1
|
Dwyer KD, Snyder CA, Coulombe KLK. Cardiomyocytes in Hypoxia: Cellular Responses and Implications for Cell-Based Cardiac Regenerative Therapies. Bioengineering (Basel) 2025; 12:154. [PMID: 40001674 PMCID: PMC11851968 DOI: 10.3390/bioengineering12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Myocardial infarction (MI) is a severe hypoxic event, resulting in the loss of up to one billion cardiomyocytes (CMs). Due to the limited intrinsic regenerative capacity of the heart, cell-based regenerative therapies, which feature the implantation of stem cell-derived cardiomyocytes (SC-CMs) into the infarcted myocardium, are being developed with the goal of restoring lost muscle mass, re-engineering cardiac contractility, and preventing the progression of MI into heart failure (HF). However, such cell-based therapies are challenged by their susceptibility to oxidative stress in the ischemic environment of the infarcted heart. To maximize the therapeutic benefits of cell-based approaches, a better understanding of the heart environment at the cellular, tissue, and organ level throughout MI is imperative. This review provides a comprehensive summary of the cardiac pathophysiology occurring during and after MI, as well as how these changes define the cardiac environment to which cell-based cardiac regenerative therapies are delivered. This understanding is then leveraged to frame how cell culture treatments may be employed to enhance SC-CMs' hypoxia resistance. In this way, we synthesize both the complex experience of SC-CMs upon implantation and the engineering techniques that can be utilized to develop robust SC-CMs for the clinical translation of cell-based cardiac therapies.
Collapse
Affiliation(s)
| | | | - Kareen L. K. Coulombe
- Institute for Biology, Engineering, and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA; (K.D.D.); (C.A.S.)
| |
Collapse
|
2
|
Snyder CA, Dwyer KD, Coulombe KLK. Advancing Human iPSC-Derived Cardiomyocyte Hypoxia Resistance for Cardiac Regenerative Therapies through a Systematic Assessment of In Vitro Conditioning. Int J Mol Sci 2024; 25:9627. [PMID: 39273573 PMCID: PMC11395605 DOI: 10.3390/ijms25179627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Acute myocardial infarction (MI) is a sudden, severe cardiac ischemic event that results in the death of up to one billion cardiomyocytes (CMs) and subsequent decrease in cardiac function. Engineered cardiac tissues (ECTs) are a promising approach to deliver the necessary mass of CMs to remuscularize the heart. However, the hypoxic environment of the heart post-MI presents a critical challenge for CM engraftment. Here, we present a high-throughput, systematic study targeting several physiological features of human induced pluripotent stem cell-derived CMs (hiPSC-CMs), including metabolism, Wnt signaling, substrate, heat shock, apoptosis, and mitochondrial stabilization, to assess their efficacy in promoting ischemia resistance in hiPSC-CMs. The results of 2D experiments identify hypoxia preconditioning (HPC) and metabolic conditioning as having a significant influence on hiPSC-CM function in normoxia and hypoxia. Within 3D engineered cardiac tissues (ECTs), metabolic conditioning with maturation media (MM), featuring high fatty acid and calcium concentration, results in a 1.5-fold increase in active stress generation as compared to RPMI/B27 control ECTs in normoxic conditions. Yet, this functional improvement is lost after hypoxia treatment. Interestingly, HPC can partially rescue the function of MM-treated ECTs after hypoxia. Our systematic and iterative approach provides a strong foundation for assessing and leveraging in vitro culture conditions to enhance the hypoxia resistance, and thus the successful clinical translation, of hiPSC-CMs in cardiac regenerative therapies.
Collapse
Affiliation(s)
- Caroline A Snyder
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kiera D Dwyer
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kareen L K Coulombe
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Dugbartey GJ. Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation. Mol Biol Rep 2024; 51:473. [PMID: 38553658 PMCID: PMC10980643 DOI: 10.1007/s11033-024-09261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 04/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a critical pathological condition in which cell death plays a major contributory role, and negatively impacts post-transplant outcomes. At the cellular level, hypoxia due to ischemia disturbs cellular metabolism and decreases cellular bioenergetics through dysfunction of mitochondrial electron transport chain, causing a switch from cellular respiration to anaerobic metabolism, and subsequent cascades of events that lead to increased intracellular concentrations of Na+, H+ and Ca2+ and consequently cellular edema. Restoration of blood supply after ischemia provides oxygen to the ischemic tissue in excess of its requirement, resulting in over-production of reactive oxygen species (ROS), which overwhelms the cells' antioxidant defence system, and thereby causing oxidative damage in addition to activating pro-inflammatory pathways to cause cell death. Moderate ischemia and reperfusion may result in cell dysfunction, which may not lead to cell death due to activation of recovery systems to control ROS production and to ensure cell survival. However, prolonged and severe ischemia and reperfusion induce cell death by apoptosis, mitoptosis, necrosis, necroptosis, autophagy, mitophagy, mitochondrial permeability transition (MPT)-driven necrosis, ferroptosis, pyroptosis, cuproptosis and parthanoptosis. This review discusses cellular and molecular mechanisms of these various forms of cell death in the context of organ transplantation, and their inhibition, which holds clinical promise in the quest to prevent IRI and improve allograft quality and function for a long-term success of organ transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
- Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana.
