1
|
Chao-Ecija A, Dawid-Milner MS. BaroWavelet: An R-based tool for dynamic baroreflex evaluation through wavelet analysis techniques. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107758. [PMID: 37688995 DOI: 10.1016/j.cmpb.2023.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Baroreflex sensitivity constitutes an indicator of the function of the baroreceptor control mechanism of blood pressure levels. It can be computed after estimating heart rate and blood pressure variability. We propose a novel tool for the evaluation of baroreflex sensitivity using wavelet analysis methods. This tool, known as BaroWavelet, incorporates an algorithm proposal based on the analysis methodology of the RHRV software package, as well as other conventional techniques. Our objectives are to develop and evaluate the tool, by testing its ability to detect changes in baroreflex sensitivity in humans. METHODS The code for this tool was designed in the R programming environment and was organized into two analysis routines and a graphical interface. Simulated recordings of blood pressure and inter-beat intervals were employed for an initial evaluation of the tool in a controlled environment. Finally, similar recordings obtained during supine and orthostatic postural evaluations, from patients that belonged to the open-access EUROBAVAR data set, were analyzed. RESULTS BaroWavelet identified the scripted changes of the baroreflex sensitivity in the simulated data. The algorithm proposal was also able to better retain additional information regarding the dynamics of the baroreflex. In the EUROBAVAR subjects, baroreflex sensitivity components were significantly smaller during orthostatism when compared with the supine position. CONCLUSIONS BaroWavelet managed to characterize baroreflex dynamics from the recordings, which were consistent with the findings reported in the literature. This demonstrates its effectiveness to perform these analyses. We suggest that this tool may be of use in research and for the evaluation of baroreflex sensitivity with clinical and therapeutic purposes. The new tool is available at the official GitHub repository of the Autonomic Nervous System Unit of the University of Málaga (https://github.com/CIMES-USNA-UMA/BaroWavelet).
Collapse
Affiliation(s)
- A Chao-Ecija
- Autonomic Nervous System Unit, CIMES, School of Medicine, University of Málaga, Spain
| | - M S Dawid-Milner
- Autonomic Nervous System Unit, CIMES, School of Medicine, University of Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
2
|
Meglič B, Danieli A. Glyceryl trinitrate-induced blood pressure variability decrease during head-up tilt test predicts vasovagal response. Blood Press Monit 2023; 28:236-243. [PMID: 37334541 DOI: 10.1097/mbp.0000000000000653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
PURPOSE Glyceryl trinitrate (GTN) provoked cardioinhibitory syncope during the head-up tilt test is preceded by a period of disrupted blood pressure variability (BPV). Endogenous nitric oxide (NO) attenuates BPV independently of blood pressure (BP). We hypothesized that exogenous NO donor GTN might decrease BPV during the presyncope period. A decrease in BPV may predict the tilt outcome. METHODS We analyzed 29 tilt test recordings of subjects with GTN-induced cardioinhibitory syncope and 30 recordings of negative subjects. A recursive autoregressive model of BPV after GTN was performed; powers of the respiratory (0.15-0.45 Hz) and nonrespiratory frequency (0.01-0.15 Hz) bands were calculated for each of the 20 normalized time periods. The post-GTN relative changes in heart rate, BP, and BPV were calculated. RESULTS In the syncope group, spectral power of nonrespiratory frequency systolic and diastolic BPV progressively felt for 30% after GTN application and stabilized after 180 s. BP started to fall 240 s after the GTN application. Decrease in nonrespiratory frequency power of diastolic BPV 20 s after GTN administration predicted cardioinhibitory syncope (area under the curve 0.811; 77% sensitivity; 70% specificity; cutoff value > 7%). CONCLUSION GTN application during the tilt test attenuates systolic and diastolic nonrespiratory frequency BPV during the presyncope period, independent of BP. A decrease in nonrespiratory frequency diastolic BPV 20 s after GTN application predicts cardioinhibitory syncope with good sensitivity and moderate specificity.
Collapse
Affiliation(s)
- Bernard Meglič
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
3
|
Raphan T, Yakushin SB. Predicting Vasovagal Responses: A Model-Based and Machine Learning Approach. Front Neurol 2021; 12:631409. [PMID: 33776889 PMCID: PMC7988203 DOI: 10.3389/fneur.2021.631409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Vasovagal syncope (VVS) or neurogenically induced fainting has resulted in falls, fractures, and death. Methods to deal with VVS are to use implanted pacemakers or beta blockers. These are often ineffective because the underlying changes in the cardiovascular system that lead to the syncope are incompletely understood and diagnosis of frequent occurrences of VVS is still based on history and a tilt test, in which subjects are passively tilted from a supine position to 20° from the spatial vertical (to a 70° position) on the tilt table and maintained in that orientation for 10–15 min. Recently, is has been shown that vasovagal responses (VVRs), which are characterized by transient drops in blood pressure (BP), heart rate (HR), and increased amplitude of low frequency oscillations in BP can be induced by sinusoidal galvanic vestibular stimulation (sGVS) and were similar to the low frequency oscillations that presaged VVS in humans. This transient drop in BP and HR of 25 mmHg and 25 beats per minute (bpm), respectively, were considered to be a VVR. Similar thresholds have been used to identify VVR's in human studies as well. However, this arbitrary threshold of identifying a VVR does not give a clear understanding of the identifying features of a VVR nor what triggers a VVR. In this study, we utilized our model of VVR generation together with a machine learning approach to learn a separating hyperplane between normal and VVR patterns. This methodology is proposed as a technique for more broadly identifying the features that trigger a VVR. If a similar feature identification could be associated with VVRs in humans, it potentially could be utilized to identify onset of a VVS, i.e, fainting, in real time.
