1
|
Muller CR, Williams AT, Eaker AM, Walser C, Dos Santos F, Cuddington CT, Wolfe SR, Palmer AF, Cabrales P. Novel high molecular weight polymerized hemoglobin in a non-obese model of cardiovascular and metabolic dysfunction. Biomed Pharmacother 2024; 176:116789. [PMID: 38815289 DOI: 10.1016/j.biopha.2024.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
The widespread adoption of high-calorie, high-fat, high-sucrose diets (HFHSD) has become a global health concern, particularly due to their association with cardiovascular diseases and metabolic disorders. These comorbidities increase susceptibility to severe outcomes from viral infections and trauma, with trauma-related incidents significantly contributing to global mortality rates. This context underscores the critical need for a reliable blood supply. Recent research has focused on high molecular weight (MW) polymerized human hemoglobin (PolyhHb) as a promising alternative to red blood cells (RBCs), showing encouraging outcomes in previous studies. Given the overlap of metabolic disorders and trauma-related health issues, it is crucial to assess the potential toxicity of PolyhHb transfusions, particularly in models that represent these vulnerable populations. This study evaluated the effects of PolyhHb exchange transfusion in guinea pigs that had developed metabolic disorders due to a 12-week HFHSD regimen. The guinea pigs, underwent a 20 % blood volume exchange transfusion with either PolyhHb or the lower molecular weight polymerized bovine hemoglobin, Oxyglobin. Results revealed that both PolyhHb and Oxyglobin transfusions led to liver damage, with a more pronounced effect observed in HFHSD-fed animals. Additionally, markers of cardiac dysfunction indicated signs of cardiac injury in both the HFHSD and normal diet groups following the Oxyglobin transfusion. This study highlights how pre-existing metabolic disorders can exacerbate the potential side effects of hemoglobin-based oxygen carriers (HBOCs). Importantly, the newer generation of high MW PolyhHb showed lower cardiac toxicity compared to the earlier generation low MW PolyhHb, known as Oxyglobin, even in models with pre-existing endothelial and metabolic challenges.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - Allyn M Eaker
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Cynthia Walser
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Fernando Dos Santos
- Department of Anesthesiology & Critical Care, University of California, San Diego, CA, USA
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Savannah R Wolfe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Chen N, Belcher DA, Savla C, Palmer AF, Berthiaume F. Biocompatibility of the oxygen carrier polymerized human hemoglobin towards HepG2/C3A cells. Heliyon 2023; 9:e15878. [PMID: 37215914 PMCID: PMC10192743 DOI: 10.1016/j.heliyon.2023.e15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Hemoglobin (Hb) based oxygen carriers (HBOCs) are designed to minimize the toxicity of extracellular Hb, while preserving its high oxygen-carrying capacity for oxygen delivery to cells. Polymerized human Hb (PolyHb) is a novel type of nanosized HBOC synthesized via glutaraldehyde-mediated crosslinking of free Hb, and which preserves the predominant quaternary state during the crosslinking reaction (low oxygen affinity tense (T) quaternary state PolyHb is synthesized at 0% Hb oxygen saturation, and high oxygen affinity relaxed (R) quaternary state PolyHb is synthesized at 100% Hb oxygen saturation). Major potential applications for PolyHbs, and HBOCs in general, include oxygenation of bioreactor systems containing large liver cell masses, and ex-vivo perfusion preservation of explanted liver grafts. The toxicity of these compounds toward liver cells must be evaluated before testing their use in these complex systems for oxygen delivery. Herein, we characterized the effect of PolyHbs on the hepatoma cell line HepG2/C3A, used as a model hepatocyte and as a cell line used in some investigational bioartificial liver support devices. HepG2/C3A cells were incubated in cell culture media containing PolyHbs or unmodified Hb at concentrations up to 50 mg/mL and for up to 6 days. PolyHbs were well tolerated at a dose of 10 mg/mL, with no significant decrease in cell viability; however, proliferation was inhibited as much as 10-fold after 6 days of exposure at 50 mg/mL. Secretion of albumin, and urea, as well as glucose and ammonia removal were measured in presence of 10 mg/mL of PolyHbs or unmodified Hb. In addition, methoxy- and ethoxy-resorufin deacetylase (MROD and EROD) activities, which reflect cytochrome P450 metabolism, were measured. R-state PolyHb displayed improved or intact activity in 3 out of 7 functions compared to unmodified Hb. T-state PolyHb displayed improved or intact activity in 4 out of 7 functions compared to unmodified Hb. Thus, PolyHbs, both in the R-state and T-state, are safer to use at a concentration of 10 mg/mL as compared to unmodified Hb in static culture liver-related applications.
