1
|
Numaga-Tomita T, Shimauchi T, Kato Y, Nishiyama K, Nishimura A, Sakata K, Inada H, Kita S, Iwamoto T, Nabekura J, Birnbaumer L, Mori Y, Nishida M. Inhibition of transient receptor potential cation channel 6 promotes capillary arterialization during post-ischaemic blood flow recovery. Br J Pharmacol 2023; 180:94-110. [PMID: 36068079 PMCID: PMC10092707 DOI: 10.1111/bph.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Capillary arterialization, characterized by the coverage of pre-existing or nascent capillary vessels with vascular smooth muscle cells (VSMCs), is critical for the development of collateral arterioles to improve post-ischaemic blood flow. We previously demonstrated that the inhibition of transient receptor potential 6 subfamily C, member 6 (TRPC6) channels facilitate contractile differentiation of VSMCs under ischaemic stress. We here investigated whether TRPC6 inhibition promotes post-ischaemic blood flow recovery through capillary arterialization in vivo. EXPERIMENTAL APPROACH Mice were subjected to hindlimb ischaemia by ligating left femoral artery. The recovery rate of peripheral blood flow was calculated by the ratio of ischaemic left leg to non-ischaemic right one. The number and diameter of blood vessels were analysed by immunohistochemistry. Expression and phosphorylation levels of TRPC6 proteins were determined by western blotting and immunohistochemistry. KEY RESULTS Although the post-ischaemic blood flow recovery is reportedly dependent on endothelium-dependent relaxing factors, systemic TRPC6 deletion significantly promoted blood flow recovery under the condition that nitric oxide or prostacyclin production were inhibited, accompanying capillary arterialization. Cilostazol, a clinically approved drug for peripheral arterial disease, facilitates blood flow recovery by inactivating TRPC6 via phosphorylation at Thr69 in VSMCs. Furthermore, inhibition of TRPC6 channel activity by pyrazole-2 (Pyr2; BTP2; YM-58483) promoted post-ischaemic blood flow recovery in Apolipoprotein E-knockout mice. CONCLUSION AND IMPLICATIONS Suppression of TRPC6 channel activity in VSMCs could be a new strategy for the improvement of post-ischaemic peripheral blood circulation.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Shinshu University School of Medicine, Nagano, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan
| | - Kosuke Sakata
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inada
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Satomi Kita
- Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | | | - Junichi Nabekura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Lutz Birnbaumer
- NIEHS, NIH, Research Triangle Park, North Carolina, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019; 9:1213-1247. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.
Collapse
Affiliation(s)
| | - Xinggui Shen
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - John Glawe
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Gopi K Kolluru
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Christopher G Kevil
- Departments of Pathology, LSU Health Sciences Center, Shreveport.,Departments of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport.,Departments of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport
| |
Collapse
|
3
|
Chen M, Fan H, Ledford BT, Farah Z, Barron C, Liu Z, He JQ. Impacts of femoral artery and vein excision versus femoral artery excision on the hindlimb ischemic model in CD-1 mice. Microvasc Res 2017; 110:48-55. [DOI: 10.1016/j.mvr.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/10/2023]
|
4
|
Yuan S, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling. Microcirculation 2016; 23:134-45. [PMID: 26381654 DOI: 10.1111/micc.12248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
Blockage or restriction of blood flow through conduit arteries results in tissue ischemia downstream of the disturbed area. Local tissues can adapt to this challenge by stimulating vascular remodeling through angiogenesis and arteriogenesis thereby restoring blood perfusion and removal of wastes. Multiple molecular mechanisms of vascular remodeling during ischemia have been identified and extensively studied. However, therapeutic benefits from these findings and insights are limited due to the complexity of various signaling networks and a lack of understanding central metabolic regulators governing these responses. The gasotransmitters NO and H2 S have emerged as master regulators that influence multiple molecular targets necessary for ischemic vascular remodeling. In this review, we discuss how NO and H2 S are individually regulated under ischemia, what their roles are in angiogenesis and arteriogenesis, and how their interaction controls ischemic vascular remodeling.