Collapse
Affiliation(s)
- Theodore Raphan
- Department of Computer and Information Science, Institute for Neural and Intelligent Systems, Brooklyn College of CUNY, Brooklyn, NY, United States.,Graduate Center of CUNY, New York, NY, United States
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
4
|
Stewart JM, Medow MS, Visintainer P, Sutton R. When Sinus Tachycardia Becomes Too Much: Negative Effects of Excessive Upright Tachycardia on Cardiac Output in Vasovagal Syncope, Postural Tachycardia Syndrome, and Inappropriate Sinus Tachycardia. Circ Arrhythm Electrophysiol 2020; 13:e007744. [PMID: 31941353 PMCID: PMC7068217 DOI: 10.1161/circep.119.007744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Upright posture reduces venous return, stroke volume, and cardiac output (CO) while causing reflex sinus rate (heart rate [HR]) increase. Yet, in inappropriate sinus tachycardia (IST), postural tachycardia syndrome (POTS), and vasovagal syncope (VVS), symptomatic excessive HR occurs. We hypothesized that CO reaches maximum as function of HR in all. METHODS We recruited 12 healthy controls, 9 IST, 30 VVS, and 30 POTS patients (13-23years) selected randomly by disorder not by HR, each fulfilled appropriate diagnostic criteria. Subjects were instrumented for electrocardiography, beat-to-beat blood pressure, respiratory rate, CO-Modelflow algorithm, and central blood volume from impedance cardiography; 10-minute data were collected supine; subjects were tilted head-up for ≤10 minutes. We computed phase differences, ΔΦ, between fluctuations of HR (ΔHR) and CO (ΔCO) tabulating data when phases were synchronized, determined by a squared nonlinear phase synchronization index >0.5, describing extent/validity of CO/HR coupling. We graphed results supine, 1-minute post-tilt-up, mid-tilt, and pre-tilt-down using polar coordinates (HR-radius, ΔΦ-angle) plotting cos(ΔΦ) versus HR to determine if transition HR exists at which in-phase shifts to antiphase above which CO decreases when HR further increases. RESULTS At baseline HR, diastolic and mean arterial pressures in IST and POTS were higher versus controls. Upright HR increased most in POTS then IST and VVS, with diverse changes in CO, SVR, and central blood volume. Each patient grouping was separately and collectively analyzed for HR change showing transition from in-phase to anti-phase (ΔΦ) as HR increased: HRtransition=115±6 (IST), 123±8 (POTS), 124±7 (VVS), P=ns. Controls never reached transitional HR. CONCLUSIONS Excessive HR independently and equivalently reduces upright CO, in IST, POTS, and VVS.
Collapse
Affiliation(s)
- Julian M. Stewart
- Department of Pediatrics and Physiology, New York Medical College, Valhalla, NY
| | - Marvin S. Medow
- Department of Pediatrics and Physiology, New York Medical College, Valhalla, NY
| | - Paul Visintainer
- Baystate Medical Center, Springfield & University of Massachusetts School of Medicine, Worcester, MA
| | - Richard Sutton
- National Heart & Lung institute, Imperial College, London, United Kingdom
| |
Collapse
|
5
|
Raphan T. Vestibular, locomotor, and vestibulo-autonomic research: 50 years of collaboration with Bernard Cohen. J Neurophysiol 2020; 123:329-345. [PMID: 31747361 PMCID: PMC6985855 DOI: 10.1152/jn.00485.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 01/27/2023] Open
Abstract
My collaboration on the vestibulo-ocular reflex with Bernard Cohen began in 1972. Until 2017, this collaboration included studies of saccades, quick phases of nystagmus, the introduction of the concept of velocity storage, the relationship of velocity storage to motion sickness, primate and human locomotion, and studies of vasovagal syncope. These studies have elucidated the functioning of the vestibuloocular reflex, the locomotor system, the functioning of the vestibulo-sympathetic reflex, and how blood pressure and heart rate are controlled by the vestibular system. Although it is virtually impossible to review all the contributions in detail in a single paper, this article traces a thread of modeling that I brought to the collaboration, which, coupled with Bernie Cohen's expertise in vestibular and sensory-motor physiology and clinical insights, has broadened our understanding of the role of the vestibular system in a wide range of sensory-motor systems. Specifically, the paper traces how the concept of a relaxation oscillator was used to model the slow and rapid phases of ocular nystagmus. Velocity information that drives the slow compensatory eye movements was used to activate the saccadic system that resets the eyes, giving rise to the relaxation oscillator properties and simulated nystagmus as well as predicting the types of unit activity that generated saccades and nystagmic beats. The slow compensatory component of ocular nystagmus was studied in depth and gave rise to the idea that there was a velocity storage mechanism or integrator that not only is a focus for visual-vestibular interaction but also codes spatial orientation relative to gravity as referenced by the otoliths. Velocity storage also contributes to motion sickness when there are visual-vestibular as well as orientation mismatches in velocity storage. The relaxation oscillator concept was subsequently used to model the stance and swing phases of locomotion, how this impacted head and eye movements to maintain gaze in the direction of body motion, and how these were affected by Parkinson's disease. Finally, the relaxation oscillator was used to elucidate the functional form of the systolic and diastolic beats during blood pressure and how vasovagal syncope might be initiated by cerebellar-vestibular malfunction.
Collapse
Affiliation(s)
- Theodore Raphan
- Institute of Neural and Intelligent Systems and Department of Computer and Information Science, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York
| |
Collapse
|
6
|
Lázaro J, Gil E, Orini M, Laguna P, Bailón R. Baroreflex Sensitivity Measured by Pulse Photoplethysmography. Front Neurosci 2019; 13:339. [PMID: 31057351 PMCID: PMC6482265 DOI: 10.3389/fnins.2019.00339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Abstract
Novel methods for assessing baroreflex sensitivity (BRS) using only pulse photoplethysmography (PPG) signals are presented. Proposed methods were evaluated with a data set containing electrocardiogram (ECG), blood pressure (BP), and PPG signals from 17 healthy subjects during a tilt table test. The methods are based on a surrogate of α index, which is defined as the power ratio of RR interval variability (RRV) and that of systolic arterial pressure series variability (SAPV). The proposed α index surrogates use pulse-to-pulse interval series variability (PPV) as a surrogate of RRV, and different morphological features of the PPG pulse which have been hypothesized to be related to BP, as series surrogates of SAPV. A time-frequency technique was used to assess BRS, taking into account the non-stationarity of the protocol. This technique identifies two time-varying frequency bands where RRV and SAPV (or their surrogates) are expected to be coupled: the low frequency (LF, inside 0.04-0.15 Hz range), and the high frequency (HF, inside 0.15-0.4 Hz range) bands. Furthermore, time-frequency coherence is used to identify the time intervals when the RRV and SAPV (or their surrogates) are coupled. Conventional α index based on RRV and SAPV was used as Gold Standard. Spearman correlation coefficients between conventional α index and its PPG-based surrogates were computed and the paired Wilcoxon statistical test was applied in order to assess whether the indices can find significant differences (p < 0.05) between different stages of the protocol. The highest correlations with the conventional α index were obtained by the α-index-surrogate based on PPV and pulse up-slope (PUS), with 0.74 for LF band, and 0.81 for HF band. Furthermore, this index found significant differences between rest stages and tilt stage in both LF and HF bands according to the paired Wilcoxon test, as the conventional α index also did. These results suggest that BRS changes induced by the tilt test can be assessed with high correlation by only a PPG signal using PPV as RRV surrogate, and PPG morphological features as SAPV surrogates, being PUS the most convenient SAPV surrogate among the studied ones.