Collapse
Affiliation(s)
- Nuozhou Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
Greenfield A, Lamb DR, Gu X, Thangaraju K, Setua S, Yahya A, Vahedi A, Khan MA, Wang Q, Buehler PW, Palmer AF. Biophysical Analysis and Preclinical Pharmacokinetics-Pharmacodynamics of Tangential Flow Filtration Fractionated Polymerized Human Hemoglobin as a Red Blood Cell Substitute. Biomacromolecules 2023; 24:1855-1870. [PMID: 36877888 DOI: 10.1021/acs.biomac.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Red blood cell (RBC) substitutes tested in late-phase clinical trials contained low-molecular-weight hemoglobin species (<500 kDa), resulting in vasoconstriction, hypertension, and oxidative tissue injury; therefore, contributing to poor clinical outcomes. This work aims to improve the safety profile of the RBC substitute, polymerized human hemoglobin (PolyhHb), via in vitro and in vivo screening of PolyhHb fractionated into four molecular weight brackets (50-300 kDa [PolyhHb-B1]; 100-500 kDa [PolyhHb-B2]; 500-750 kDa [PolyhHb-B3]; and 750 kDa to 0.2 μm [PolyhHb-B4]) using a two-stage tangential flow filtration purification process. Analysis showed that PolyhHb's oxygen affinity, and haptoglobin binding kinetics decreased with increasing bracket size. A 25% blood-for-PolyhHb exchange transfusion guinea pig model suggests that hypertension and tissue extravasation decreased with increasing bracket size. PolyhHb-B3 demonstrated extended circulatory pharmacokinetics, no renal tissue distribution, no aberrant blood pressure, or cardiac conduction effects, and may therefore be appropriate material for further evaluation.
Collapse
Affiliation(s)
- Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Derek R Lamb
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kiruphagaran Thangaraju
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Saini Setua
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Ahmad Yahya
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Amid Vahedi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Mohd Asim Khan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Qihong Wang
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Paul W Buehler
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Polymerized human hemoglobin facilitated modulation of tumor oxygenation is dependent on tumor oxygenation status and oxygen affinity of the hemoglobin-based oxygen carrier. Sci Rep 2020; 10:11372. [PMID: 32647211 PMCID: PMC7347553 DOI: 10.1038/s41598-020-68190-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Administration of hemoglobin-based oxygen carriers (HBOCs) into the systemic circulation is a potential strategy to relieve solid tumor hypoxia in order to increase the effectiveness of chemotherapeutics. Previous computational analysis indicated that the oxygen (O2) status of the tumor and HBOC O2 affinity may play a role in increased O2 delivery to the tumor. However, no study has experimentally investigated how low- and high-affinity HBOCs would perform in normoxic and hypoxic tumors. In this study, we examined how the HBOC, polymerized human hemoglobin (PolyhHb), in the relaxed (R) or tense (T) quaternary state modulates O2 delivery to hypoxic (FME) and normoxic (LOX) human melanoma xenografts in a murine window chamber model. We examined microcirculatory fluid flow via video shearing optical microscopy, and O2 distributions via phosphorescence quenching microscopy. Additionally, we examined how weekly infusion of a 20% top-load dose of PolyhHb influences growth rate, vascularization, and regional blood flow in the FME and LOX tumor xenografts. Infusion of low-affinity T-state PolyhHb led to increased tissue oxygenation, decreased blood flow, decreased tumor growth, and decreased vascularization in hypoxic tumors. However, infusion of both T-state and R-state PolyhHbs led to worse outcomes in normoxic tumors. Of particular concern was the high-affinity R-state PolyhHb, which led to no improvement in hypoxic tumors and significantly worsened outcomes in normoxic tumors. Taken together, the results of this study indicate that the tumor O2 status is a primary determinant of the potency and outcomes of infused PolyhHb.
