1
|
Bolger C, Pyne DB, McKune AJ. Concerns regarding interpretation in systematic review of exercise and endothelial glycocalyx. Eur J Clin Invest 2025:e70048. [PMID: 40237126 DOI: 10.1111/eci.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Affiliation(s)
- Craig Bolger
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australian Capital Territory, Australia
- ACT Brumbies Rugby, Canberra, Australian Capital Territory, Australia
| | - David B Pyne
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australian Capital Territory, Australia
| | - Andrew J McKune
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australian Capital Territory, Australia
- School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
2
|
Liu Z, Ke S, Wan Y. miR-126: a bridge between cancer and exercise. Cancer Cell Int 2025; 25:145. [PMID: 40234897 PMCID: PMC11998190 DOI: 10.1186/s12935-025-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025] Open
Abstract
The microRNA miR-126 supports endothelial cells and blood vessel integrity. Recent research has shown that it also serves as a key link between exercise and cancer. This article delves into how exercise affects the expression of miR-126, impacting cardiovascular well-being and metabolic control. The article also examines the various contributions of miR-126 in cancer, acting as both a suppressor and an enhancer depending on the particular context. Regular aerobic exercises, including HIIT, consistently increase levels of miR-126, leading to enhanced angiogenesis, endothelial repair, and improved vascular function through mechanisms involving VEGF, HIF-1α, and EPC mobilization. Resistance training affects similar pathways, but does not cause a significant change in miR-126 levels.MiR-126 involves in cancer by suppressing tumor growth and controlling key pathways such as PI3K/Akt, ERK/MAPK, and EMT. Lower levels are associated with negative outcomes, later stages of the disease, and increased spread of different types of cancer like glioblastoma, CRC, ovarian, esophageal, gastric, and prostate cancer.The relationship between exercise and cancer suggests a possible therapeutic approach, where the regulation of miR-126 through exercise could help improve vascular function and slow tumor growth. Further studies should focus on understanding the specific molecular pathways through which miR-126 connects these areas, leading to potential interventions that utilize its regulatory network to promote cardiovascular well-being and enhance cancer treatment.
Collapse
Affiliation(s)
- Zhengqiong Liu
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China
| | - Shanbin Ke
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China
| | - Yuwen Wan
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China.
| |
Collapse
|
3
|
Goeder D, Kröpfl JM, Angst T, Hanssen H, Hauser C, Infanger D, Maurer D, Oberhoffer-Fritz R, Schmidt-Trucksäss A, Königstein K. VascuFit: Aerobic exercise improves endothelial function independent of cardiovascular risk: A randomized-controlled trial. Atherosclerosis 2024; 399:118631. [PMID: 39536471 DOI: 10.1016/j.atherosclerosis.2024.118631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Endothelial dysfunction predicts elevated cardiovascular (CV) risk in healthy individuals. Aerobic exercise reduces endothelial dysfunction in part by improving CV risk factors. Yet, this explains less than 50 % of the effect and a direct influence of exercise training on the endothelium is discussed as possible contributor. The VascuFit study applied non-linear periodized aerobic exercise (NLPE) training to assess its multilevel effects on endothelial function including potential epigenetic endothelial modifications by circulating micro-ribonucleic acids (endomiRs). METHODS Sedentary adults with elevated CV risk between 40 and 60 years were randomized 2:1 and engaged in an eight-week ergometer-based NLPE training (n = 30) or received standard exercise recommendations (n = 14). Macro-, microvascular, cellular and molecular adaptations were assessed via brachial-arterial flow-mediated dilation (baFMD), static retinal vessel analysis (SVA), flow cytometry, and endomiRs regulating key pathways of endothelial function. Statistics included ANCOVA, Principal Component Analysis (PCA), and regression analyses. RESULTS baFMD improved by 2.38 % (CI:0.70-4.06, p = 0.007) independent of CV risk, whereas SVA parameters and circulating endothelial (progenitor) cells did not significantly change in the NLPE group. The mean distance between baseline and follow-up PCA loadings of the endomiR dataset explaining 44.2 % of dataset variability was higher in the NLPE-group compared to the control group (2.71 ± 2.02 vs. 1.65 ± 0.93). However, regression analyses showed no evidence of endomiRs explaining the improvement of baFMD. CONCLUSIONS The improvement of macrovascular endothelial function by aerobic exercise training was independent from CV risk factors. Increased heterogeneity among endomiRs did not explain this effect, but suggests an adaptive response to the exercise stimulus on the epigenetic level.
Collapse
Affiliation(s)
- Daniel Goeder
- Department of Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Maria Kröpfl
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Thomas Angst
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Christoph Hauser
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Denis Infanger
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Debbie Maurer
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Renate Oberhoffer-Fritz
- Department of Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Karsten Königstein
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
De Lorenzo A, Fernandes M, Tibirica E. From bench to bedside: A review of the application and potential of microcirculatory assessment by hand-held videomicroscopy. IJC HEART & VASCULATURE 2024; 53:101451. [PMID: 39050555 PMCID: PMC11266521 DOI: 10.1016/j.ijcha.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
In clinical practice, there is vast knowledge regarding the evaluation of macrocirculatory parameters, such as systemic blood pressure and cardiac output, for the hemodynamic monitoring of patients. However, assessment of the microcirculation has not yet been incorporated into the bedside armamentarium. Hand-held intravital video microscopy enables the direct, noninvasive, evaluation of the sublingual microcirculation at the bedside, offering insights into the status of the systemic microcirculation. It is easily performed and may be employed in several clinical settings, providing immediate results that may help guide patient management. Therefore, the incorporation of hand-held intravital video microscopy into clinical practice may lead to tremendous improvements in the quality of care of critical, unstable patients or offer new data in the evaluation of patients with chronic diseases, especially those with microcirculatory involvement, such as occurs in diabetes.