Collapse
Affiliation(s)
- Jesús Lázaro
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States.,Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Michele Orini
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
7
|
Struhal W, Mahringer C, Lahrmann H, Mörtl C, Buhl P, Huemer M, Ransmayr G. Heart Rate Spectra Confirm the Presence of Autonomic Dysfunction in Dementia Patients. J Alzheimers Dis 2018; 54:657-67. [PMID: 27567816 PMCID: PMC5366248 DOI: 10.3233/jad-160084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent data suggest autonomic dysfunction in patients suffering dementia. This study evaluated autonomic modulation in dementia patients with and without autonomic involvement, employing ECG spectral analysis in the time-frequency domain (wavelet transform) in supine resting and head-up tilt (HUT) position. Thirty-six patients were prospectively evaluated at the Department of Neurology and Psychiatry, General Hospital of the City of Linz, between 2009 and 2014. A standard cardiovascular autonomic test series (Ewing battery) was performed to screen for autonomic dysfunction. The Ewing battery diagnoses were used as reference standard and compared to the diagnostic results obtained by spectral analysis (time-frequency domain) of ECG recordings. Based on the Ewing battery results, 14 patients suffered autonomic dysfunction, while 22 did not. Time frequency domain was accessed by using the continuous wavelet transformation (CWT) with an analytical Morlet mother wavelet in supine resting and HUT position. Within each cohort the modification of spectral components from supine resting to HUT was analyzed reflecting the autonomic modulation. For patients without autonomic dysfunction, a significant increase of autonomic modulation was detected by wavelet transformed ECG recordings (8%, p < 0.05; low frequency content) during HUT compared to supine resting. There was no significant modulation between HUT and supine resting in patients suffering autonomic dysfunction. In dementia patients suffering autonomic dysfunction, CWT identified blunted autonomic regulation only by analysis of ECG recordings without the need to assess other biosignals or tests depending on the patient’s cooperation. Further studies are needed to evaluate whether CWT is a suitable method to support the standard Ewing battery in demented patients.
Collapse
Affiliation(s)
- Walter Struhal
- Department of Neurology 2, Kepler University Hospital, Med Campus III., Linz, Austria
| | - Christoph Mahringer
- Department of Biomedical Engineering, Kepler University Hospital, Med Campus III., Linz, Austria.,Institute of Signal Processing, Johannes Kepler University Linz, Linz, Austria
| | | | - Christoph Mörtl
- Department of Anesthesiology and Critical Care Medicine, Kepler University Hospital, Med Campus III., Linz, Austria
| | - Peter Buhl
- Department of Biomedical Engineering, Kepler University Hospital, Med Campus III., Linz, Austria
| | - Mario Huemer
- Institute of Signal Processing, Johannes Kepler University Linz, Linz, Austria
| | - Gerhard Ransmayr
- Department of Neurology 2, Kepler University Hospital, Med Campus III., Linz, Austria
| |
Collapse
|
8
|
Taibi A, Gadda G, Gambaccini M, Menegatti E, Sisini F, Zamboni P. Investigation of cerebral venous outflow in microgravity. Physiol Meas 2017; 38:1939-1952. [PMID: 28857747 DOI: 10.1088/1361-6579/aa8980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The gravitational gradient is the major component to face when considering the physiology of venous return, and there is a growing interest in understanding the mechanisms ensuring the heart filling, in the absence of gravity, for astronauts who perform long-term space missions. APPROACH The purpose of the Drain Brain project was to monitor the cerebral venous outflow of a crew member during an experiment on the International Space Station (ISS), so as to study the compensatory mechanisms that facilitate this essential physiological action in subjects living in a microgravity environment. Such venous function has been characterized by means of a novel application of strain-gauge plethysmography which uses a capacitive sensor. MAIN RESULTS In this contribution, preliminary results of our investigation have been presented. In particular, comparison of plethysmography data confirmed that long duration spaceflights lead to a redistribution of venous blood volume, and showed interesting differences in the amplitude of cardiac oscillations measured at the level of the neck veins. SIGNIFICANCE The success of the experiment has also demonstrated that thanks to its easy portability, non-invasiveness, and non-operator dependence, the proposed device can be considered as a novel tool for use aboard the ISS. Further trials are now under way to complete the investigation on the drainage function of the neck veins in microgravity.