Collapse
Affiliation(s)
- Shuai Yuan
- Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
5
|
Ranjbar K, Rahmani-Nia F, Shahabpour E. Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction. J Physiol Biochem 2016; 72:393-404. [PMID: 27121159 DOI: 10.1007/s13105-016-0480-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 03/09/2016] [Indexed: 12/18/2022]
Abstract
Arteriogenesis is a main defense mechanism to prevent heart and local tissues dysfunction in occlusive artery disease. TGF-β and angiostatin have a pivotal role in arteriogenesis. We tested the hypothesis that aerobic training and l-arginine supplementation promotes cardiac and skeletal muscles arteriogenesis after myocardial infarction (MI) parallel to upregulation of TGF-β and downregulation of angiostatin. For this purpose, 4 weeks after LAD occlusion, 50 male Wistar rats were randomly distributed into five groups: (1) sham surgery without MI (sham, n = 10), (2) control-MI (Con-MI, n = 10), (3) l-arginine-MI (La-MI, n = 10), (4) exercise training-MI (Ex-MI, n = 10), and (5) exercise and l-arginine-MI (Ex + La-MI). Exercise training groups running on a treadmill for 10 weeks with moderate intensity. Rats in the l-arginine-treated groups drank water containing 4 % l-arginine. Arteriolar density with different diameters (11-25, 26-50, 51-75, and 76-150 μm), TGF-β, and angiostatin gene expression were measured in cardiac (area at risk) and skeletal (soleus and gastrocnemius) muscles. Smaller arterioles decreased in cardiac after MI. Aerobic training and l-arginine increased the number of cardiac arterioles with 11-25 and 26-50 μm diameters parallel to TGF-β overexpression. In gastrocnemius muscle, the number of arterioles/mm(2) was only increased in the 11 to 25 μm in response to training with and without l-arginine parallel to angiostatin downregulation. Soleus arteriolar density with different size was not different between experimental groups. Results showed that 10 weeks aerobic exercise training and l-arginine supplementation promotes arteriogenesis of heart and gastrocnemius muscles parallel to overexpression of TGF-β and downregulation of angiostatin in MI rats.
Collapse
Affiliation(s)
- Kamal Ranjbar
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Farhad Rahmani-Nia
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.
| | - Elham Shahabpour
- Exercise Physiology Department, Faculty of Physical Education and Sport Science, Shiraz University, Fars, Iran
| |
Collapse
|
6
|
Kolluru GK, Prasai PK, Kaskas AM, Letchuman V, Pattillo CB. Oxygen tension, H2S, and NO bioavailability: is there an interaction? J Appl Physiol (1985) 2016; 120:263-70. [DOI: 10.1152/japplphysiol.00365.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/13/2015] [Indexed: 12/21/2022] Open
Abstract
Molecular oxygen (O2) is an essential component for survival and development. Variation in O2 levels leads to changes in molecular signaling and ultimately affects the physiological functions of many organisms. Nitric oxide (NO) and hydrogen sulfide (H2S) are two gaseous cellular signaling molecules that play key roles in several physiological functions involved in maintaining vascular homeostasis including vasodilation, anti-inflammation, and vascular growth. Apart from the aforementioned functions, NO and H2S are believed to mediate hypoxic responses and serve as O2 chemosensors in biological systems. In this literature review, we briefly discuss NO and H2S and their roles during hypoxia.