Collapse
|
5
|
Kotewitsch M, Heimer M, Schmitz B, Mooren FC. Non-coding RNAs in exercise immunology: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:311-338. [PMID: 37925072 PMCID: PMC11116971 DOI: 10.1016/j.jshs.2023.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
Regular physical exercise has been recognized as a potent modulator of immune function, with its effects including enhanced immune surveillance, reduced inflammation, and improved overall health. While strong evidence exists that physical exercise affects the specific expression and activity of non-coding RNAs (ncRNAs) also involved in immune system regulation, heterogeneity in individual study designs and analyzed exercise protocols exists, and a condensed list of functional, exercise-dependent ncRNAs with known targets in the immune system is missing from the literature. A systematic review and qualitative analysis was used to identify and categorize ncRNAs participating in immune modulation by physical exercise. Two combined approaches were used: (a) a systematic literature search for "ncRNA and exercise immunology", (b) and a database search for microRNAs (miRNAs) (miRTarBase and DIANA-Tarbase v8) aligned with known target genes in the immune system based on the Reactome database, combined with a systematic literature search for "ncRNA and exercise". Literature searches were based on PubMed, Web of Science, and SPORTDiscus; and miRNA databases were filtered for targets validated by in vitro experimental data. Studies were eligible if they reported on exercise-based interventions in healthy humans. After duplicate removal, 95 studies were included reporting on 164 miRNAs, which were used for the qualitative synthesis. Six studies reporting on long-noncoding RNAs (lncRNAs) or circular RNAs were also identified. Results were analyzed using ordering tables that included exercise modality (endurance/resistance exercise), acute or chronic interventions, as well as the consistency in reported change between studies. Evaluation criteria were defined as "validated" with 100% of ≥3 independent studies showing identical direction of regulation, "plausible" (≥80%), or "suggestive" (≥70%). For resistance exercise, upregulation of miR-206 was validated while downregulation of miR-133a appeared plausible. For endurance exercise, 15 miRNAs were categorized as validated, with 12 miRNAs being consistently elevated and 3 miRNAs being downregulated, most of them after acute exercise training. In conclusion, our approach provides evidence that miRNAs play a major role in exercise-induced effects on the innate and adaptive immune system by targeting different pathways affecting immune cell distribution, function, and trafficking as well as production of (anti-)inflammatory cytokines. miRNAs miR-15, miR-29c, miR-30a, miR-142/3, miR-181a, and miR-338 emerged as key players in mediating the immunomodulatory effects of exercise predominantly after acute bouts of endurance exercise.
Collapse
Affiliation(s)
- Mona Kotewitsch
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Melina Heimer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany.
| | - Frank C Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| |
Collapse
|
6
|
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int J Mol Sci 2024; 25:1942. [PMID: 38339220 PMCID: PMC10856342 DOI: 10.3390/ijms25031942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are 19-23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Angelov AK, Markov M, Ivanova M, Georgiev T. The genesis of cardiovascular risk in inflammatory arthritis: insights into glycocalyx shedding, endothelial dysfunction, and atherosclerosis initiation. Clin Rheumatol 2023; 42:2541-2555. [PMID: 37581758 DOI: 10.1007/s10067-023-06738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
This narrative review provides a comprehensive examination of the complex interplay between inflammatory arthritis (IA) and cardiovascular pathology. It particularly illuminates the roles of atherosclerosis initiation, endothelial dysfunction, and glycocalyx shedding. IA not only provokes tissue-specific inflammatory responses, but also engenders a considerable degree of non-specific systemic inflammation. This review underscores the accelerating influence of the chronic inflammatory milieu of IA on cardiovascular disease (CVD) progression. A focal point of our exploration is the critical function of the endothelial glycocalyx (EG) in this acceleration process, which possibly characterizes the earliest phases of atherosclerosis. We delve into the influence of inflammatory mediators on microtubule dynamics, EG modulation, immune cell migration and activation, and lipid dysregulation. We also illuminate the impact of microparticles and microRNA on endothelial function. Further, we elucidate the role of systemic inflammation and sheddases in EG degradation, the repercussions of complement activation, and the essential role of syndecans in preserving EG integrity. Our review provides insight into the complex and dynamic interface between systemic circulation and the endothelium.
Collapse
Affiliation(s)
- Alexander Krasimirov Angelov
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Miroslav Markov
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria
- Clinic of Internal Medicine, University Hospital St. Marina - Varna, Varna, 9010, Bulgaria
| | - Mariana Ivanova
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Tsvetoslav Georgiev
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria.
- Clinic of Rheumatology, University Hospital St. Marina - Varna, Varna, 9002, Bulgaria.
| |
Collapse
|
8
|
Sun L, Wang L, Ye KX, Wang S, Zhang R, Juan Z, Feng L, Min S. Endothelial Glycocalyx in Aging and Age-related Diseases. Aging Dis 2023; 14:1606-1617. [PMID: 37196119 PMCID: PMC10529737 DOI: 10.14336/ad.2023.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 05/19/2023] Open
Abstract
The worldwide population is aging exponentially, creating burdens to patients, their families and society. Increasing age is associated with higher risk of a wide range of chronic diseases, and aging of the vascular system is closely linked to the development of many age-related diseases. Endothelial glycocalyx is a layer of proteoglycan polymers on the surface of the inner lumen of blood vessels. It plays an important role in maintaining vascular homeostasis and protecting various organ functions. Endothelial glycocalyx loss happens through the aging process and repairing the endothelial glycocalyx may alleviate the symptoms of age-related diseases. Given the important role of the glycocalyx and its regenerative properties, it is posited that the endothelial glycocalyx may be a potential therapeutic target for aging and age-related diseases and repairing endothelial glycocalyx could play a role in the promotion of healthy aging and longevity. Here, we review the composition, function, shedding, and manifestation of the endothelial glycocalyx in aging and age-related diseases, as well as regeneration of endothelial glycocalyx.