Collapse
|
5
|
Williams AT, Lucas A, Muller CR, Bolden-Rush C, Palmer AF, Cabrales P. Balance between oxygen transport and blood rheology during resuscitation from hemorrhagic shock with polymerized bovine hemoglobin. J Appl Physiol (1985) 2020; 129:97-107. [PMID: 32552431 DOI: 10.1152/japplphysiol.00016.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alternatives to blood for use in transfusion medicine have been investigated for decades. An ideal alternative should improve oxygen (O2)-carrying capacity and O2 delivery and support microvascular blood flow. Previous studies have shown that large-molecular diameter hemoglobin (Hb)-based oxygen carriers (HBOCs) based on polymerized bovine Hb (PolybHb) reduce the toxicity and vasoconstriction of first-generation HBOCs by increasing blood and plasma viscosity and preserving microvascular perfusion. The objective of this study was to examine the impact of PolybHb concentration and therefore O2-carrying capacity and solution viscosity on resuscitation from hemorrhagic shock in rats. PolybHb was diafiltered on a 500-kDa tangential flow filtration (TFF) module to remove low-molecular weight (MW) PolybHb molecules from the final product. Rats were hemorrhaged and maintained in hypovolemic shock for 30 min before transfusion of PolybHb at 10 g/dL (PHB10), 5 g/dL (PHB5), or 2.5 g/dL (PHB2.5) concentration, to restore blood pressure to 90% of the animal's baseline blood pressure. Resuscitation restored blood pressure and cardiac function in a PolybHb concentration-dependent manner. Parameters indicative of the heart's metabolic activity indicated that the two higher PolybHb concentrations better restored coronary O2 delivery compared with the low concentration evaluated. Markers of organ damage and inflammation were highest for PHB10, whereas PHB5 and PHB2.5 showed similar expression of these markers. These studies indicate that a concentration of ~5 g/dL of PolybHb may be near the optimal concentration to restore cardiac function, preserve organ function, and mitigate the toxicity of PolybHb during resuscitation from hemorrhagic shock.NEW & NOTEWORTHY Large-molecular diameter polymerized bovine hemoglobin avoided vasoconstriction and impairment of cardiac function during resuscitation from hemorrhagic shock that was seen with previous hemoglobin-based O2 carriers by increasing blood viscosity in a concentration-dependent manner. Supplementation of O2-carrying capacity played a smaller role in maintaining cardiac function than increased blood and plasma viscosity.
Collapse
Affiliation(s)
- Alexander T Williams
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Alfredo Lucas
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Cynthia R Muller
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Crystal Bolden-Rush
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Gu X, Bolden-Rush C, Cuddington CT, Belcher DA, Savla C, Pires IS, Palmer AF. Comprehensive characterization of tense and relaxed quaternary state glutaraldehyde polymerized bovine hemoglobin as a function of cross-link density. Biotechnol Bioeng 2020; 117:2362-2376. [PMID: 32472694 DOI: 10.1002/bit.27382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/08/2022]
Abstract
Previously, our lab developed high molecular weight (MW) tense (T) quaternary state glutaraldehyde polymerized bovine hemoglobins (PolybHbs) that exhibited reduced vasoactivity in several small animal models. In this study, we prepared PolybHb in the T and relaxed (R) quaternary state with ultrahigh MW (>500 kDa) with varying cross-link densities, and investigated the effect of MW on key biophysical properties (i.e., O2 affinity, cooperativity (Hill) coefficient, hydrodynamic diameter, polydispersity, polymer composition, viscosity, gaseous ligand-binding kinetics, auto-oxidation, and haptoglobin [Hp]-binding kinetics). To further optimize current PolybHb synthesis and purification protocols, we performed a comprehensive meta-data analysis to evaluate correlations between procedural parameters (i.e., cross-linker:bovine hemoglobin (bHb) molar ratio, gas-liquid exchange time, temperature during sodium dithionite addition, and number of diafiltration cycles) and the biophysical properties of both T- and R-state PolybHbs. Our results showed that, the duration of the fast-step auto-oxidation phase of R-state PolybHb increased with decreasing glutaraldehyde:bHb molar ratio. Additionally, T-state PolybHbs exhibited significantly higher bimolecular rate constants for binding to Hp and unimolecular O2 offloading rate constants compared to R-state PolybHbs. The methemoglobin (metHb) level in the final product was insensitive to the molar ratio of glutaraldehyde to bHb for all PolybHbs. During tangential flow filtration processing of the final product, 14 diafiltration cycles was found to yield the lowest metHb level.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Crystal Bolden-Rush