Collapse
Affiliation(s)
- A Taibi
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara and INFN, Sezione di Ferrara, via Saragat 1, 44122 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Stewart JM, Suggs M, Merchant S, Sutton R, Terilli C, Visintainer P, Medow MS. Postsynaptic α1-Adrenergic Vasoconstriction Is Impaired in Young Patients With Vasovagal Syncope and Is Corrected by Nitric Oxide Synthase Inhibition. Circ Arrhythm Electrophysiol 2017; 9:CIRCEP.115.003828. [PMID: 27444639 DOI: 10.1161/circep.115.003828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/15/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Syncope is a sudden transient loss of consciousness and postural tone with spontaneous recovery; the most common form is vasovagal syncope (VVS). During VVS, gravitational pooling excessively reduces central blood volume and cardiac output. In VVS, as in hemorrhage, impaired adrenergic vasoconstriction and venoconstriction result in hypotension. We hypothesized that impaired adrenergic responsiveness because of excess nitric oxide can be reversed by reducing nitric oxide. METHODS AND RESULTS We recorded cardiopulmonary dynamics in supine syncope patients and healthy volunteers (aged 15-27 years) challenged with a dose-response using the α1-agonist phenylephrine (PE), with and without the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine, monoacetate salt (L-NMMA). Systolic and diastolic pressures among control and VVS were the same, although they increased after L-NMMA and saline+PE (volume and pressor control for L-NMMA). Heart rate was significantly reduced by L-NMMA (P<0.05) for control and VVS compared with baseline, but there was no significant difference in heart rate between L-NMMA and saline+PE. Cardiac output and splanchnic blood flow were reduced by L-NMMA for control and VVS (P<0.05) compared with baseline, while total peripheral resistance increased (P<0.05). PE dose-response for splanchnic flow and resistance were blunted for VVS compared with control after saline+PE, but enhanced after L-NMMA (P<0.001). Postsynaptic α1-adrenergic vasoconstrictive impairment was greatest in the splanchnic vasculature, and splanchnic blood flow was unaffected by PE. Forearm and calf α1-adrenergic vasoconstriction were unimpaired in VVS and unaffected by L-NMMA. CONCLUSIONS Impaired postsynaptic α1-adrenergic vasoconstriction in young adults with VVS can be corrected by nitric oxide synthase inhibition, demonstrated with our use of L-NMMA.
Collapse
Affiliation(s)
- Julian M Stewart
- From the Departments of Pediatrics (J.M.S., S.M., C.T., M.S.M.), Physiology (J.M.S., M.S., M.S.M.), New York Medical College, Valhalla, NY; The National Heart & Lung Institute, Imperial College, London, United Kingdom (R.S.); and Department of Medicine, Baystate Medical Center, Springfield & Tufts University School of Medicine, MA (P.V.).
| | - Melissa Suggs
- From the Departments of Pediatrics (J.M.S., S.M., C.T., M.S.M.), Physiology (J.M.S., M.S., M.S.M.), New York Medical College, Valhalla, NY; The National Heart & Lung Institute, Imperial College, London, United Kingdom (R.S.); and Department of Medicine, Baystate Medical Center, Springfield & Tufts University School of Medicine, MA (P.V.)
| | - Sana Merchant
- From the Departments of Pediatrics (J.M.S., S.M., C.T., M.S.M.), Physiology (J.M.S., M.S., M.S.M.), New York Medical College, Valhalla, NY; The National Heart & Lung Institute, Imperial College, London, United Kingdom (R.S.); and Department of Medicine, Baystate Medical Center, Springfield & Tufts University School of Medicine, MA (P.V.)
| | - Richard Sutton
- From the Departments of Pediatrics (J.M.S., S.M., C.T., M.S.M.), Physiology (J.M.S., M.S., M.S.M.), New York Medical College, Valhalla, NY; The National Heart & Lung Institute, Imperial College, London, United Kingdom (R.S.); and Department of Medicine, Baystate Medical Center, Springfield & Tufts University School of Medicine, MA (P.V.)
| | - Courtney Terilli
- From the Departments of Pediatrics (J.M.S., S.M., C.T., M.S.M.), Physiology (J.M.S., M.S., M.S.M.), New York Medical College, Valhalla, NY; The National Heart & Lung Institute, Imperial College, London, United Kingdom (R.S.); and Department of Medicine, Baystate Medical Center, Springfield & Tufts University School of Medicine, MA (P.V.)
| | - Paul Visintainer
- From the Departments of Pediatrics (J.M.S., S.M., C.T., M.S.M.), Physiology (J.M.S., M.S., M.S.M.), New York Medical College, Valhalla, NY; The National Heart & Lung Institute, Imperial College, London, United Kingdom (R.S.); and Department of Medicine, Baystate Medical Center, Springfield & Tufts University School of Medicine, MA (P.V.)
| | - Marvin S Medow
- From the Departments of Pediatrics (J.M.S., S.M., C.T., M.S.M.), Physiology (J.M.S., M.S., M.S.M.), New York Medical College, Valhalla, NY; The National Heart & Lung Institute, Imperial College, London, United Kingdom (R.S.); and Department of Medicine, Baystate Medical Center, Springfield & Tufts University School of Medicine, MA (P.V.).
| |
Collapse
|
10
|
Stewart JM, Sutton R, Kothari ML, Goetz AM, Visintainer P, Medow MS. Nitric oxide synthase inhibition restores orthostatic tolerance in young vasovagal syncope patients. Heart 2017; 103:1711-1718. [PMID: 28501796 DOI: 10.1136/heartjnl-2017-311161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Syncope is sudden transient loss of consciousness and postural tone with spontaneous recovery; the most common form is vasovagal syncope (VVS). We previously demonstrated impaired post-synaptic adrenergic responsiveness in young VVS patients was reversed by blocking nitric oxide synthase (NOS). We hypothesised that nitric oxide may account for reduced orthostatic tolerance in young recurrent VVS patients. METHODS We recorded haemodynamics in supine VVS and healthy volunteers (aged 15-27 years), challenged with graded lower body negative pressure (LBNP) (-15, -30, -45 mm Hg each for 5 min, then -60 mm Hg for a maximum of 50 min) with and without NOS inhibitor NG-monomethyl-L-arginine acetate (L-NMMA). Saline plus phenylephrine (Saline+PE) was used as volume and pressor control for L-NMMA. RESULTS Controls endured 25.9±4.0 min of LBNP during Saline+PE compared with 11.6±1.4 min for fainters (p<0.001). After L-NMMA, control subjects endured 24.8±3.2 min compared with 22.6±1.6 min for fainters. Mean arterial pressure decreased more in VVS patients during LBNP with Saline+PE (p<0.001) which was reversed by L-NMMA; cardiac output decreased similarly in controls and VVS patients and was unaffected by L-NMMA. Total peripheral resistance increased for controls but decreased for VVS during Saline+PE (p<0.001) but was similar following L-NMMA. Splanchnic vascular resistance increased during LBNP in controls, but decreased in VVS patients following Saline+PE which L-NMMA restored. CONCLUSIONS We conclude that arterial vasoconstriction is impaired in young VVS patients, which is corrected by NOS inhibition. The data suggest that both pre- and post-synaptic arterial vasoconstriction may be affected by nitric oxide.
