1
|
Margolis EB, Fujita W, Devi LA, Fields HL. Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Neuropharmacology 2017. [PMID: 28645621 DOI: 10.1016/j.neuropharm.2017.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mu and delta opioid receptors (MOR and DOR) are highly homologous members of the opioid family of GPCRs. There is evidence that MOR and DOR interact, however the extent to which these interactions occur in vivo and affect synaptic function is unknown. There are two stable DOR subtypes: DPDPE sensitive (DOR1) and deltorphin II sensitive (DOR2); both agonists are blocked by DOR selective antagonists. Robust motivational effects are produced by local actions of both MOR and DOR ligands in the ventral tegmental area (VTA). Here we demonstrate that a majority of both dopaminergic and non-dopaminergic VTA neurons express combinations of functional DOR1, DOR2, and/or MOR, and that within a single VTA neuron, DOR1, DOR2, and MOR agonists can differentially couple to downstream signaling pathways. As reported for the MOR agonist DAMGO, DPDPE and deltorphin II produced either a predominant K+ dependent hyperpolarization or a Cav2.1 mediated depolarization in different neurons. In some neurons DPDPE and deltorphin II produced opposite responses. Excitation, inhibition, or no effect by DAMGO did not predict the response to DPDPE or deltorphin II, arguing against a MOR-DOR interaction generating DOR subtypes. However, in a subset of VTA neurons the DOR antagonist TIPP-Ψ augmented DAMGO responses; we also observed DPDPE or deltorphin II responses augmented by the MOR selective antagonist CTAP. These findings directly support the existence of two independent, stable forms of the DOR, and show that MOR and DOR can interact in some neurons to alter downstream signaling.
Collapse
Affiliation(s)
- Elyssa B Margolis
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, Alcoholism and Addiction Research Group, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Howard L Fields
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, Alcoholism and Addiction Research Group, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
3
|
Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. J Physiol 2016; 594:3853-75. [PMID: 27060296 DOI: 10.1113/jp271840] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Physiology and Pharmacology, Department of Medicine Division of Cardiovascular Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Donald B Hoover
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
4
|
Mousa SA, Shaqura M, Schäper J, Huang W, Treskatsch S, Habazettl H, Abdul-Khaliq H, Schäfer M. Identification of mu- and kappa-opioid receptors as potential targets to regulate parasympathetic, sympathetic, and sensory neurons within rat intracardiac ganglia. J Comp Neurol 2010; 518:3836-47. [PMID: 20653037 DOI: 10.1002/cne.22427] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent interest has been focused on the opioid regulation of heart performance; however, specific allocation of opioid receptors to the parasympathetic, sympathetic, and sensory innervations of the heart is scarce. Therefore, the present study aimed to characterize such specific target sites for opioids in intracardiac ganglia, which act as a complex network for the integration of the heart's neuronal in- and output. Tissue samples from rat heart atria were subjected to RT-PCR, Western blot, radioligand-binding, and double immunofluorescence confocal analysis of mu (M)- and kappa (K)-opioid receptors (ORs) with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and substance P (SP). Our results demonstrated MOR- and KOR-specific mRNA, receptor protein, and selective membrane ligand binding. By using immunofluorescence confocal microscopy, MOR and KOR immunoreactivity were colocalized with VAChT in large-diameter parasympathetic principal neurons, with TH-immunoreactive small intensely fluorescent (SIF) cells, and on nearby TH-IR varicose terminals. In addition, MOR and KOR immunoreactivity were identified on CGRP- and SP-IR sensory neurons throughout intracardiac ganglia and atrial myocardium. Our findings show that MOR and KOR are expressed as mRNA and translated into specific receptor proteins on cardiac parasympathetic, sympathetic, and sensory neurons as potential binding sites for opioids. Thus, they may well play a role within the complex network for the integration of the heart's neuronal in- and output.