Collapse
Affiliation(s)
- Gopi K. Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Priya K. Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Amir M. Kaskas
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Vijay Letchuman
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Christopher B. Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
7
|
Kolluru GK, Bir SC, Yuan S, Shen X, Pardue S, Wang R, Kevil CG. Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovasc Res 2015; 107:590-600. [PMID: 26194202 DOI: 10.1093/cvr/cvv198] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/02/2015] [Indexed: 12/29/2022] Open
Abstract
AIMS Hydrogen sulfide (H2S) is a vasoactive gasotransmitter that is endogenously produced in the vasculature by the enzyme cystathionine γ-lyase (CSE). However, the importance of CSE activity and local H2S generation for ischaemic vascular remodelling remains completely unknown. In this study, we examine the hypothesis that CSE critically regulates ischaemic vascular remodelling involving H2S-dependent mononuclear cell regulation of arteriogenesis. METHODS AND RESULTS Arteriogenesis including mature vessel density, collateral formation, blood flow, and SPY angiographic blush rate were determined in wild-type (WT) and CSE knockout (KO) mice at different time points following femoral artery ligation (FAL). The role of endogenous H2S in regulation of IL-16 expression and subsequent recruitment of monocytes, and expression of VEGF and bFGF in ischaemic tissues, were determined along with endothelial progenitor cell (CD34/Flk1) formation and function. FAL of WT mice significantly increased CSE activity, expression and endogenous H2S generation in ischaemic tissues, and monocyte infiltration, which was absent in CSE-deficient mice. Treatment of CSE KO mice with the polysulfide donor diallyl trisulfide restored ischaemic vascular remodelling, monocyte infiltration, and cytokine expression. Importantly, exogenous H2S therapy restored nitric oxide (NO) bioavailability in CSE KO mice that was responsible for monocyte recruitment and arteriogenesis. CONCLUSION Endogenous CSE/H2S regulates ischaemic vascular remodelling mediated during hind limb ischaemia through NO-dependent monocyte recruitment and cytokine induction revealing a previously unknown mechanism of arteriogenesis.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, LSU Health Sciences Center Shreveport Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | - Shyamal C Bir
- Department of Pathology, LSU Health Sciences Center Shreveport
| | - Shuai Yuan
- Department of Pathology, LSU Health Sciences Center Shreveport Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center Shreveport
| | - Sibile Pardue
- Department of Pathology, LSU Health Sciences Center Shreveport
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center Shreveport Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA
| |
Collapse
|
8
|
Hollander MR, Horrevoets AJG, van Royen N. Cellular and pharmacological targets to induce coronary arteriogenesis. Curr Cardiol Rev 2015; 10:29-37. [PMID: 23638831 PMCID: PMC3968592 DOI: 10.2174/1573403x113099990003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022] Open
Abstract
The formation of collateral vessels (arteriogenesis) to sustain perfusion in ischemic tissue is native to the body and can compensate for coronary stenosis. However, arteriogenesis is a complex process and is dependent on many different factors. Although animal studies on collateral formation and stimulation show promising data, clinical trials have failed to replicate these results. Further research to the exact mechanisms is needed in order to develop a pharmalogical stimulant. This review gives an overview of recent data in the field of arteriogenesis.
Collapse
Affiliation(s)
| | | | - Niels van Royen
- VU University Medical Center, Department of Cardiology, Room 4D-36, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Yildirim V, Doganci S, Yesildal F, Kaya E, Ince ME, Ozkan G, Gumusel B, Avcu F, Ozgurtas T. Sodium nitrite provides angiogenic and proliferative effects in vivo and in vitro. Med Sci Monit Basic Res 2015; 21:41-6. [PMID: 25824632 PMCID: PMC4391376 DOI: 10.12659/msmbr.893727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Many factors and substances may stimulate angiogenesis and exhibit proliferative effect. In this study, we aimed to investigate the angiogenic and proliferative effects of sodium nitrite. MATERIAL AND METHODS The angiogenic activity of sodium nitrite was examined in vivo in the chick chorioallantoic membrane (CAM) model and in vitro in tube formation assay of human umbilical vein endothelial cells (HUVECs). The proliferative activity of sodium nitrite was also determined through MTT assay on HUVECs. RESULTS In CAM assay, sodium nitrite had an angiogenic effect especially at high concentrations compared with the control group and this was statistically significant. There was a proliferative effect on HUVECs in the presence of sodium nitrite for 24 and 48 h, and this was statistically significant (p<0.05). Comparing the tube length/area ratio values, there was statistically significant increase in the sodium nitrite group compared to the control group (p<0.05). CONCLUSIONS The results provide evidence that sodium nitrite induces angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Vedat Yildirim