Collapse
Affiliation(s)
- Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China.
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lingyan Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaisy Xinhong Ye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Shoushi Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Rui Zhang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhaodong Juan
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Zhao F, Tomita M, Dutta A. Operational Modal Analysis of Near-Infrared Spectroscopy Measure of 2-Month Exercise Intervention Effects in Sedentary Older Adults with Diabetes and Cognitive Impairment. Brain Sci 2023; 13:1099. [PMID: 37509027 PMCID: PMC10377417 DOI: 10.3390/brainsci13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Global Burden of Disease Study (GBD 2019 Diseases and Injuries Collaborators) found that diabetes significantly increases the overall burden of disease, leading to a 24.4% increase in disability-adjusted life years. Persistently high glucose levels in diabetes can cause structural and functional changes in proteins throughout the body, and the accumulation of protein aggregates in the brain that can be associated with the progression of Alzheimer's Disease (AD). To address this burden in type 2 diabetes mellitus (T2DM), a combined aerobic and resistance exercise program was developed based on the recommendations of the American College of Sports Medicine. The prospectively registered clinical trials (NCT04626453, NCT04812288) involved two groups: an Intervention group of older sedentary adults with T2DM and a Control group of healthy older adults who could be either active or sedentary. The completion rate for the 2-month exercise program was high, with participants completing on an average of 89.14% of the exercise sessions. This indicated that the program was practical, feasible, and well tolerated, even during the COVID-19 pandemic. It was also safe, requiring minimal equipment and no supervision. Our paper presents portable near-infrared spectroscopy (NIRS) based measures that showed muscle oxygen saturation (SmO2), i.e., the balance between oxygen delivery and oxygen consumption in muscle, drop during bilateral heel rise task (BHR) and the 6 min walk task (6MWT) significantly (p < 0.05) changed at the post-intervention follow-up from the pre-intervention baseline in the T2DM Intervention group participants. Moreover, post-intervention changes from pre-intervention baseline for the prefrontal activation (both oxyhemoglobin and deoxyhemoglobin) showed statistically significant (p < 0.05, q < 0.05) effect at the right superior frontal gyrus, dorsolateral, during the Mini-Cog task. Here, operational modal analysis provided further insights into the 2-month exercise intervention effects on the very-low-frequency oscillations (<0.05 Hz) during the Mini-Cog task that improved post-intervention in the sedentary T2DM Intervention group from their pre-intervention baseline when compared to active healthy Control group. Then, the 6MWT distance significantly (p < 0.01) improved in the T2DM Intervention group at post-intervention follow-up from pre-intervention baseline that showed improved aerobic capacity and endurance. Our portable NIRS based measures have practical implications at the point of care for the therapists as they can monitor muscle and brain oxygenation changes during physical and cognitive tests to prescribe personalized physical exercise doses without triggering individual stress response, thereby, enhancing vascular health in T2DM.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Machiko Tomita
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN67TS, UK
| |
Collapse
|
10
|
Biss S, Teschler M, Heimer M, Thum T, Bär C, Mooren FC, Schmitz B. A single session of EMS training induces long-lasting changes in circulating muscle but not cardiovascular miRNA levels: a randomized crossover study. J Appl Physiol (1985) 2023; 134:799-809. [PMID: 36759165 DOI: 10.1152/japplphysiol.00557.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Electromyostimulation (EMS) is used to maintain or build skeletal muscle and to increase cardiopulmonary fitness. Only limited data on the molecular mechanisms induced by EMS are available and effects on circulating microRNAs (c-miRNAs) have not been reported. This study aimed to evaluate whether EMS induces long-term changes in muscle- and cardiovascular-specific c-miRNA levels. Twelve healthy participants (33.0 ± 12.0 yr, 7 women) performed a 20-min whole body EMS training and a time- and intensity-matched whole body circuit training (CT) in random order. Blood samples were drawn pre-/posttraining and at 1.5, 3, 24, 48, and 72 h to determine creatine kinase (CK) and miRNA-21-5p, -126-3p, -133a-3p, -146a-5p, -206-3p, -222-3p, and -499a-5p levels. Muscular exertion was determined using an isometric strength test, and muscle soreness/pain was assessed by questionnaire. EMS participants reported higher muscle soreness 48 and 72 h postexercise and mean CK levels after EMS increased compared with CT at 48 and 72 h (time × group P ≤ 0.01). The EMS session induced a significant elevation of myomiR-206 and -133a levels starting at 1.5 and 3 h after exercise. Both miRNAs remained elevated for 72 h with significant differences between 24 and 72 h (time × group P ≤ 0.0254). EMS did not induce changes in cardiovascular miRNAs and no elevation in any miRNA was detected following CT. Time-course analysis of muscle damage marker CK and c-miR-133a and -206 levels did not suggest a common scheme (P ≥ 0.277). We conclude that a single EMS session induces specific long-lasting changes of miR-206 and miR-133 involved in muscle proliferation and differentiation. A single EMS session does not affect primary cardiovascular miRNA-21-5p, -126-3p, -146a-5p, and -222-3p levels.NEW & NOTEWORTHY Our study describes the long-term effects of electromyostimulation (EMS) on circulating miRNA levels. The observed increase of functional myomiR-206 and -133a levels over 72 h suggests long-lasting effects on muscle proliferation and differentiation, whereas cardiovascular miRNAs appear unaffected. Our findings suggest that circulating miRNAs provide useful insight into muscle regeneration processes after EMS and may thus be used to optimize EMS training effects.