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charite Mitte, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Deo SH, Barlow MA, Gonzalez L, Yoshishige D, Caffrey JL. Repeated arterial occlusion, delta-opioid receptor (DOR) plasticity and vagal transmission within the sinoatrial node of the anesthetized dog. Exp Biol Med (Maywood) 2008; 234:84-94. [PMID: 18997098 DOI: 10.3181/0808-rm-242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brief interruptions in coronary blood flow precondition the heart, engage delta-opioid receptor (DOR) mechanisms and reduce the damage that typically accompanies subsequent longer coronary occlusions. Repeated short occlusions of the sinoatrial (SA) node artery progressively raised nodal methionine-enkephalin-arginine-phenylalanine (MEAP) and improved vagal transmission during subsequent long occlusions in anesthetized dogs. The DOR type-1 (DOR-1) antagonist, BNTX reversed the vagotonic effect. Higher doses of enkephalin interrupted vagal transmission through a DOR-2 mechanism. The current study tested whether the preconditioning (PC) protocol, the later occlusion or a combination of both was required for the vagotonic effect. The study also tested whether evolving vagotonic effects included withdrawal of competing DOR-2 vagolytic influences. Vagal transmission progressively improved during successive SA nodal artery occlusions. The vagotonic effect was absent in sham animals and after DOR-1 blockade. After completing the PC protocol, exogenously applied vagolytic doses of MEAP reduced vagal transmission under both normal and occluded conditions. The magnitude of these DOR-2 vagolytic effects was small compared to controls and repeated MEAP challenges rapidly eroded vagolytic responses further. Prior DOR-1 blockade did not alter the PC mediated, progressive loss of DOR-2 vagolytic responses. In conclusion, DOR-1 vagotonic responses evolved from signals earlier in the PC protocol and erosion of competing DOR-2 vagolytic responses may have contributed to an unmasking of vagotonic responses. The data support the hypothesis that PC and DOR-2 stimulation promote DOR trafficking, and down regulation of the vagolytic DOR-2 phenotype in favor of the vagotonic DOR-1 phenotype. DOR-1 blockade may accelerate the process by sequestering newly emerging receptors.
Collapse
Affiliation(s)
- Shekhar H Deo
- University of North Texas Health Science Center, Department of Integrative Physiology, Cardiovascular Research Institute, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
6
|
Deo SH, Barlow MA, Gonzalez L, Yoshishige D, Caffrey JL. Cholinergic location of δ-opioid receptors in canine atria and SA node. Am J Physiol Heart Circ Physiol 2008; 294:H829-38. [DOI: 10.1152/ajpheart.01141.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
δ-Opioid receptors (DORs) are associated with ischemic preconditioning and vagal transmission in the sinoatrial (SA) node and atria. Although functional studies suggested that DORs are prejunctional on parasympathetic nerve terminals, their precise location remains unconfirmed. DORs were colocalized in tissue slices and synaptosomes from the canine right atrium and SA node along with cholinergic and adrenergic markers, vesicular acetylcholine transporter (VAChT), and tyrosine hydroxylase (TH). Synapsin I immunofluorescence verified the neural character of tissue structures and isolated synaptosomes. Acetylcholine and norepinephrine measurements suggested the presence of both cholinergic and adrenergic synaptosomes. Fluorescent analysis of VAChT and TH signals indicated that >80% of the synapsin-positive synaptosomes were of cholinergic origin and <8% were adrenergic. DORs colocalized 75–85% with synapsin in tissue slices from both atria and SA node. The colocalization was equally strong (85%) for nodal synaptosomes but less so for atrial synaptosomes (57%). Colocalization between DOR and VAChT was 75–85% regardless of the source. Overlap between DOR and TH was uniformly low, ranging from 8% to 17%. Western blots with synaptosomal extracts confirmed two DOR-positive bands at molecular masses corresponding to those reported for DOR monomers and dimers. The abundance of DOR was greater in nodal synaptosomes than in atrial synaptosomes, largely attributable to a greater abundance of monomers in the SA node. The abundant nodal and atrial DORs predominantly associated with cholinergic nerve terminals support the hypothesis that prejunctional DORs regulate vagal transmission locally within the heart.