- Department of Anesthesiology, Gulhane Military Academy of Medicine, Ankara, Turkey
| | - Suat Doganci
- Department of Cardiovascular Surgery, Gulhane Military Academy of Medicine, Ankara, Turkey
| | - Fatih Yesildal
- Department of Biochemistry, Gulhane Military Academy of Medicine, Ankara, Turkey
| | - Erkan Kaya
- Department of Cardiovascular Surgery, Gulhane Military Academy of Medicine, Ankara, Turkey
| | - Mehmet Emin Ince
- Department of Anesthesiology, Gulhane Military Academy of Medicine, Ankara, Turkey
| | - Gokhan Ozkan
- Department of Anesthesiology, Gulhane Military Academy of Medicine, Ankara, Turkey
| | - Bulent Gumusel
- Department of Pharmacology, Hacettepe University, Faculty of Pharmacy, Ankara, Turkey
| | - Ferit Avcu
- Department of Cardiovascular Surgery, Gulhane Military Academy of Medicine, Ankara, Turkey
| | - Taner Ozgurtas
- Department of Biochemistry, Gulhane Military Academy of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Omar SA, Webb AJ. Nitrite reduction and cardiovascular protection. J Mol Cell Cardiol 2014; 73:57-69. [PMID: 24486197 DOI: 10.1016/j.yjmcc.2014.01.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Inorganic nitrite, a metabolite of endogenously produced nitric oxide (NO) from NO synthases (NOS), provides the largest endocrine source of directly bioavailable NO. The conversion of nitrite to NO occurs mainly through enzymatic reduction, mediated by a range of proteins, including haem-globins, molybdo-flavoproteins, mitochondrial proteins, cytochrome P450 enzymes, and NOS. Such nitrite reduction is particularly favoured under hypoxia, when endogenous formation of NO from NOS is impaired. Under normoxic conditions, the majority of these nitrite reductases also scavenge NO, or diminish its bioavailability via reactive oxygen species (ROS) production, suggesting an intricate balance. Moreover, nitrite, whether produced endogenously, or derived from exogenous nitrite or nitrate administration (including dietary sources via the Nitrate-Nitrite-NO pathway) beneficially modulates many key cardiovascular pathological processes. In this review, we highlight the landmark studies which revealed nitrite's function in biological systems, and inspect its evolving role in cardiovascular protection. Whilst these effects have mainly been ascribed to the activity of one or more nitrite reductases, we also discuss newly-identified mechanisms, including nitrite anhydration, the involvement of s-nitrosothiols, nitro-fatty acids, and direct nitrite normoxic signalling, involving modification of mitochondrial structure and function, and ROS production. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
Affiliation(s)
- Sami A Omar
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, 4th Floor North Wing, St. Thomas' Hospital, London SE1 7EH, UK; Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK.
| | - Andrew James Webb
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, 4th Floor North Wing, St. Thomas' Hospital, London SE1 7EH, UK; Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
11
|
Mohler ER, Hiatt WR, Gornik HL, Kevil CG, Quyyumi A, Haynes WG, Annex BH. Sodium nitrite in patients with peripheral artery disease and diabetes mellitus: safety, walking distance and endothelial function. Vasc Med 2013; 19:9-17. [PMID: 24363302 DOI: 10.1177/1358863x13515043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitrite stores decrease after exercise in patients with peripheral artery disease (PAD) and diabetes represents decreased nitric oxide (NO) bioavailability that may contribute to endothelial dysfunction and limit exercise duration. The primary objective of this placebo-controlled study was the safety and tolerability of multiple doses of oral sodium nitrite in patients with PAD, predominantly with diabetes, over a period of 10 weeks. The primary efficacy endpoint was endothelial flow-mediated dilatation (FMD) and secondary efficacy endpoints included a 6-minute walk test and quality of life assessment. Of the 55 subjects, the most common side effects attributed to sodium nitrite were a composite of headache and dizziness occurring in 21% with the 40 mg dose and 44% with the 80 mg dose. There was no clinically significant elevation of methemoglobin. FMD non-significantly worsened in the placebo and 40 mg groups, but was stable in the 80 mg group. Diabetic patients receiving 80 mg had significantly higher FMD compared with the placebo and 40 mg groups. There was no significant change in 6-minute walk test or quality of life parameters over time compared to placebo. In conclusion, sodium nitrite therapy is well tolerated in patients with PAD. The possible clinical benefit of sodium nitrite should be studied in a larger and fully powered trial.