Collapse
Affiliation(s)
- Julian M Stewart
- Departments of Pediatrics, New York Medical College, Valhalla, New York, USA.,Departments of Physiology, New York Medical College, Valhalla, New York, USA
| | - Richard Sutton
- The National Heart & Lung Institute, Imperial College, London, UK
| | - Mira L Kothari
- Departments of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Amanda M Goetz
- Departments of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Paul Visintainer
- Baystate Medical Center, University of Massachusetts School of Medicine 4, Springfield MA, USA
| | - Marvin Scott Medow
- Departments of Pediatrics, New York Medical College, Valhalla, New York, USA.,Departments of Physiology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
11
|
Cohen B, Martinelli GP, Xiang Y, Raphan T, Yakushin SB. Vestibular Activation Habituates the Vasovagal Response in the Rat. Front Neurol 2017; 8:83. [PMID: 28360882 PMCID: PMC5350135 DOI: 10.3389/fneur.2017.00083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Vasovagal syncope is a significant medical problem without effective therapy, postulated to be related to a collapse of baroreflex function. While some studies have shown that repeated static tilts can block vasovagal syncope, this was not found in other studies. Using anesthetized, male Long–Evans rats that were highly susceptible to generation of vasovagal responses, we found that repeated activation of the vestibulosympathetic reflex (VSR) with ±2 and ±3 mA, 0.025 Hz sinusoidal galvanic vestibular stimulation (sGVS) caused incremental changes in blood pressure (BP) and heart rate (HR) that blocked further generation of vasovagal responses. Initially, BP and HR fell ≈20–50 mmHg and ≈20–50 beats/min (bpm) into a vasovagal response when stimulated with Sgv\S in susceptible rats. As the rats were continually stimulated, HR initially rose to counteract the fall in BP; then the increase in HR became more substantial and long lasting, effectively opposing the fall in BP. Finally, the vestibular stimuli simply caused an increase in BP, the normal sequence following activation of the VSR. Concurrently, habituation caused disappearance of the low-frequency (0.025 and 0.05 Hz) oscillations in BP and HR that must be present when vasovagal responses are induced. Habituation also produced significant increases in baroreflex sensitivity (p < 0.001). Thus, repeated low-frequency activation of the VSR resulted in a reduction and loss of susceptibility to development of vasovagal responses in rats that were previously highly susceptible. We posit that reactivation of the baroreflex, which is depressed by anesthesia and the disappearance of low-frequency oscillations in BP and HR are likely to be critically involved in producing resistance to the development of vasovagal responses. SGVS has been widely used to activate muscle sympathetic nerve activity in humans and is safe and well tolerated. Potentially, it could be used to produce similar habituation of vasovagal syncope in humans.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Yongqing Xiang
- Department of Computer and Information Science, Brooklyn College, City University of New York , New York, NY , USA
| | - Theodore Raphan
- Department of Computer and Information Science, Brooklyn College, City University of New York , New York, NY , USA
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
12
|
Raphan T, Cohen B, Xiang Y, Yakushin SB. A Model of Blood Pressure, Heart Rate, and Vaso-Vagal Responses Produced by Vestibulo-Sympathetic Activation. Front Neurosci 2016; 10:96. [PMID: 27065779 PMCID: PMC4814511 DOI: 10.3389/fnins.2016.00096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/26/2016] [Indexed: 12/17/2022] Open
Abstract
Blood Pressure (BP), comprised of recurrent systoles and diastoles, is controlled by central mechanisms to maintain blood flow. Periodic behavior of BP was modeled to study how peak amplitudes and frequencies of the systoles are modulated by vestibular activation. The model was implemented as a relaxation oscillator, driven by a central signal related to Desired BP. Relaxation oscillations were maintained by a second order system comprising two integrators and a threshold element in the feedback loop. The output signal related to BP was generated as a nonlinear function of the derivative of the first state variable, which is a summation of an input related to Desired BP, feedback from the states, and an input from the vestibular system into one of the feedback loops. This nonlinear function was structured to best simulate the shapes of systoles and diastoles, the relationship between BP and Heart Rate (HR) as well as the amplitude modulations of BP and Pulse Pressure. Increases in threshold in one of the feedback loops produced lower frequencies of HR, but generated large pulse pressures to maintain orthostasis, without generating a VasoVagal Response (VVR). Pulse pressures were considerably smaller in the anesthetized rats than during the simulations, but simulated pulse pressures were lowered by including saturation in the feedback loop. Stochastic changes in threshold maintained the compensatory Baroreflex Sensitivity. Sudden decreases in Desired BP elicited non-compensatory VVRs with smaller pulse pressures, consistent with experimental data. The model suggests that the Vestibular Sympathetic Reflex (VSR) modulates BP and HR of an oscillating system by manipulating parameters of the baroreflex feedback and the signals that maintain the oscillations. It also shows that a VVR is generated when the vestibular input triggers a marked reduction in Desired BP.