| |
Collapse
|
4
|
Yan X, Li M, Lan P, Xun M, Zhang Y, Shi J, Wang R, Zheng J. Regulation of Na+-K+-ATPase leads to disturbances of isoproterenol-induced cardiac dysfunction via interference of Ca2+-dependent cardiac metabolism. Clin Sci (Lond) 2024; 138:23-42. [PMID: 38060817 DOI: 10.1042/cs20231039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Reductions in Na+-K+-ATPase (NKA) activity and expression are often observed in the progress of various reason-induced heart failure (HF). However, NKA α1 mutation or knockdown cannot cause spontaneous heart disease. Whether the abnormal NKA α1 directly contributes to HF pathogenesis remains unknown. Here, we challenge NKA α1+/- mice with isoproterenol to evaluate the role of NKA α1 haploinsufficiency in isoproterenol (ISO)-induced cardiac dysfunction. Genetic knockdown of NKA α1 accelerated ISO-induced cardiac cell hypertrophy, heart fibrosis, and dysfunction. Further studies revealed decreased Krebs cycle, fatty acid oxidation, and mitochondrial OXPHOS in the hearts of NKA α1+/- mice challenged with ISO. In ISO-treated conditions, inhibition of NKA elevated cytosolic Na+, further reduced mitochondrial Ca2+ via mNCE, and then finally down-regulated cardiac cell energy metabolism. In addition, a supplement of DRm217 alleviated ISO-induced heart dysfunction, mitigated cardiac remodeling, and improved cytosolic Na+ and Ca2+ elevation and mitochondrial Ca2+ depression in the NKA α1+/- mouse model. The findings suggest that targeting NKA and mitochondria Ca2+ could be a promising strategy in the treatment of heart disease.
Collapse
Affiliation(s)
- Xiaofei Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Meihe Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
- Hospital of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
- Hospital of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Xun
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
- Hospital of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinghui Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
- Department of Clinical laboratory in Xi'an Fourth Hospital, Xi'an 710004, China
| | - Ruijia Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
5
|
Zheng J, Lan P, Meng X, Kang MC, Huang X, Yan X. Na +/K +-ATPase DR region antibody ameliorated cardiac hypertrophy and fibrosis in rats with 5/6 nephrectomy. Exp Biol Med (Maywood) 2022; 247:1785-1794. [PMID: 35833534 PMCID: PMC9638958 DOI: 10.1177/15353702221108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The enzyme Na+/K+-ATPase (NKA) is important in the heart. Reductions in NKA activity and expression have often been observed in chronic kidney disease (CKD)-related heart injury. Previously, our group found that an antibody targeting the NKA1α1 subunit's DR extracellular region (897DVEDSYGQQWTYEQR911) stimulated NKA activities and produced cardioprotective effects against ischemic injury and isoproterenol-induced cardiac remodeling. In here, we assessed whether DRm217, a specific DR antibody, exhibits cardioprotective effects in chronic renal failure models. In 5/6 nephrectomy (5/6 Nx) surgery to mimic CKD in Sprague Dawley rat, we observed that NKA activity and expression were depressed in the hearts of 5/6 Nx rats. DRm217, an NKA DR region antibody, alleviated heart hypertrophy and cardiac fibrosis under 5/6 Nx conditions. Further studies revealed that DRm217 inhibited Src activation and reduced reactive oxygen species (ROS) levels in hearts under 5/6 Nx conditions. Our findings imply that NKA could be a treatment target in CKD-related cardiac diseases. Prevention of CKD-induced myocardial injury by DRm217 provides an appealing therapeutic alternative.