Collapse
Affiliation(s)
- Emile R Mohler
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Cardiovascular Division, Section of Vascular Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Fessner A, Esser JS, Bluhm F, Grundmann S, Zhou Q, Patterson C, Bode C, Moser M. The transcription factor HoxB5 stimulates vascular remodelling in a cytokine-dependent manner. Cardiovasc Res 2013; 101:247-55. [DOI: 10.1093/cvr/cvt244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Bir SC, Shen X, Kavanagh TJ, Kevil CG, Pattillo CB. Control of angiogenesis dictated by picomolar superoxide levels. Free Radic Biol Med 2013; 63:135-42. [PMID: 23685287 PMCID: PMC3732119 DOI: 10.1016/j.freeradbiomed.2013.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
Control of vascular insufficiencies due to various cardiovascular pathologies is important for developing specific and effective treatments. Fluctuations in oxidative stress significantly alter the progression of angiogenesis under physiological and pathological conditions. However, the precise amount of reactive oxygen species (ROS) required to influence subsequent signaling pathways for ischemic angiogenesis remains undefined. Here, we have determined the effect of ROS-mediated molecular mechanisms on angiogenesis in a murine model of peripheral artery disease using Gclm mutant mice (a model of compromised glutathione synthesis and therefore reduced antioxidant capacity). Left femoral artery ligation and excision were performed in Gclm WT (+/+), heterozygous (+/-), and null (-/-) mice. Blood flow (laser Doppler), angiogenic index (CD31/DAPI), and proliferation index (Ki67/DAPI) were significantly increased in Gclm(+/-) mice but not in Gclm(+/+) or Gclm(-/-) mice. Measurements of reactive oxygen species suggest that the amount of superoxide required to stimulate angiogenesis after the induction of ischemia is 9.82 pmol/mg of tissue. Protein carbonyl levels increased in a manner consistent with increasing oxidative stress. Superoxide and protein carbonyl levels were reduced by the addition of the nitroxide tempol, a known superoxide dismutase mimetic. Finally, restoration of blood flow in Gclm(+/-) mice was attenuated by a VEGF164 aptamer, verifying that slightly elevated levels of ROS restore blood flow by stimulating endothelial cell proliferation through a VEGF-dependent pathway. The results of this study reveal new information on the amount of ROS necessary for angiogenic activity and provide the foundation of critical redox parameters for vascular remodeling responses. The information obtained from this study on vascular ischemia, using a model of decreased antioxidant capacity, has provided insight into the control of revascularization and is a step forward in our ability to regulate angiogenic therapies.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, LA 71104
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, LA 71104
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195
| | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, LA 71104
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport, Shreveport, LA 71104
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport, Shreveport, LA 71104
- Correspondence to: Christopher B. Pattillo, Ph.D., Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, , Phone: (318) 675-6974, Fax: (318) 675-6005
| |
Collapse
|
14
|
Oldfield EH, Loomba JJ, Monteith SJ, Crowley RW, Medel R, Gress DR, Kassell NF, Dumont AS, Sherman C. Safety and pharmacokinetics of sodium nitrite in patients with subarachnoid hemorrhage: a Phase IIA study. J Neurosurg 2013; 119:634-41. [DOI: 10.3171/2013.3.jns13266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Intravenous sodium nitrite has been shown to prevent and reverse cerebral vasospasm in a primate model of subarachnoid hemorrhage (SAH). The present Phase IIA dose-escalation study of sodium nitrite was conducted to determine the compound's safety in humans with aneurysmal SAH and to establish its pharmacokinetics during a 14-day infusion.