Collapse
|
7
|
Deo SH, Johnson-Davis S, Barlow MA, Yoshishige D, Caffrey JL. Repeated δ1-opioid receptor stimulation reduces δ2-opioid receptor responses in the SA node. Am J Physiol Heart Circ Physiol 2006; 291:H2246-54. [PMID: 16782849 DOI: 10.1152/ajpheart.00122.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ultra-low-dose methionine-enkephalin-arginine-phenylalanine improves vagal transmission (vagotonic) and decreases heart rate via δ1-opioid receptors within the sinoatrial (SA) node. Higher doses activate δ2-opioid receptors, interrupt vagal transmission (vagolytic), and reduce the bradycardia. Preconditioning-like occlusion of the nodal artery produced a vagotonic response that was reversed by the δ1-antagonist 7-benzylidenaltrexone (BNTX). The following study tested the hypothesis that extended δ1-opioid receptor stimulation reduces subsequent δ2-receptor responses. The δ2-agonist deltorphin II was introduced in the SA node by microdialysis to evaluate δ2 responses before and after infusion of the δ1-agonist TAN-67. TAN-67 reduced the vagolytic effect of deltorphin by two-thirds. When the δ1-antagonist BNTX was combined with TAN-67, the deltorphin response was preserved, suggesting that attrition of the prior response was mediated by δ1 activity. When TAN-67 was omitted in time control studies, some loss of δ2 responses was apparent in the absence of the δ1 treatment. This loss was also eliminated by BNTX, suggesting that the attenuation of the response after deltorphin alone was also the result of δ1 activity. Additional studies tested TAN-67 alone in the absence of prior deltorphin. When time controls were conducted without the initial deltorphin treatment, a robust vagolytic response was observed. When TAN-67 preceded the delayed deltorphin, the vagolytic response was eroded, indicating an independent effect of TAN-67. BNTX infused afterward was unable to restore the δ2 response. These data support the conclusion that the loss of the δ2 response resulted from reduced δ2 activity mediated by continued δ1-receptor stimulation and not the arithmetic consequence of increased competition from that same δ1 receptor.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Benzylidene Compounds/pharmacology
- Bradycardia/drug therapy
- Bradycardia/physiopathology
- Dogs
- Dose-Response Relationship, Drug
- Enkephalin, Methionine/analogs & derivatives
- Enkephalin, Methionine/pharmacology
- Female
- Male
- Microdialysis
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/pharmacology
- Quinolines/pharmacology
- Receptors, Opioid, delta/classification
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Sinoatrial Node/drug effects
- Sinoatrial Node/innervation
- Sinoatrial Node/physiology
- Stimulation, Chemical
- Vagus Nerve/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- S H Deo
- Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth TX 76107, USA.