Collapse
Affiliation(s)
- Sinje Biss
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Marc Teschler
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Melina Heimer
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Frank C Mooren
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Boris Schmitz
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| |
Collapse
|
11
|
Lim J, Machin DR, Donato AJ. The role of hyaluronan in endothelial glycocalyx and potential preventative lifestyle strategy with advancing age. CURRENT TOPICS IN MEMBRANES 2023; 91:139-156. [PMID: 37080678 PMCID: PMC10464581 DOI: 10.1016/bs.ctm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The endothelial glycocalyx (EG) is a gel-like structure that forms a layer in between the surface of the endothelium and lumen. EG was once thought to be merely a structural support for the endothelium. However, in recent years, the importance of EG as a first line of defense and a key regulator to endothelial integrity has been illuminated. With advanced age, EG deterioration becomes more noticeable and at least partially associated with endothelial dysfunction. Hyaluronan (HA), one of the critical components of the EG, has distinct properties and roles to the maintenance of EG and endothelial function. Therefore, given the intimate relationship between the EG and endothelium during the aging process, HA may serve as a promising therapeutic target to prevent endothelial dysfunction.
Collapse
Affiliation(s)
- Jisok Lim
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Daniel Robert Machin
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Anthony John Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States; Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, UT, United States; Department of Nutrition and Integrative Physiology, Salt Lake City, UT, United States; Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
12
|
Ma Y, Liu H, Wang Y, Xuan J, Gao X, Ding H, Ma C, Chen Y, Yang Y. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetol Metab Syndr 2022; 14:169. [PMID: 36376958 PMCID: PMC9661802 DOI: 10.1186/s13098-022-00942-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is widely recommended for preventing and treating cardiovascular complications of type 2 diabetes mellitus (T2DM), the underlying mechanisms remain unknown. MicroRNA-126 (miR-126) is an angiogenetic regulator abundant in endothelial cells (ECs) and endothelial progenitor cells (EPCs). It is primarily involved in angiogenesis, inflammation and apoptosis for cardiovascular protection. According to recent studies, the levels of miR-126 in the myocardium and circulation are affected by exercise protocol. High-intensity interval training (HIIT) or moderate-and high-intensity aerobic exercise, whether acute or chronic, can increase circulating miR-126 in healthy adults. Chronic aerobic exercise can effectively rescue the reduction of myocardial and circulating miR-126 and vascular endothelial growth factor (VEGF) in diabetic mice against diabetic vascular injury. Resistance exercise can raise circulating VEGF levels, but it may have a little influence on circulating miR-126. The Several targets of miR-126 have been suggested for cardiovascular fitness, such as sprouty-related EVH1 domain-containing protein 1 (SPRED1), phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), vascular cell adhesion molecule 1 (VCAM1), high-mobility group box 1 (HMGB1), and tumor necrosis factor receptor-associated factor 7 (TRAF7). Here, we present a comprehensive review of the roles of miR-126 and its downstream proteins as exercise mechanisms, and propose that miR-126 can be applied as an exercise indicator for cardiovascular prescriptions and as a preventive or therapeutic target for cardiovascular complications in T2DM.
Collapse
Affiliation(s)
- Yixiao Ma
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Hua Liu
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yong Wang
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Junjie Xuan
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Huixian Ding
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Chunlian Ma
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Yi Yang
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
13
|
Königstein K, Meier J, Angst T, Maurer DJ, Kröpfl JM, Carrard J, Infanger D, Baumann S, Bischofsberger I, Harder M, Jäggi Y, Wettach S, Hanssen H, Schmidt-Trucksäss A. VascuFit: vascular effects of non-linear periodized exercise training in sedentary adults with elevated cardiovascular risk - protocol for a randomized controlled trial. BMC Cardiovasc Disord 2022; 22:449. [PMID: 36303113 PMCID: PMC9615395 DOI: 10.1186/s12872-022-02905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Background Early vascular aging (EVA) is increasingly prevalent in the general population. Exercise is important for primary cardiovascular prevention, but often insufficient due to ineffective training methods and a lack of biomarkers suitable to monitor its vascular effects. VascuFit will assess the effectiveness of non-linear periodized aerobic exercise (NLPE) in a non-athletic sedentary population to improve both established and promising biomarkers of EVA. Methods Forty-three sedentary adults, aged 40–60 years, with elevated cardiovascular risk will either engage in 8 weeks of ergometer-based NLPE (n = 28) or receive standard exercise recommendations (n = 15). The primary outcome will be the change of brachial-arterial flow-mediated dilation (baFMD) after versus before the intervention. Secondary outcomes will be the change in static vessel analysis (SVA; clinical biomarker of microvascular endothelial function), endomiRs (microRNAs regulating key molecular pathways of endothelial cell homeostasis) and circulating cellular markers of endothelial function (mature endothelial cells, endothelial progenitor cells). Tertiary outcomes will be the change in sphingolipidome, maximum oxygen capacity, and traditional cardiovascular risk factors (blood pressure, triglycerides, cholesterol, fasting glucose, high-sensitivity C-reactive protein). Discussion We expect an improvement of baFMD of at least 2.6% and significant pre-post intervention differences of SVA and endomiRs as well as of the tertiary outcomes in the intervention group. VascuFit may demonstrate the effectiveness of NLPE to improve endothelial function, thus vascular health, in the general sedentary population. Furthermore, this project might demonstrate the potential of selected molecular and cellular biomarkers to monitor endothelial adaptations to aerobic exercise. Trial registration The trial was registered on www.clinicaltrials.gov (NCT05235958) in February 11th 2022.