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Belcher DA, Cuddington CT, Martindale EL, Pires IS, Palmer AF. Controlled Polymerization and Ultrafiltration Increase the Consistency of Polymerized Hemoglobin for Use as an Oxygen Carrier. Bioconjug Chem 2020; 31:605-621. [PMID: 31868349 DOI: 10.1021/acs.bioconjchem.9b00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymerized human hemoglobins (PolyhHbs) are a promising class of red blood cell substitute for use in transfusion medicine. Unfortunately, the application of the commonly used glutaraldehyde cross-linking chemistry to synthesize these materials results in a complex mixture of PolyhHb molecules with highly varied batch-to-batch consistency. We implemented a controlled method of gas exchange and reagent addition that results in a homogeneous PolyhHb product. A fully coupled tangential flow filtration system was used to purify and concentrate the synthesized PolyhHb molecules. This improved method of PolyhHb production could be used to more precisely control the size and reduce the polydispersity of PolyhHb molecules, with minimal effects on the resulting oxygen-carrying capability. In addition to these factors, we assessed how the hemoglobin scavenging protein haptoglobin (Hp) would interact with PolyhHb molecules of varying sizes and quarternary states. Our results indicated that T-state PolyhHbs may be more efficiently detoxified by Hp compared with R-state PolyhHb and unmodified Hb.
Collapse
Affiliation(s)
- Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Evan L Martindale
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Belcher DA, Ju JA, Baek JH, Yalamanoglu A, Buehler PW, Gilkes DM, Palmer AF. The quaternary state of polymerized human hemoglobin regulates oxygenation of breast cancer solid tumors: A theoretical and experimental study. PLoS One 2018; 13:e0191275. [PMID: 29414985 PMCID: PMC5802857 DOI: 10.1371/journal.pone.0191275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/02/2018] [Indexed: 11/19/2022] Open
Abstract
A major constraint in the treatment of cancer is inadequate oxygenation of the tumor mass, which can reduce chemotherapeutic efficacy. We hypothesize that polymerized human hemoglobin (PolyhHb) can be transfused into the systemic circulation to increase solid tumor oxygenation, and improve chemotherapeutic outcomes. By locking PolyhHb in the relaxed (R) quaternary state, oxygen (O2) offloading at low O2 tensions (<20 mm Hg) may be increased, while O2 offloading at high O2 tensions (>20 mm Hg) is facilitated with tense (T) state PolyhHb. Therefore, R-state PolyhHb may deliver significantly more O2 to hypoxic tissues. Biophysical parameters of T and R-state PolyhHb were used to populate a modified Krogh tissue cylinder model to assess O2 transport in a tumor. In general, we found that increasing the volume of transfused PolyhHb decreased the apparent viscosity of blood in the arteriole. In addition, we found that PolyhHb transfusion decreased the wall shear stress at large arteriole diameters (>20 μm), but increased wall shear stress for small arteriole diameters (<10 μm). Therefore, transfusion of PolyhHb may lead to elevated O2 delivery at low pO2. In addition, transfusion of R-state PolyhHb may be more effective than T-state PolyhHb for O2 delivery at similar transfusion volumes. Reduction in the apparent viscosity resulting from PolyhHb transfusion may result in significant changes in flow distributions throughout the tumor microcirculatory network. The difference in wall shear stress implies that PolyhHb may have a more significant effect in capillary beds through mechano-transduction. Periodic top-load transfusions of PolyhHb into mice bearing breast tumors confirmed the oxygenation potential of both PolyhHbs via reduced hypoxic volume, vascular density, tumor growth, and increased expression of hypoxia inducible genes. Tissue section analysis demonstrated primary PolyhHb clearance occurred in the liver and spleen indicating a minimal risk for renal damage.