| | | | | | | | | |
Collapse
|
8
|
Barlow MA, Deo S, Johnson S, Caffrey JL. Vagotonic effects of enkephalin are not mediated by sympatholytic mechanisms. Exp Biol Med (Maywood) 2006; 231:387-95. [PMID: 16565434 DOI: 10.1177/153537020623100404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study examined the hypothesis that vagotonic and sympatholytic effects of cardiac enkephalins are independently mediated by different receptors. A dose-response was constructed by administering the delta-receptor opioid methionine-enkephalin-arginine-phenylalanine (MEAP) by microdialysis into the interstitium of the canine sinoatrial node during vagal and sympathetic stimulation. The right cardiac sympathetic nerves were stimulated as they exited the stellate ganglion at frequencies selected to increase heart rate approximately 35 bpm. The right cervical vagus was stimulated at frequencies selected to produce a two-step decline in heart rate of 25 and 50 bpm. A six-step dose-response was constructed by recording heart rates during nerve stimulation as the dose of MEAP was increased between 0.05 pmol/min and 1.5 nmol/min. Vagal transmission improved during MEAP at 0.5 pmol/min. However, sympathetically mediated tachycardia was unaltered with any dose of MEAP. In Study 2, a similar dose-response was constructed with the kappa-opioid receptor agonist trans(+/-)-3-4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide-HCl (U-50488H) to illustrate an independent sympatholytic effect and to verify its kappa-receptor character. U-50488H gradually suppressed the sympathetic tachycardia, with a significant effect obtained only at the highest dose (1.5 nmol/min). U-50488H had no effect on vagally mediated bradycardia. Surprisingly, the sympatholytic effect was not reversed by withdrawing U-50488H or by the subsequent addition of the kappa-antagonist 17,17'-(dichloropropylmethyl)-6,6',7,7'-6,6'-imino-7,7'-binorphinan-3,4',14,14'-tetroldi-hydrochloride (norBNI). Study 3 was conducted to determine whether the sympatholytic effect of U-50488H could be prevented by norBNI. NorBNI blocked the sympatholytic effect of the U50488H for 90 mins. When norBNI was discontinued afterward and U-50488H was continued alone, a sympatholytic effect emerged within 30 mins. Collectively these observations support the hypothesis that the vagotonic influence of MEAP is not dependent on a sympatholytic influence. Furthermore, the sympatholytic effect is mediated independently by kappa-receptors. The sympatholytic effect of sustained kappa-receptor stimulation appears to evolve gradually into a functional state not easily reversed.
Collapse
Affiliation(s)
- Matthew A Barlow
- Department of Integrative Physiology, University of North Texas Health Science Center at Forth Worth, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
9
|
Höcht C, Opezzo JAW, Taira CA. Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods 2006; 55:3-15. [PMID: 16567112 DOI: 10.1016/j.vascn.2006.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
A recent application of microdialysis is the introduction of a substance into the extracellular space via the microdialysis probe. The inclusion of a higher amount of a drug in the perfusate allows the drug to diffuse through the microdialysis membrane to the tissue. This technique, actually called as reverse microdialysis, not only allows the local administration of a substance but also permits the simultaneous sampling of the extracellular levels of endogenous compounds. Local effects of exogenous compounds have been studied in the central nervous system, hepatic tissue, dermis, heart and corpora luteae of experimental animals by means of reverse microdialysis. In central nervous studies, reverse microdialysis has been extensively used for the study of the effects on neurotransmission at different central nuclei of diverse pharmacological and toxicological agents, such as antidepressants, antipsychotics, antiparkinsonians, hallucinogens, drugs of abuse and experimental drugs. In the clinical setting, reverse microdialysis has been used for the study of local effects of drugs in the adipose tissue, skeletal muscle and dermis. The aim of this review is to describe the principles of the reverse microdialysis, to compare the technique with other available methods and finally to describe the applicability of reverse microdialysis in the study of drugs properties both in basic and clinical research.
Collapse
Affiliation(s)
- Christian Höcht
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina.