Collapse
Affiliation(s)
- Karsten Königstein
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland. .,Clinic for Children and Adolescent Medicine, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany.
| | - Jennifer Meier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Thomas Angst
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Debbie J Maurer
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland.,Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
| | - Julia M Kröpfl
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Sandra Baumann
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Imerio Bischofsberger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Marc Harder
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Yves Jäggi
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Sabrina Wettach
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| |
Collapse
|
14
|
Wahl P, Bloch W, Proschinger S. The Molecular Signature of High-intensity Training in the Human Body. Int J Sports Med 2022; 43:195-205. [PMID: 34265857 PMCID: PMC8885329 DOI: 10.1055/a-1551-9294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 11/11/2022]
Abstract
High-intensity training is becoming increasingly popular outside of elite sport for health prevention and rehabilitation. This expanded application of high-intensity training in different populations requires a deeper understanding of its molecular signature in the human body. Therefore, in this integrative review, cellular and systemic molecular responses to high-intensity training are described for skeletal muscle, cardiovascular system, and the immune system as major effectors and targets of health and performance. Different kinds of stimuli and resulting homeostatic perturbations (i. e., metabolic, mechanical, neuronal, and hormonal) are reflected, taking into account their role in the local and systemic deflection of molecular sensors and mediators, and their role in tissue and organ adaptations. In skeletal muscle, a high metabolic perturbation induced by high-intensity training is the major stimulus for skeletal muscle adaptation. In the cardio-vascular system, high-intensity training induces haemodynamic stress and deflection of the Ca 2+ handling as major stimuli for functional and structural adaptation of the heart and vessels. For the immune system haemodynamic stress, hormones, exosomes, and O2 availability are proposed stimuli that mediate their effects by alteration of different signalling processes leading to local and systemic (anti)inflammatory responses. Overall, high-intensity training shows specific molecular signatures that demonstrate its high potential to improve health and physical performance.
Collapse
Affiliation(s)
- Patrick Wahl
- Institute of Cardiovascular Research and Sport Medicine, German Sport
University Cologne, Cologne, Germany
- The German Research Center of Elite Sport Cologne, German Sport
University Cologne, Koln, Germany
- MSH Medical School Hamburg, Institute of Interdisciplinary Exercise
Science and Sports Medicine, Hamburg, Germany
| | - Wilhelm Bloch
- The German Research Center of Elite Sport Cologne, German Sport
University Cologne, Koln, Germany
- Molecular and Cellular Sport Medicine, German Sport university,
Cologne, Germany
| | - Sebastian Proschinger
- Department for Molecular and Cellular Sports Medicine, Institute for
Cardiovascular Research and Sports Medicine, German Sport University Cologne,
Cologne, Germany
| |
Collapse
|
15
|
Pollmann S, Scharnetzki D, Manikowski D, Lenders M, Brand E. Endothelial Dysfunction in Fabry Disease Is Related to Glycocalyx Degradation. Front Immunol 2021; 12:789142. [PMID: 34917096 PMCID: PMC8670230 DOI: 10.3389/fimmu.2021.789142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Fabry disease (FD) is an X-linked multisystemic lysosomal storage disease due to a deficiency of α-galactosidase A (GLA/AGAL). Progressive cellular accumulation of the AGAL substrate globotriaosylceramide (Gb3) leads to endothelial dysfunction. Here, we analyzed endothelial function in vivo and in vitro in an AGAL-deficient genetic background to identify the processes underlying this small vessel disease. Arterial stiffness and endothelial function was prospectively measured in five males carrying GLA variants (control) and 22 FD patients under therapy. AGAL-deficient endothelial cells (EA.hy926) and monocytes (THP1) were used to analyze endothelial glycocalyx structure, function, and underlying inflammatory signals. Glycocalyx thickness and small vessel function improved significantly over time (p<0.05) in patients treated with enzyme replacement therapy (ERT, n=16) and chaperones (n=6). AGAL-deficient endothelial cells showed reduced glycocalyx and increased monocyte adhesion (p<0.05). In addition, increased expression of angiopoietin-2, heparanase and NF-κB was detected (all p<0.05). Incubation of wild-type endothelial cells with pathological globotriaosylsphingosine concentrations resulted in comparable findings. Treatment of AGAL-deficient cells with recombinant AGAL (p<0.01), heparin (p<0.01), anti-inflammatory (p<0.001) and antioxidant drugs (p<0.05), and a specific inhibitor (razuprotafib) of angiopoietin-1 receptor (Tie2) (p<0.05) improved glycocalyx structure and endothelial function in vitro. We conclude that chronic inflammation, including the release of heparanases, appears to be responsible for the degradation of the endothelial glycocalyx and may explain the endothelial dysfunction in FD. This process is partially reversible by FD-specific and anti-inflammatory treatment, such as targeted protective Tie2 treatment.