Collapse
Affiliation(s)
- Theodore Raphan
- Department of Computer and Information Science, Institute for Neural and Intelligent Systems, Brooklyn College, City University of New York New York, NY, USA
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Yongqing Xiang
- Department of Computer and Information Science, Institute for Neural and Intelligent Systems, Brooklyn College, City University of New York New York, NY, USA
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
13
|
An insight into the autonomic and haemodynamic mechanisms underlying reflex syncope in children and adolescents: a multiparametric analysis. Cardiol Young 2015; 25:647-54. [PMID: 24956161 DOI: 10.1017/s1047951114000511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Around 15% of children and adolescents experience at least one episode of syncope until adulthood. Excluding cardiac disease, the majority of syncopes are of reflex origin and benign in nature. In this situation, a tilt test is conducted to reproduce symptoms and to evaluate cardiovascular adaptations to orthostatism, but its mechanisms are not yet well defined. Here, we investigated haemodynamics and autonomic activity during tilt in young patients. Patients (n=113) with unexplained syncope were enrolled. Tilt followed a standard protocol without provocative agents. A positive response (fainters) was defined as a sudden development of syncope or presyncope associated with hypotension, bradycardia, or both. Haemodynamic parameters, autonomic activity, and baroreflex sensibility were evaluated. Data were analysed on baseline; immediately after tilting; on tilt adaptation; before fainting or before tilt-down for non-fainters; and on tilt-down. A total of 45 patients experienced syncope after a mean time of 18 minutes. During tilting up, fainters showed lower blood pressure and peripheral resistance values, which decreased progressively with time together with baroreflex sensibility. Sympathetic tone increased massively along time till syncope. No changes in cardiac output and heart rate were observed. Results show a strong effort of the autonomic nervous system to adapt to orthostatic stress through different magnitudes of sympathetic output, which was maximal before syncope without apparent modifications of parasympathetic tone. These changes suggest an imbalance between both branches of the autonomic nervous system, not enabling a time-progressive adaptation and leading the subject to faint.
Collapse
|
14
|
Yakushin SB, Martinelli GP, Raphan T, Xiang Y, Holstein GR, Cohen B. Vasovagal oscillations and vasovagal responses produced by the vestibulo-sympathetic reflex in the rat. Front Neurol 2014; 5:37. [PMID: 24772102 PMCID: PMC3983498 DOI: 10.3389/fneur.2014.00037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/14/2014] [Indexed: 12/17/2022] Open
Abstract
Sinusoidal galvanic vestibular stimulation (sGVS) induces oscillations in blood pressure (BP) and heart rate (HR), i.e., vasovagal oscillations, as well as transient decreases in BP and HR, i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses, and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025-0.05 Hz). The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the vestibulo-sympathetic reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Theodore Raphan
- Department of Computer and Information Sciences, Brooklyn College of the City University of New York , Brooklyn, NY , USA
| | - Yongqing Xiang
- Department of Computer and Information Sciences, Brooklyn College of the City University of New York , Brooklyn, NY , USA
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
15
|
Cohen B, Martinelli GP, Raphan T, Schaffner A, Xiang Y, Holstein GR, Yakushin SB. The vasovagal response of the rat: its relation to the vestibulosympathetic reflex and to Mayer waves. FASEB J 2013; 27:2564-72. [PMID: 23504712 PMCID: PMC3688754 DOI: 10.1096/fj.12-226381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Vasovagal responses (VVRs) are characterized by transient drops in blood pressure (BP) and heart rate (HR) and increased amplitude of low-frequency oscillations in the Mayer wave frequency range. Typical VVRs were induced in anesthetized, male, Long-Evans rats by sinusoidal galvanic vestibular stimulation (sGVS). VVRs were also produced by single sinusoids that transiently increased BP and HR, by 70-90° nose-up tilts, and by 60° tilts of the gravitoinertial acceleration vector using translation while rotating (TWR). The average power of the BP signal in the Mayer wave range increased substantially when tilts were >70° (0.91 g), i.e., when linear accelerations in the x-z plane were ≥0.9-1.0 g. The standard deviations of the wavelet-filtered BP signals during tilt and TWR overlaid when they were normalized to 1 g. Thus, the amplitudes of the Mayer waves coded the magnitude of the linear acceleration ≥1 g acting on the head and body, and the average power in this frequency range was associated with the generation of VVRs. These data show that VVRs are a natural outcome of stimulation of the vestibulosympathetic reflex and are not a disease. The results also demonstrate the usefulness of the rat as a small animal model for studying human VVRs.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, Brooklyn 10029-6574, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Sympathetic circulatory control is key to the rapid cardiovascular adjustments that occur within seconds of standing upright (orthostasis) and which are required for bipedal stance. Indeed, patients with ineffective sympathetic adrenergic vasoconstriction rapidly develop orthostatic hypotension, prohibiting effective upright activities. One speaks of orthostatic intolerance (OI) when signs, such as hypotension, and symptoms, such as lightheadedness, occur when upright and are relieved by recumbence. The experience of transient mild OI is part of daily life. However, many people experience episodic acute OI as postural faint or chronic OI in the form of orthostatic tachycardia and orthostatic hypotension that significantly reduce the quality of life. Potential mechanisms for OI are discussed including forms of sympathetic hypofunction, forms of sympathetic hyperfunction, and OI that results from regional blood volume redistribution attributable to regional adrenergic hypofunction.
Collapse
Affiliation(s)
- Julian M Stewart
- Departments of Physiology, Pediatrics and Medicine, New York Medical College, Valhalla, NY, USA. mail:
| |
Collapse
|
17
|
Orini M, Laguna P, Mainardi LT, Bailón R. Assessment of the dynamic interactions between heart rate and arterial pressure by the cross time-frequency analysis. Physiol Meas 2012; 33:315-31. [PMID: 22354110 DOI: 10.1088/0967-3334/33/3/315] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, a framework for the characterization of the dynamic interactions between RR variability (RRV) and systolic arterial pressure variability (SAPV) is proposed. The methodology accounts for the intrinsic non-stationarity of the cardiovascular system and includes the assessment of both the strength and the prevalent direction of local coupling. The smoothed pseudo-Wigner-Ville distribution (SPWVD) is used to estimate the time-frequency (TF) power, coherence, and phase-difference spectra with fine TF resolution. The interactions between the signals are quantified by time-varying indices, including the local coupling, phase differences, time delay, and baroreflex sensitivity (BRS). Every index is extracted from a specific TF region, localized by combining information from the different spectra. In 14 healthy subjects, a head-up tilt provoked an abrupt decrease in the cardiovascular coupling; a rapid change in the phase difference (from 0.37 ± 0.23 to -0.27 ± 0.22 rad) and time delay (from 0.26 ± 0.14 to -0.16 ± 0.16 s) in the high-frequency band; and a decrease in the BRS (from 23.72 ± 7.66 to 6.92 ± 2.51 ms mmHg(-1)). In the low-frequency range, during a head-up tilt, restoration of the baseline level of cardiovascular coupling took about 2 min and SAPV preceded RRV by about 0.85 s during the whole test. The analysis of the Eurobavar data set, which includes subjects with intact as well as impaired baroreflex, showed that the presented methodology represents an improved TF generalization of traditional time-invariant methodologies and can reveal dysfunctions in subjects with baroreflex impairment. Additionally, the results also suggest the use of non-stationary signal-processing techniques to analyze signals recorded under conditions that are usually supposed to be stationary.
