 10.1152/ajpheart.00589.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/23/2023]
Abstract
Microvascular disease plays critical roles in the dysfunction of all organ systems, and there are many methods available to assess the microvasculature. These methods can either assess the target organ directly or assess an easily accessible organ such as the skin or retina so that inferences can be extrapolated to the other systems and/or related diseases. Despite the abundance of exploratory research on some of these modalities and their possible applications, there is a general lack of clinical use. This deficiency is likely due to two main reasons: the need for standardization of protocols to establish a role in clinical practice or the lack of therapies targeted toward microvascular dysfunction. Also, there remain some questions to be answered about the coronary microvasculature, as it is complex, heterogeneous, and difficult to visualize in vivo even with advanced imaging technology. This review will discuss novel approaches that are being used to assess microvasculature health in several key organ systems, and evaluate their clinical utility and scope for further development.
Collapse
Affiliation(s)
- Cynthia Xu
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|