Collapse
Affiliation(s)
- Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Julia A. Ju
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Jin Hyen Baek
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Ayla Yalamanoglu
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Paul W. Buehler
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Daniele M. Gilkes
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
9
|
Affiliation(s)
- Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210;
| | - Marcos Intaglietta
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
10
|
Abstract
The development of oxygen (O2)-carrying blood substitutes has evolved from the goal of replicating blood O2 transport properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to "O2 therapeutics" that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin-based O2 carriers (HBOCs) and perfluorocarbon-based O2 carriers (PFCOCs), with emphasis on the physiologic conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2-carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving, and delivering gases with biological activity. It is concluded that the development of current blood substitutes has amplified their applications horizon by devising therapeutic functions for O2 carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2-carrying capacity reestablishment awaits the control of O2 carrier toxicity.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA.
| | | |
Collapse
|
11
|
Oxygen delivery during extreme anemia with ultra-pure earthworm hemoglobin. Life Sci 2012; 91:852-9. [PMID: 22982347 DOI: 10.1016/j.lfs.2012.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/11/2012] [Accepted: 08/28/2012] [Indexed: 11/21/2022]
Abstract
AIM Lumbricus terrestris (earthworm) erythrocruorin (LtEc) is a naturally occurring extracellular hemoglobin (Hb) with high molecular weight (3.6MDa), low autoxidation rate, and limited nitric oxide (NO) dioxygenation activity. These properties make LtEc a potential candidate for use as red blood cell (RBC) substitute, i.e. Hb-based oxygen carrier (HBOC). Previous studies have shown that small amounts of LtEc can be safely transfused into mice, rats, and hamsters without eliciting major side effects. Therefore, this study was designed to understand oxygen (O(2)) transport to tissues and systemic/microvascular hemodynamics induced by LtEc during anemic conditions. MAIN METHODS Hamsters fitted with dorsal window chambers were hemodiluted to 18% hematocrit (Hct) using 6g/dL dextran 70kDa (Dex70). Hemodilution was then continued to 11% Hct using 10g/dL LtEc, 6g/dL Dex70 or 10g/dL human serum albumin (HSA). Blood pressure, heart rate, blood gas parameters, microvascular hemodynamics, microvascular blood flow, functional capillary density (FCD), intravascular pO(2) and perivascular pO(2) were studied. KEY FINDINGS LtEc maintained blood pressure without inducing vasoconstriction while increasing microvascular perfusion and FCD relative to Dex70 and HSA. LtEc increased blood O(2) carrying capacity and maintained systemic and microvascular parameters without decreasing arteriolar diameter or increasing vascular resistance with during extreme anemia. LtEc increased O(2) delivery compared to conventional plasma expanders. SIGNIFICANCE LtEc or synthetic molecules that replicate the characteristics of LtEc could be effective O(2) carriers with potential to be used in transfusion medicine to prevent tissue anoxia resulting from severe anemia.