Methods
In 18 patients (3 cohorts of 6 patients each) with SAH from a ruptured cerebral aneurysm, nitrite (3 patients) or saline (3 patients) was infused. Sodium nitrite and saline were delivered intravenously for 14 days, and a dose-escalation scheme was used for the nitrite, with a maximum dose of 64 nmol/kg/min. Sodium nitrite blood levels were frequently sampled and measured using mass spectroscopy, and blood methemoglobin levels were continuously monitored using a pulse oximeter.
Results
In the 14-day infusions in critically ill patients with SAH, there was no toxicity or systemic hypotension, and blood methemoglobin levels remained at 3.3% or less in all patients. Nitrite levels increased rapidly during intravenous infusion and reached steady-state levels by 12 hours after the start of infusion on Day 1. The nitrite plasma half-life was less than 1 hour across all dose levels evaluated after stopping nitrite infusions on Day 14.
Conclusions
Previous preclinical investigations of sodium nitrite for the prevention and reversal of vasospasm in a primate model of SAH were effective using doses similar to the highest dose examined in the current study (64 nmol/kg/min). Results of the current study suggest that safe and potentially therapeutic levels of nitrite can be achieved and sustained in critically ill patients after SAH from a ruptured cerebral aneurysm. Clinical trial registration no.: NCT00873015 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | | | | | | | | | - Daryl R. Gress
- 2Neurology, University of Virginia, Charlottesville, Virginia; and
| | | | | | | |
Collapse
|
15
|
Madigan M, Zuckerbraun B. Therapeutic Potential of the Nitrite-Generated NO Pathway in Vascular Dysfunction. Front Immunol 2013; 4:174. [PMID: 23847616 PMCID: PMC3698458 DOI: 10.3389/fimmu.2013.00174] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) generated through L-arginine metabolism by endothelial nitric oxide synthase (eNOS) is an important regulator of the vessel wall. Dysregulation of this system has been implicated in various pathological vascular conditions, including atherosclerosis, angiogenesis, arteriogenesis, neointimal hyperplasia, and pulmonary hypertension. The pathophysiology involves a decreased bioavailability of NO within the vessel wall by competitive utilization of L-arginine by arginase and “eNOS uncoupling.” Generation of NO through reduction of nitrate and nitrite represents an alternative pathway that may be utilized to increase the bioavailability of NO within the vessel wall. We review the therapeutic potential of the nitrate/nitrite/NO pathway in vascular dysfunction.
Collapse
|
16
|
Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG. Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1α and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 2012; 1:e004093. [PMID: 23316304 PMCID: PMC3541625 DOI: 10.1161/jaha.112.004093] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/14/2012] [Indexed: 12/03/2022]
Abstract
Background Hydrogen sulfide (H2S) therapy is recognized as a modulator of vascular function during tissue ischemia with the notion of potential interactions of nitric oxide (NO) metabolism. However, little is known about specific biochemical mechanisms or the importance of H2S activation of NO metabolism during ischemic tissue vascular remodeling. The goal of this study was to determine the effect of H2S on NO metabolism during chronic tissue ischemia and subsequent effects on ischemic vascular remodeling responses. Methods and Results The unilateral, permanent femoral artery ligation model of hind‐limb ischemia was performed in C57BL/6J wild‐type and endothelial NO synthase–knockout mice to evaluate exogenous H2S effects on NO bioavailability and ischemic revascularization. We found that H2S selectively restored chronic ischemic tissue function and viability by enhancing NO production involving both endothelial NO synthase and nitrite reduction mechanisms. Importantly, H2S increased ischemic tissue xanthine oxidase activity, hind‐limb blood flow, and angiogenesis, which were blunted by the xanthine oxidase inhibitor febuxostat. H2S treatment increased ischemic tissue and endothelial cell hypoxia‐inducible factor‐1α expression and activity and vascular endothelial growth factor protein expression and function in a NO‐dependent manner that was required for ischemic vascular remodeling. Conclusions These data demonstrate that H2S differentially regulates NO metabolism during chronic tissue ischemia, highlighting novel biochemical pathways to increase NO bioavailability for ischemic vascular remodeling.
Collapse
Affiliation(s)
- Shyamal C Bir
- Departments of Pathology and Medicine, LSU Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
|