| | | | | |
Collapse
|
10
|
Pacheco DF, Reis GML, Francischi JN, Castro MSA, Perez AC, Duarte IDG. delta-Opioid receptor agonist SNC80 elicits peripheral antinociception via delta(1) and delta(2) receptors and activation of the l-arginine/nitric oxide/cyclic GMP pathway. Life Sci 2005; 78:54-60. [PMID: 16135369 DOI: 10.1016/j.lfs.2005.04.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
In this study, we characterized the role of delta(1) and delta(2) opioids receptors, as well the involvement of the l-arginine/NO/cGMP pathway in the peripheral antinociception induced by delta-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). The paw pressure test was utilized, in which pain sensitivity is increased by intraplantar injection of prostaglandin E(2) (2 microg). Administration of SNC80 (20, 40 and 80 microg/paw) decreased the hyperalgesia induced by prostaglandin E(2) in a dose-dependent manner. The possibility that the higher dose of SNC80 (80 microg) has a central or systemic effect was excluded, since administration of the drug into the contralateral paw did not elicit antinociception in the right paw. 7-Benzylidenenaltrexone (BNTX), 5, 10 and 20 microg/paw, and 17-(Cyclopropylmethyl)-6,7-didehydro-3,14beta-dihydroxy-4,5alpha-epoxy-6,7-2',3'-benzo[b]furanomorphinan (naltriben), 2.5, 5 and 10 microg/paw, delta(1) and delta(2) opioid receptor antagonist respectively, elicited partial antagonism of the peripheral antinociceptive effect of the SNC80 (80 microg). The BNTX (10 microg/paw)-naltriben (5 microg/paw) combination completely antagonized the peripheral antinociception induced by SNC80 (80 microg). Further, blockers of the l-arginine/NO/cGMP pathway, N(G)-nitro-l-arginine (12, 18 and 24 microg/paw) and methylene blue (125, 250 and 500 microg/paw) were observed reverting the peripheral antinociceptive effect of SNC80. This study provides evidence that the peripheral antinociception induced by SNC80 occurs via delta(1) and delta(2) receptors and may result from l-arginine/NO/cGMP pathway activation.
Collapse
Affiliation(s)
- Daniela F Pacheco
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270.100, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Blinder KJ, Johnson TA, Massari VJ. Enkephalins and functionally specific vagal preganglionic neurons to the heart: Ultrastructural studies in the cat. Auton Neurosci 2005; 120:52-61. [PMID: 15996625 DOI: 10.1016/j.autneu.2005.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/22/2005] [Accepted: 03/23/2005] [Indexed: 02/05/2023]
Abstract
In cat, distinct populations of vagal preganglionic and postganglionic neurons selectively modulate heart rate, atrioventricular conduction and left ventricular contractility, respectively. Vagal preganglionic neurons to the heart originate in the ventrolateral part of nucleus ambiguus and project to postganglionic neurons in intracardiac ganglia, including the sinoatrial (SA), atrioventricular (AV) and cranioventricular (CV) ganglia, which selectively modulate heart rate, AV conduction and left ventricular contractility, respectively. These ganglia receive projections from separate populations of vagal preganglionic neurons. The neurochemical anatomy and synaptic interactions of afferent neurons which mediate central control of these preganglionic neurons is incompletely understood. Enkephalins cause bradycardia when microinjected into nucleus ambiguus. It is not known if this effect is mediated by direct synapses of enkephalinergic terminals upon vagal preganglionic neurons to the heart. The effects of opioids in nucleus ambiguus upon AV conduction and cardiac contractility have also not been studied. We have tested the hypothesis that enkephalinergic nerve terminals synapse upon vagal preganglionic neurons projecting to the SA, AV and CV ganglia. Electron microscopy was used combining retrograde labeling from the SA, AV or CV ganglion with immunocytochemistry for enkephalins in ventrolateral nucleus ambiguus. Eight percent of axodendritic synapses upon negative chronotropic, and 12% of axodendritic synapses upon negative dromotropic vagal preganglionic neurons were enkephalinergic. Enkephalinergic axodendritic synapses were also present upon negative inotropic vagal preganglionic neurons. Thus enkephalinergic terminals in ventrolateral nucleus ambiguus can modulate not only heart rate but also atrioventricular conduction and left ventricular contractility by directly synapsing upon cardioinhibitory vagal preganglionic neurons.