Collapse
Affiliation(s)
- Solvey Pollmann
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - David Scharnetzki
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Muenster, Muenster, Germany
| | - Malte Lenders
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Eva Brand
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| |
Collapse
|
16
|
Affiliation(s)
- Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany.,DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| |
Collapse
|
17
|
Springer CB, Sapp RM, Evans WS, Hagberg JM, Prior SJ. Circulating MicroRNA Responses to Postprandial Lipemia with or without Prior Exercise. Int J Sports Med 2021; 42:1260-1267. [PMID: 34116579 DOI: 10.1055/a-1480-7692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Repeated exposure to a high-fat meal triggers inflammation and oxidative stress, contributing to the onset of cardiometabolic diseases. Regular exercise prevents cardiometabolic diseases and a prior bout of acute endurance exercise can counteract the detrimental cardiovascular effects of a subsequent high-fat meal. Circulating microRNAs (ci-miRs) are potential mediators of these vascular effects through regulation of gene expression at the posttranscriptional level. Therefore, we investigated the expression of ci-miRs related to vascular function (miR-21, miR-92a, miR-126, miR-146a, miR-150, miR-155, miR-181b, miR-221, miR-222) in plasma from healthy, recreationally to highly active, Caucasian adult men after a high-fat meal with (EX) and without (CON) a preceding bout of cycling exercise. Ci-miR-155 was the only ci-miR for which there was a significant interaction effect of high-fat meal and exercise (p=0.050). Ci-miR-155 significantly increased in the CON group at two (p=0.007) and four hours (p=0.010) after the high-fat meal test, whereas it significantly increased in the EX group only four hours after the meal (p=0.0004). There were significant main effects of the high-fat meal on ci-miR-21 (p=0.01), ci-miR-126 (p=0.02), ci-miR-146a (p=0.02), ci-miR-181b (p=0.02), and ci-miR-221 (p=0.008). Collectively, our results suggest that prior exercise does not prevent high-fat meal-induced increases in vascular-related ci-miRs.
Collapse
Affiliation(s)
- Catherine B Springer
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States
| | - Ryan M Sapp
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States
| | - William S Evans
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States
| | - James M Hagberg
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States.,Department of Veterans Affairs, Baltimore Veterans Affairs Geriatric Research, Education and Clincial Center, Baltimore, United States
| |
Collapse
|
18
|
Hahn RG, Patel V, Dull RO. Human glycocalyx shedding: Systematic review and critical appraisal. Acta Anaesthesiol Scand 2021; 65:590-606. [PMID: 33595101 DOI: 10.1111/aas.13797] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The number of studies measuring breakdown products of the glycocalyx in plasma has increased rapidly during the past decade. The purpose of the present systematic review was to assess the current knowledge concerning the association between plasma concentrations of glycocalyx components and structural assessment of the endothelium. METHODS We performed a literature review of Pubmed to determine which glycocalyx components change in a wide variety of human diseases and conditions. We also searched for evidence of a relationship between plasma concentrations and the thickness of the endothelial glycocalyx layer as obtained by imaging methods. RESULTS Out of 3,454 publications, we identified 228 that met our inclusion criteria. The vast majority demonstrate an increase in plasma glycocalyx products. Sepsis and trauma are most frequently studied, and comprise approximately 40 publications. They usually report 3-4-foldt increased levels of glycocalyx degradation products, most commonly of syndecan-1. Surgery shows a variable picture. Cardiac surgery and transplantations are most likely to involve elevations of glycocalyx degradation products. Structural assessment using imaging methods show thinning of the endothelial glycocalyx layer in cardiovascular conditions and during major surgery, but thinning does not always correlate with the plasma concentrations of glycocalyx products. The few structural assessments performed do not currently support that capillary permeability is increased when the plasma levels of glycocalyx fragments in plasma are increased. CONCLUSIONS Shedding of glycocalyx components is a ubiquitous process that occurs during both acute and chronic inflammation with no sensitivity or specificity for a specific disease or condition.
Collapse
Affiliation(s)
- Robert G. Hahn
- Research UnitSödertälje Hospital Södertälje Sweden
- Karolinska Institute at Danderyds Hospital (KIDS) Stockholm Sweden
| | - Vasu Patel
- Department of Internal Medicine Northwestern Medicine McHenry Hospital McHenry IL USA
| | - Randal O. Dull
- Department of Anesthesiology, Pathology, Physiology, Surgery University of ArizonaCollege of Medicine Tucson AZ USA
| |
Collapse
|
19
|
Foudi N, Legeay S. Effects of physical activity on cell-to-cell communication during type 2 diabetes: A focus on miRNA signaling. Fundam Clin Pharmacol 2021; 35:808-821. [PMID: 33675090 DOI: 10.1111/fcp.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (TD2) is a progressive disease characterized by hyperglycemia that results from alteration in insulin secretion, insulin resistance, or both. A number of alterations involving different tissues and organs have been reported to the development and the progression of T2D, and more relevantly, through cell-to-cell communication pathways. Recent studies demonstrated that miRNAs are considerably implicated to cell-to-cell communication during T2D. Physical activity (PA) is associated with decreasing risks of developing T2D and acts as insulin-like factor. Cumulative evidence suggests that this effect could be mediated in part through improving insulin sensitivity in T2D and obese patients and modulating miRNAs synthesis and release in healthy patients. Therefore, the practice of PA should ideally be established before the initiation of T2D. This review describes cell-to-cell communications involved in the pathophysiology of T2D during PA.