Collapse
|
12
|
Zhou Y, Cabrales P, Palmer AF. Simulation of NO and O2 transport facilitated by polymerized hemoglobin solutions in an arteriole that takes into account wall shear stress-induced NO production. Biophys Chem 2012; 162:45-60. [PMID: 22285312 DOI: 10.1016/j.bpc.2011.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
A mathematical model was developed to study nitric oxide (NO) and oxygen (O(2)) transport in an arteriole and surrounding tissues exposed to a mixture of red blood cells (RBCs) and hemoglobin (Hb)-based O(2) carriers (HBOCs). A unique feature of this model is the inclusion of blood vessel wall shear stress-induced production of endothelial-derived NO, which is very sensitive to the viscosity of the RBC and HBOC mixture traversing the blood vessel lumen. Therefore in this study, a series of polymerized bovine Hb (PolyHb) solutions with high viscosity, varying O(2) affinities, NO dioxygenation rate constants and O(2) dissociation rate constants that were previously synthesized and characterized by our group was evaluated via mathematical modeling, in order to investigate the effect of these biophysical properties on the transport of NO and O(2) in an arteriole and its surrounding tissues subjected to anemia with the commercial HBOC Oxyglobin® and cell-free bovine Hb (bHb) serving as appropriate controls. The computer simulation results indicated that transfusion of high viscosity PolyHb solutions promoted blood vessel wall shear stress dependent generation of the vasodilator NO, especially in the blood vessel wall and should transport enough NO inside the smooth muscle layer to activate vasodilation compared to the commercial HBOC Oxyglobin® and cell-free bHb. However, NO scavenging in the arteriole lumen was unavoidable due to the intrinsic high NO dioxygenation rate constant of the HBOCs being studied. This study also observed that all PolyHbs could potentially improve tissue oxygenation under hypoxic conditions, while low O(2) affinity PolyHbs were more effective in oxygenating tissues under normoxic conditions compared with high O(2) affinity PolyHbs. In addition, all ultrahigh molecular weight PolyHbs displayed higher O(2) transfer rates than the commercial HBOC Oxyglobin® and cell-free bHb. Therefore, these results suggest that ultrahigh molecular weight PolyHb solutions could be used as safe and efficacious O(2) carriers for use in transfusion medicine. It also suggests that future generations of PolyHb solutions should possess lower NO dioxygenation reaction rate constants in order to reduce NO scavenging, while maintaining high solution viscosity to take advantage of wall shear stress-induced NO production. Taken together, we suggest that this mathematical model can be used to predict the vasoactivity of HBOCs and help guide the design and optimization of the next generation of HBOCs for use in transfusion medicine.
Collapse
Affiliation(s)
- Yipin Zhou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, 43210, USA.
| | | | | |
Collapse
|
13
|
Small-volume resuscitation from hemorrhagic shock using high-molecular-weight tense-state polymerized hemoglobins. ACTA ACUST UNITED AC 2011; 71:798-807. [PMID: 21336190 DOI: 10.1097/ta.0b013e3182028ab0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The objective of this study was to determine the role of plasma oxygen carrying capacity during resuscitation from hemorrhagic shock (HS). METHODS Hemodynamic responses to small-volume resuscitation from HS with hypertonic saline followed by infusion of ultrahigh-molecular-weight tense-state polymerized hemoglobins (PolyHbs) were studied in the hamster window chamber model. HS was induced by withdrawing 50% of the blood volume (BV), and hypovolemic state was maintained for 1 hour. Resuscitation was implemented by infusion of hypertonic saline (3.5% of BV) followed by 10% of BV infusion of polymerized human Hb (PolyHbhum, P50=49 mm Hg), polymerized bovine Hb (PolyHbbov, P50=40 mm Hg), or human serum albumin (HSA), all at 10 g/dL. Resuscitation was monitored over 90 minutes. RESULTS PolyHbhum elicited higher arterial pressure, produced vasoconstriction, and decreased perfusion. In contrast, PolyHbbov and HSA exhibited lower blood pressure and partially restored perfusion and functional capillary density compared with PolyHbhum. Blood gas parameters showed a pronounced recovery after resuscitation with PolyHbbov compared with both PolyHbhum and HSA. Tissue PO2 was significantly improved in the PolyHbbov group, showing that the moderate increase in P50 of PolyHbbov compared with hamster blood (P50=32 mm Hg) was beneficial during resuscitation. However, an excessive increase in oxygen release between the central and peripheral circulation, as induced by PolyHbhum produced vasoconstriction and hypoperfusion, limiting the benefits of additional oxygen carrying capacity. CONCLUSIONS Appropriately engineered PolyHb will enhance/reinstate oxygenation, without hypertension or vasoconstriction, to be used in situations where blood transfusion is not logistically feasible.
Collapse
|
14
|
Zhou Y, Jia Y, Buehler PW, Chen G, Cabrales P, Palmer AF. Synthesis, biophysical properties, and oxygenation potential of variable molecular weight glutaraldehyde-polymerized bovine hemoglobins with low and high oxygen affinity. Biotechnol Prog 2011; 27:1172-84. [PMID: 21584950 DOI: 10.1002/btpr.624] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/02/2011] [Indexed: 12/31/2022]
Abstract
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.