Collapse
Affiliation(s)
- M Orini
- Communications Technology Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, M de Luna 1, Zaragoza 50018, Spain.
| | | | | | | |
Collapse
|
18
|
Sinusoidal galvanic vestibular stimulation (sGVS) induces a vasovagal response in the rat. Exp Brain Res 2011; 210:45-55. [PMID: 21374078 DOI: 10.1007/s00221-011-2604-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/11/2011] [Indexed: 12/15/2022]
Abstract
Blood pressure (BP) and heart rate (HR) were studied in isoflurane-anesthetized Long-Evans rats during sinusoidal galvanic vestibular stimulation (sGVS) and sinusoidal oscillation in pitch to characterize vestibular influences on autonomic control of BP and HR. sGVS was delivered binaurally via Ag/AgCl needle electrodes inserted over the mastoids at stimulus frequencies 0.008-0.4 Hz. Two processes affecting BP and HR were induced by sGVS: 1) a transient drop in BP (≈15-20 mmHg) and HR (≈3 beat*s(-1)), followed by a slow recovery over 1-6 min; and 2) inhibitory modulations in BP (≈4.5 mmHg/g) and HR (≈0.15 beats*s(-1)/g) twice in each stimulus cycle. The BP and HR modulations were approximately in-phase with each other and were best evoked by low stimulus frequencies. A wavelet analysis indicated significant energies in BP and HR at scales related to twice and four times the stimulus frequency bands. BP and HR were also modulated by oscillation in pitch at frequencies 0.025-0.5 Hz. Sensitivities at 0.025 Hz were ≈4.5 mmHg/g (BP) and ≈0.17 beat*s(-1)/g (HR) for pitches of 20-90°. The tilt-induced BP and HR modulations were out-of-phase, but the frequencies at which responses were elicited by tilt and sGVS were the same. The results show that the sGVS-induced responses, which likely originate in the otolith organs, can exert a powerful inhibitory effect on both BP and HR at low frequencies. These responses have a striking resemblance to human vasovagal responses. Thus, sGVS-activated rats can potentially serve as a useful experimental model of the vasovagal response in humans.
Collapse
|
19
|
Ocon AJ, Medow MS, Taneja I, Stewart JM. Respiration drives phase synchronization between blood pressure and RR interval following loss of cardiovagal baroreflex during vasovagal syncope. Am J Physiol Heart Circ Physiol 2010; 300:H527-40. [PMID: 21076019 DOI: 10.1152/ajpheart.00257.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of the cardiovagal baroreflex (CVB), thoracic hypovolemia, and hyperpnea contribute to the nonlinear time-dependent hemodynamic instability of vasovagal syncope. We used a nonlinear phase synchronization index (PhSI) to describe the extent of coupling between cardiorespiratory parameters, systolic blood pressure (SBP) or arterial pressure (AP), RR interval (RR), and ventilation, and a directional index (DI) measuring the direction of coupling. We also examined phase differences directly. We hypothesized that AP-RR interval PhSI would be normal during early upright tilt, indicating intact CVB, but would progressively decrease as faint approached and CVB failed. Continuous measurements of AP, RR interval, respiratory plethysomography, and end-tidal CO2 were recorded supine and during 70-degree head-up tilt in 15 control subjects and 15 fainters. Data were evaluated during five distinct times: baseline, early tilt, late tilt, faint, and recovery. During late tilt to faint, fainters exhibited a biphasic change in SBP-RR interval PhSI. Initially in fainters during late tilt, SBP-RR interval PhSI decreased (fainters, from 0.65±0.04 to 0.24±0.03 vs. control subjects, from 0.51±0.03 to 0.48±0.03; P<0.01) but then increased at the time of faint (fainters=0.80±0.03 vs. control subjects=0.42±0.04; P<0.001) coinciding with a change in phase difference from positive to negative. Starting in late tilt and continuing through faint, fainters exhibited increasing phase coupling between respiration and AP PhSI (fainters=0.54±0.06 vs. control subjects=0.27±0.03; P<0.001) and between respiration and RR interval (fainters=0.54±0.05 vs. control subjects=0.37±0.04; P<0.01). DI indicated respiratory driven AP (fainters=0.84±0.04 vs. control subjects=0.39±0.09; P<0.01) and RR interval (fainters=0.73±0.10 vs. control subjects=0.23±0.11; P<0.001) in fainters. The initial drop in the SBP-RR interval PhSI and directional change of phase difference at late tilt indicates loss of cardiovagal baroreflex. The subsequent increase in SBP-RR interval PhSI is due to a respiratory synchronization and drive on both AP and RR interval. Cardiovagal baroreflex is lost before syncope and supplanted by respiratory reflexes, producing hypotension and bradycardia.