Collapse
Affiliation(s)
- Nabil Foudi
- Department of Pharmacy, UNIV Angers, Angers, France.,Faculty of Medicine, Department of Pharmacy, University Ferhat Abbas Setif 1, Setif, Algeria
| | - Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, Angers, France
| |
Collapse
|
20
|
Kröpfl JM, Beltrami FG, Rehm M, Gruber HJ, Stelzer I, Spengler CM. Acute exercise-induced glycocalyx shedding does not differ between exercise modalities, but is associated with total antioxidative capacity. J Sci Med Sport 2021; 24:689-695. [PMID: 33632661 DOI: 10.1016/j.jsams.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Regular physical exercise is known to protect endothelial integrity. It has been proposed that acute exercise-induced changes of the (anti-)oxidative system influence early (glycocalyx shedding) and sustained endothelial activation (shedding of endothelial cells, ECs) as well as endothelial-cell repair by circulating hematopoietic stem and progenitor cells (HPCs). However, results are not conclusive and data in trained participants performing different exercise modalities is lacking. DESIGN Eighteen healthy, well-trained participants (9 runners, 9 cyclists; age: 29.7 ± 4.2 yrs) performed a strenuous acute exercise session consisting of 4 bouts of 4-min high-intensity with decreasing power profile and 3-min low-intensity in-between. METHODS Average power/speed of intense phases was 85% of the peak achieved in a previous incremental test. Before and shortly after exercise, total oxidative and antioxidative capacities (TAC), shedding of syndecan-1, heparan sulfate, hyaluronan, ECs, and circulating HPCs were investigated. RESULTS TAC decreased from 1.81 ± 0.42 nmol/L to 1.47 ± 0.23 nmol/L post-exercise (p = 0.010) only in runners. Exercise-induced early and sustained endothelial activation were enhanced post-exercise- syndecan-1: 103.2 ± 63.3 ng/mL to 111.3 ± 71.3 ng/mL, heparan sulfate: from 2637.9 ± 800.1 ng/mL to 3197.1 ± 1416.3 ng/mL, both p < 0.05; hyaluronan: 84.3 ± 21.8 ng/mL to 121.4 ± 29.4 ng/mL, ECs: from 6.6 ± 4.5 cells/μL to 9.5 ± 6.2 cells/μL, both p < 0.01; results were not different between exercise modalities and negatively related to TAC concentrations post-exercise. HPC proportions and self-renewal ability were negatively, while EC concentrations were positively associated with circulating hyaluronan concentrations. CONCLUSIONS These results highlight the importance of the antioxidative system to prevent the endothelium from acute exercise-induced vascular injury - independent of exercise modality - in well-trained participants. Endothelial-cell repair is associated with hyluronan signaling, possibly a similar mechanism as in wound repair.
Collapse
Affiliation(s)
- Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - Markus Rehm
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Germany
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Ingeborg Stelzer
- Institute of Medical and Chemical Laboratory Diagnostics, LKH Hochsteiermark, Austria
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland.
| |
Collapse
|
21
|
Fuchs A, Neumann T, Drinhaus H, Herrmann A, Vink H, Annecke T. Effects of a single aerobic exercise on perfused boundary region and microvascular perfusion: a field study. J Clin Monit Comput 2021; 36:371-377. [PMID: 33534119 PMCID: PMC9122854 DOI: 10.1007/s10877-021-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/16/2021] [Indexed: 11/25/2022]
Abstract
The endothelium and the glycocalyx play a pivotal role in regulating microvascular function and perfusion in health and critical illness. It is unknown today, whether aerobic exercise immediately affects dimensions of the endothelial surface layer (ESL) in relation to microvascular perfusion as a physiologic adaption to increased nutritional demands. This monocentric observational study was designed to determine real-time ESL and perfusion measurements of the sublingual microcirculation using sidestream dark field imaging performed in 14 healthy subjects before and after completing a 10 km trial running distance. A novel image acquisition and analysis software automatically analysed the perfused boundary region (PBR), an inverse parameter for red blood cell (RBC) penetration of the ESL, in vessels between 5 and 25 µm diameter. Microvascular perfusion was assessed by calculating RBC filling percentage. There was no significant immediate effect of exercise on PBR and RBC filling percentage. Linear regression analysis revealed a distinct association between change of PBR and change of RBC filling percentage (regression coefficient β: − 0.026; 95% confidence interval − 0.043 to − 0.009; p = 0.006). A single aerobic exercise did not induce a change of PBR or RBC filling percentage. The endothelium of the microvasculature facilitates efficient perfusion in vessels reacting with an increased endothelial surface layer.
Collapse
Affiliation(s)
- Alexander Fuchs
- Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Cologne, Germany
| | - Tobias Neumann
- Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Cologne, Germany
| | - Hendrik Drinhaus
- Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Cologne, Germany
| | - Anika Herrmann
- Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Cologne, Germany
| | - Hans Vink
- Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Thorsten Annecke
- Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Cologne, Germany.
- Department of Anaesthesiology and Intensive Care Medicine, University of Witten/ Herdecke, Kliniken der Stadt Köln gGmbH, Cologne, Germany.
| |
Collapse
|
22
|
Mechanisms of Dietary Sodium-Induced Impairments in Endothelial Function and Potential Countermeasures. Nutrients 2021; 13:nu13010270. [PMID: 33477837 PMCID: PMC7832854 DOI: 10.3390/nu13010270] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 01/11/2023] Open
Abstract
Despite decades of efforts to reduce sodium intake, excess dietary sodium remains commonplace, and contributes to increased cardiovascular morbidity and mortality independent of its effects on blood pressure. An increasing amount of research suggests that high-sodium diets lead to reduced nitric oxide-mediated endothelial function, even in the absence of a change in blood pressure. As endothelial dysfunction is an early step in the progression of cardiovascular diseases, the endothelium presents a target for interventions aimed at reducing the impact of excess dietary sodium. In this review, we briefly define endothelial function and present the literature demonstrating that excess dietary sodium results in impaired endothelial function. We then discuss the mechanisms through which sodium impairs the endothelium, including increased reactive oxygen species, decreased intrinsic antioxidant defenses, endothelial cell stiffening, and damage to the endothelial glycocalyx. Finally, we present selected research findings suggesting that aerobic exercise or increased intake of dietary potassium may counteract the deleterious vascular effects of a high-sodium diet.