Collapse
|
12
|
Abstract
This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology, Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
13
|
Farias M, Jackson K, Johnson M, Caffrey JL. Cardiac enkephalins attenuate vagal bradycardia: interactions with NOS-1-cGMP systems in canine sinoatrial node. Am J Physiol Heart Circ Physiol 2003; 285:H2001-12. [PMID: 12881216 DOI: 10.1152/ajpheart.00275.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous opioids and nitric oxide (NO) are recognized modulators of cardiac function. Enkephalins and inhibitors of NO synthase (NOS) both produce similar interruptions in the vagal control of heart rate. This study was conducted to test the hypothesis that NO systems within the canine sinoatrial (SA) node facilitate local vagal transmission and that the endogenous enkephalin methionine-enkephalin-arginine-phenylalanine (MEAP) attenuates vagal bradycardia by interrupting the NOS-cGMP pathway. Microdialysis probes were inserted into the SA node, and they were perfused with nonselective (Nomega-nitro-l-arginine methyl ester) and neuronal (7-nitroindazole) NOS inhibitors. The right vagus nerve was stimulated and both inhibitors gradually attenuated the resulting vagal bradycardia. The specificity of these inhibitions was verified by an equally gradual reversal of the inhibition with an excess of the NOS substrate l-arginine. Introduction of MEAP into the nodal interstitium produced a quickly developing but quantitatively similar interruption of vagal bradycardia that was also slowly reversed by the addition of l-arginine and not by d-arginine. Additional support for convergence of opioid and NO pathways was provided when the vagolytic effects of MEAP were also reversed by the addition of the NO donor S-nitroso-N-acetyl-penicillamine, the protein kinase G activator 8-bromo-cGMP, or the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. MEAP and 7-nitroindazole were individually combined with the direct acting muscarinic agonist methacholine to evaluate potential interactions with muscarinic receptors within the SA node. MEAP and 7-nitroindazole were unable to overcome the bradycardia produced by methacholine. These data suggest that NO and enkephalins moderate the vagal control of heart rate via interaction with converging systems that involve the regulation of cAMP within nodal parasympathetic nerve terminals.
Collapse
Affiliation(s)
- Martin Farias
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | | | | | |
Collapse
|
14
|
Farias M, Jackson K, Yoshishige D, Caffrey JL. Bimodal delta-opioid receptors regulate vagal bradycardia in canine sinoatrial node. Am J Physiol Heart Circ Physiol 2003; 285:H1332-9. [PMID: 12915393 DOI: 10.1152/ajpheart.00353.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methionine-enkephalin-arginine-phenylalanine (MEAP) introduced into the interstitium of the canine sinoatrial (SA) node by microdialysis interrupts vagal bradycardia. In contrast, raising endogenous MEAP by occluding the SA node artery improves vagal bradycardia. Both are blocked by the same delta-selective antagonist, naltrindole. We tested the hypothesis that vagal responses to intranodal enkephalin are bimodal and that the polarity of the response is both dose- and opioid receptor subtype dependent. Ultralow doses of MEAP were introduced into the canine SA node by microdialysis. Heart rate frequency responses were constructed by stimulating the right vagus nerve at 1, 2, and 3 Hz. Ultralow MEAP infusions produced a 50-100% increase in bradycardia during vagal stimulation. Maximal improvement was observed at a dose rate of 500 fmol/min with an ED50 near 50 fmol/min. Vagal improvement was returned to control when MEAP was combined with the delta-antagonist naltrindole. The dose of naltrindole (500 fmol/min) was previously determined as ineffective vs. the vagolytic effect of higher dose MEAP. When MEAP was later reintroduced in the same animals at nanomoles per minute, a clear vagolytic response was observed. The delta1-selective antagonist 7-benzylidenenaltrexone (BNTX) reversed the vagal improvement with an ED50 near 1 x 10-21 mol/min, whereas the delta2-antagonist naltriben had no effect through 10-9 mol/min. Finally, the improved vagal bradycardia previously associated with nodal artery occlusion and endogenous MEAP was blocked by the selective delta1-antagonist BNTX. These data support the hypothesis that opioid effects within the SA node are bimodal in character, that low doses are vagotonic, acting on delta1-receptors, and that higher doses are vagolytic, acting on delta2-receptors.
Collapse
Affiliation(s)
- M Farias
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|