Collapse
Affiliation(s)
- Anthony J Ocon
- Department of Physiology, New York Medical College, The Center for Hypotension, 19 Bradhurst Ave., Ste. 1600S, Hawthorne, NY 10532, USA
| | | | | | | |
Collapse
|
20
|
Ocon AJ, Kulesa J, Clarke D, Taneja I, Medow MS, Stewart JM. Increased phase synchronization and decreased cerebral autoregulation during fainting in the young. Am J Physiol Heart Circ Physiol 2009; 297:H2084-95. [PMID: 19820196 DOI: 10.1152/ajpheart.00705.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasovagal syncope may be due to a transient cerebral hypoperfusion that accompanies frequency entrainment between arterial pressure (AP) and cerebral blood flow velocity (CBFV). We hypothesized that cerebral autoregulation fails during fainting; a phase synchronization index (PhSI) between AP and CBFV was used as a nonlinear, nonstationary, time-dependent measurement of cerebral autoregulation. Twelve healthy control subjects and twelve subjects with a history of vasovagal syncope underwent 10-min tilt table testing with the continuous measurement of AP, CBFV, heart rate (HR), end-tidal CO2 (ETCO2), and respiratory frequency. Time intervals were defined to compare physiologically equivalent periods in fainters and control subjects. A PhSI value of 0 corresponds to an absence of phase synchronization and efficient cerebral autoregulation, whereas a PhSI value of 1 corresponds to complete phase synchronization and inefficient cerebral autoregulation. During supine baseline conditions, both control and syncope groups demonstrated similar oscillatory changes in phase, with mean PhSI values of 0.58+/-0.04 and 0.54+/-0.02, respectively. Throughout tilt, control subjects demonstrated similar PhSI values compared with supine conditions. Approximately 2 min before fainting, syncopal subjects demonstrated a sharp decrease in PhSI (0.23+/-0.06), representing efficient cerebral autoregulation. Immediately after this period, PhSI increased sharply, suggesting inefficient cerebral autoregulation, and remained elevated at the time of faint (0.92+/-0.02) and during the early recovery period (0.79+/-0.04) immediately after the return to the supine position. Our data demonstrate rapid, biphasic changes in cerebral autoregulation, which are temporally related to vasovagal syncope. Thus, a sudden period of highly efficient cerebral autoregulation precedes the virtual loss of autoregulation, which continued during and after the faint.
Collapse
Affiliation(s)
- Anthony J Ocon
- Department of Physiology, The Center for Hypotension, New York Medical College, 19 Bradhurst Ave., Suite 1600S, Hawthorne, NY 10532, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ocon AJ, Medow MS, Taneja I, Clarke D, Stewart JM. Decreased upright cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2009; 297:H664-73. [PMID: 19502561 DOI: 10.1152/ajpheart.00138.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Postural tachycardia syndrome (POTS), a chronic form of orthostatic intolerance, has signs and symptoms of lightheadedness, loss of vision, headache, fatigue, and neurocognitive deficits consistent with reductions in cerebrovascular perfusion. We hypothesized that young, normocapnic POTS patients exhibit abnormal cerebral autoregulation (CA) that results in decreased static and dynamic cerebral blood flow (CBF) autoregulation. All subjects had continuous recordings of mean arterial pressure (MAP) and CBF velocity (CBFV) using transcranial Doppler sonography in both the supine supine position and during a 70 degrees head-up tilt. During tilt, POTS patients (n = 9) demonstrated a higher heart rate than controls (n = 7) (109 +/- 6 vs. 80 +/- 2 beats/min, P < 0.05), whereas controls demonstrated a higher MAP than POTS (87 +/- 2 vs. 77 +/- 3 mmHg, P < 0.05). Also during tilt, mean CBFV decreased 19.5 +/- 2.6% in POTS patients versus 10.3 +/- 2.0% in controls (P < 0.05). We then used a transfer function analysis of MAP and CFBV in the frequency domain to quantify these changes. The low-frequency (LF; 0.04-0.15 Hz) component of CBFV variability increased during tilt in POTS patients (supine: 3 +/- 0.9 vs. tilt: 9 +/- 2, P < 0.02). In POTS patients, there was an increase in LF and high-frequency coherence between MAP and CBFV, an increase in LF gain, and a lack of significant change in phase. Static CA may be less effective in POTS patients compared with controls, since immediately after tilt CBFV decreased more in POTS patients and was highly oscillatory and autoregulation did not restore CBFV to baseline values until the subjects became supine. Dynamic CA may be less effective in POTS patients because MAP and CBFV during tilt became almost perfectly synchronous. We conclude that dynamic and static autoregulation of CBF are less effective in POTS patients compared with control subjects during orthostatic challenge.
Collapse
Affiliation(s)
- Anthony J Ocon
- Department of Physiology, The Center for Hypotension, New York Medical College, Valhalla, New York 10532, USA
| | | | | | | | | |
Collapse
|
22
|
Seth H, Sandblom E, Axelsson M. Nutrient-induced gastrointestinal hyperemia and specific dynamic action in rainbow trout (Oncorhynchus mykiss)—importance of proteins and lipids. Am J Physiol Regul Integr Comp Physiol 2009; 296:R345-52. [DOI: 10.1152/ajpregu.90571.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical gastric distension induces a dorsal aortic pressor response in rainbow trout ( Oncorhynchus mykiss) with no change in gastrointestinal blood flow. To elucidate what role chemical stimuli from the digested food has on the postprandial cardiovascular response, a new method was developed to investigate the contribution of individual nutrient components. Three predigested experimental diets were injected directly into the proximal intestine of rainbow trout and cardiac output (CO), gut blood flow (Qcma), heart rate (HR), and stroke volume (SV) were recorded. Specific dynamic action (SDA) was estimated by measuring oxygen consumption. When a balanced diet (50% protein, 25% fat, 15% carbohydrate) was injected, Qcmaand CO increased within 1 h by 45 and 27%, respectively. The response to a high-protein diet (70% protein, 5% fat, 15% carbohydrate) was quantitatively similar but delayed, with a maximal blood flow response after 2 h. With a high-lipid diet (60% fat, 15% protein, 15% carbohydrate), the peak increase in Qcmaby 22% occurred after 30 min and thereafter declined rapidly. The SDA response (19%) to the balanced diet was temporally matched with the hyperemia. With a high-protein diet, the response is delayed and enlarged (34%) compared with the balanced diet. The high-lipid diet gave no significant SDA response. We conclude that the chemical composition of the food influences the postprandial hyperemia and the SDA, such that the components appear to work in a synergistic fashion. The present results also demonstrate that both redistribution of blood flow and an overall increase in CO contribute to the postprandial increase in gut blood flow in this species.
Collapse
|