Collapse
Affiliation(s)
- Yipin Zhou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Cantu-Medellin N, Vitturi DA, Rodriguez C, Murphy S, Dorman S, Shiva S, Zhou Y, Jia Y, Palmer AF, Patel RP. Effects of T- and R-state stabilization on deoxyhemoglobin-nitrite reactions and stimulation of nitric oxide signaling. Nitric Oxide 2011; 25:59-69. [PMID: 21277987 DOI: 10.1016/j.niox.2011.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 12/20/2022]
Abstract
Recent data suggest that transitions between the relaxed (R) and tense (T) state of hemoglobin control the reduction of nitrite to nitric oxide (NO) by deoxyhemoglobin. This reaction may play a role in physiologic NO homeostasis and be a novel consideration for the development of the next generation of hemoglobin-based blood oxygen carriers (HBOCs, i.e. artificial blood substitutes). Herein we tested the effects of chemical stabilization of bovine hemoglobin in either the T- (THb) or R-state (RHb) on nitrite-reduction kinetics, NO-gas formation and ability to stimulate NO-dependent signaling. These studies were performed over a range of fractional saturations that is expected to mimic biological conditions. The initial rate for nitrite-reduction decreased in the following order RHb>bHb>THb, consistent with the hypothesis that the rate constant for nitrite reduction is faster with R-state Hb and slower with T-state Hb. Moreover, RHb produced more NO-gas and inhibited mitochondrial respiration more potently than both bHb and THb. Interestingly, at low oxygen fractional saturations, THb produced more NO and stimulated nitrite-dependent vasodilation more potently than bHb despite both derivatives having similar initial rates for nitrite reduction and a more negative reduction potential in THb versus bHb. These data suggest that cross-linking of bovine hemoglobin in the T-state conformation leads to a more effective coupling of nitrite reduction to NO-formation. Our results support the model of allosteric regulation of nitrite reduction by deoxyhemoglobin and show that cross-linking hemoglobins in distinct quaternary states can generate products with increased NO yields from nitrite reduction that could be harnessed to promote NO-signaling in vivo.
Collapse
Affiliation(s)
- Nadiezhda Cantu-Medellin
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang N, Jia Y, Chen G, Cabrales P, Palmer AF. Biophysical properties and oxygenation potential of high-molecular-weight glutaraldehyde-polymerized human hemoglobins maintained in the tense and relaxed quaternary states. Tissue Eng Part A 2011; 17:927-40. [PMID: 20979534 DOI: 10.1089/ten.tea.2010.0353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent clinical evaluation of commercial glutaraldehyde-polymerized hemoglobins (PolyHbs) as transfusion solutions has demonstrated several adverse side effects. Chief among these is the hypertensive effect. Fortunately, previous studies have shown that the hypertensive effect can be attenuated by removing free hemoglobin (Hb) and low-molecular-weight (low-MW) PolyHbs from the PolyHb mixture. In this work, polymerized human Hb (PolyhHb) solutions were synthesized in two distinct quaternary states with high MW and subjected to extensive diafiltration to remove free Hb and low-MW PolyhHb components (<500 kDa). The resultant PolyhHb solutions possessed high MW, distinct quaternary state, distinct reactivities with O(2) and CO, similar NO deoxygenating rate constants, distinct autoxidation rate constants, high viscosity, and low colloid osmotic pressure. To preliminarily assess the ability of PolyhHb solutions to oxygenate surrounding tissues fed by a blood vessel, we evaluated the ability of PolyhHbs to transport O(2) to cultured hepatocytes in a mathematical model of a hollow fiber bioreactor. The structure of individual hollow fibers in the bioreactor is similar to that of a blood vessel and provides an easy way to assess the oxygenation potential of PolyhHbs without the need for expensive and time-consuming animal studies. It was observed that PolyhHbs with low O(2) affinities were more effective in oxygenating cultured hepatocytes inside the bioreactor than high O(2) affinity PolyhHbs. Taken together, our results show that it is possible to synthesize high-MW PolyhHbs with no free Hb and low-MW PolyhHb components that are capable of transporting O(2) to cultured cells/tissues.
Collapse
Affiliation(s)
- Ning Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|