Collapse
|
23
|
Zinn S, Nelis P, Minnebeck K, Hinder J, Eter N, Brand SM, Gellner R, Vorona E, Alten F, Schmitz B. Effect of high-intensity interval training in patients with type 1 diabetes on physical fitness and retinal microvascular perfusion determined by optical coherence tomography angiography. Microvasc Res 2020; 132:104057. [DOI: 10.1016/j.mvr.2020.104057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/01/2022]
|
24
|
The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol 2020; 12:37-71. [PMID: 32959164 PMCID: PMC7505222 DOI: 10.1007/s13239-020-00485-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Purpose In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. Methods A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. Results In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel–Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. Conclusion As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.
Collapse
|
25
|
Schmitz B, Niehues H, Thorwesten L, Klose A, Krüger M, Brand SM. Sex Differences in High-Intensity Interval Training-Are HIIT Protocols Interchangeable Between Females and Males? Front Physiol 2020; 11:38. [PMID: 32063866 PMCID: PMC7000457 DOI: 10.3389/fphys.2020.00038] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background: High-intensity interval training (HIIT) is a well-established training modality to improve aerobic and anaerobic capacity. However, sex-specific aspects of different HIIT protocols are incompletely understood. This study aimed to compare two HIIT protocols with different recovery periods in moderately trained females and males and to investigate whether sex affects high-intensity running speed and speed decrement. Methods: Fifty moderately trained participants (30 females and 20 males) performed an exercise field test and were randomized by lactate threshold (LT) to one of two time- and workload-matched training groups. Participants performed a 4-week HIIT intervention with two exercise sessions/week: Group 1 (4 × 30,180 HIIT), 30-s all-out runs, 180-s active recovery and Group 2 (4 × 30,30 HIIT), 30-s all-out runs, 30-s active recovery. High-intensity runs were recorded, and speed per running bout, average speed per session, and speed decrement were determined. Blood lactate measurements were performed at baseline and follow-up at rest and immediately post-exercise. Results: Females and males differed in running speed at LT and maximal running speed determined during exercise field test (speed at LT, females: 10.65 ± 0.84 km h−1, males: 12.41 ± 0.98 km h−1, p < 0.0001; maximal speed, females: 14.55 ± 1.05 km h−1, males: 17.41 ± 0.68 km h−1, p < 0.0001). Estimated maximal oxygen uptake was ~52.5 ml kg−1 min−1 for females and 62.6 ml kg−1 min−1 for males (p < 0.0001). Analysis of HIIT protocols revealed an effect of sex on change in speed decrement (baseline vs. follow-up) in that females showed significant improvements only in the 4 × 30:30 HIIT group (p = 0.0038). Moreover, females performing the 4 × 30:30 protocol presented increased speed per bout and average speed per session at follow-up (all p ≤ 0.0204), while no effect was detected for females performing the 4 × 30:180 protocol. Peak blood lactate levels increased in all HIIT groups (all p < 0.05, baseline vs. follow-up), but males performing the 4 × 30:180 protocol showed no difference in lactate levels. Conclusions: If not matched for physical performance, females, but not males, performing a 4 × 30 HIIT protocol with shorter recovery periods (30 s) present increased average high-intensity running speed and reduced speed decrement compared to longer recovery periods (180 s). We conclude that female- and male-specific HIIT protocols should be established since anthropometric and physiological differences across sexes may affect training performance in real-world settings.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Hannah Niehues
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Lothar Thorwesten
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Andreas Klose
- Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Michael Krüger
- Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
26
|
Weeks KL, Henstridge DC, Salim A, Shaw JE, Marwick TH, McMullen JR. CORP: Practical tools for improving experimental design and reporting of laboratory studies of cardiovascular physiology and metabolism. Am J Physiol Heart Circ Physiol 2019; 317:H627-H639. [PMID: 31347916 DOI: 10.1152/ajpheart.00327.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The exercise consisted of: 1) a short survey to acquire baseline data on current practices regarding the conduct of animal studies, 2) a series of presentations for promoting awareness and providing advice and practical tools for improving experimental design, and 3) a follow-up survey 12 mo later to assess whether practices had changed. The surveys were compulsory for responsible investigators (n = 16; paired data presented). Other investigators named on animal ethics applications were encouraged to participate (2017, total of 36 investigators; 2018, 37 investigators). The major findings to come from the exercise included 1) a willingness of investigators to make changes when provided with knowledge/tools and solutions that were relatively simple to implement (e.g., proportion of responsible investigators showing improved practices using a structured method for randomization was 0.44, 95% CI (0.19; 0.70), P = 0.003, and deidentifying drugs/interventions was 0.40, 95% CI (0.12; 0.68), P = 0.010); 2) resistance to change if this involved more personnel and time (e.g., as required for allocation concealment); and 3) evidence that changes to long-term practices ("habits") require time and follow-up. Improved practices could be verified based on changes in reporting within publications or documented evidence provided during laboratory visits. In summary, this exercise resulted in changed attitudes, practices, and reporting, but continued follow-up, monitoring, and incentives are required. Efforts to improve experimental rigor will reduce bias and will lead to findings with the greatest translational potential.NEW & NOTEWORTHY The goal of this exercise was to encourage preclinical researchers to improve the quality of their cardiac and metabolic animal studies by 1) increasing awareness of concerns, which can arise from suboptimal experimental designs; 2) providing knowledge, tools, and templates to overcome bias; and 3) conducting two short surveys over 12 mo to monitor change. Improved practices were identified for the uptake of structured methods for randomization, and de-identifying interventions/drugs.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/experimental-design-survey-training-practical-tools/.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | | | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Mathematics and Statistics, La Trobe University Victoria, Australia
| | | | | | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|