Collapse
Affiliation(s)
- Jin Zheng
- Hospital of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi, China
| | - Ping Lan
- Hospital of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi, China
| | - Xun Meng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi, China
| | - Min-Chao Kang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi, China
| | - Xin Huang
- Department of Cardiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Xiaofei Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi, China,Xiaofei Yan.
| |
Collapse
|
6
|
PGC-1α4 Interacts with REST to Upregulate Neuronal Genes and Augment Energy Consumption in Developing Cardiomyocytes. Cells 2022; 11:cells11192944. [PMID: 36230906 PMCID: PMC9564192 DOI: 10.3390/cells11192944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023] Open
Abstract
Transcriptional coactivator PGC-1α is a main regulator of cardiac energy metabolism. In addition to canonical PGC-1α1, other PGC-1α isoforms have been found to exert specific biological functions in a variety of tissues. We investigated the expression patterns and the biological effects of the non-canonical isoforms in the heart. We used RNA sequencing data to identify the expression patterns of PGC-1α isoforms in the heart. To evaluate the biological effects of the alternative isoform expression, we generated a transgenic mouse with cardiac-specific overexpression of PGC-1α4 and analysed the cardiac phenotype with a wide spectrum of physiological and biophysical tools. Our results show that non-canonical isoforms are expressed in the heart, and that the main variant PGC-1α4 is induced by β-adrenergic signalling in adult cardiomyocytes. Cardiomyocyte specific PGC-1α4 overexpression in mice relieves the RE1-Silencing Transcription factor (REST)-mediated suppression of neuronal genes during foetal heart development. The resulting de-repression of REST target genes induces a cardiac phenotype with increased cellular energy consumption, resulting in postnatal dilated cardiomyopathy. These results propose a new concept for actions of the PGC-1α protein family where activation of the Pgc-1α gene, through its isoforms, induces a phenotype with concurrent supply and demand for cellular energy. These data highlight the biological roles of the different PGC-1α isoforms, which should be considered when future therapies are developed.
Collapse
|
7
|
La Padula PH, Czerniczyniec A, Bonazzola P, Piotrkowski B, Vanasco V, Lores-Arnaiz S, Costa LE. Acute hypobaric hypoxia and cardiac energetic response in prepubertal rats: Role of nitric oxide. Exp Physiol 2021; 106:1235-1248. [PMID: 33724589 DOI: 10.1113/ep089064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
NEW FINDINGS What is the central question of this study? In adult rat hearts, exposure to hypobaric hypoxia increases tolerance to hypoxia-reoxygenation, termed endogenous cardioprotection. The mechanism involves the nitric oxide system and modulation of mitochondrial oxygen consumption. What is the cardiac energetic response in prepubertal rats exposed to hypobaric hypoxia? What is the main finding and its importance? Prepubertal rats, unlike adult rats, did not increase tolerance to hypoxia-reoxygenation in response acute exposure to hypobaric hypoxia, which impaired cardiac contractile economy. This finding could be related to a failure to increase nitric oxide synthase expression, hence modulation of mitochondrial oxygen consumption and ATP production. ABSTRACT Studies in our laboratory showed that exposure of rats to hypobaric hypoxia (HH) increased the tolerance of the heart to hypoxia-reoxygenation (H/R), involving mitochondrial and cytosolic nitric oxide synthase (NOS) systems. The objective of the present study was to evaluate how the degree of somatic maturation could alter this healthy response. Prepubertal male rats were exposed for 48 h to a simulated altitude of 4400 m in a hypobaric chamber. The mechanical energetic activity in perfused hearts and the contractile functional capacity of NOS in isolated left ventricular papillary muscles were evaluated during H/R. Cytosolic nitric oxide (NO), production of nitrites/nitrates (Nx), expression of NOS isoforms, mitochondrial O2 consumption and ATP production were also evaluated. The left ventricular pressure during H/R was not improved by HH. However, the energetic activity was increased. Thus, the contractile economy (left ventricular pressure/energetic activity) decreased in HH. Nitric oxide did not modify papillary muscle contractility after H/R. Cytosolic p-eNOS-Ser1177 and inducible NOS expression were decreased by HH, but no changes were observed in NO production. Interestingly, HH increased Nx levels, but O2 consumption and ATP production in mitochondria were not affected by HH. Prepubertal rats exposed to HH preserved cardiac contractile function, but with a high energetic cost, modifying contractile economy. Although this could be related to the decreased NOS expression detected, cytosolic NO production was preserved, maybe through the Nx metabolic pathway, without modification of mitochondrial ATP production and O2 consumption. In this scenario, the treatment was unable to increase tolerance to H/R as observed in adult animals.
Collapse
Affiliation(s)
- Pablo H La Padula
- Facultad de Medicina, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Analia Czerniczyniec
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia Bonazzola
- Facultad de Medicina, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Bárbara Piotrkowski
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Vanasco
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lidia E Costa
- Facultad de Medicina, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Packer M. Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation 2020; 141:2095-2105. [DOI: 10.1161/circulationaha.119.045561] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors reduce the risk of serious heart failure and adverse renal events, but the mechanisms that underlie this benefit are not understood. Treatment with SGLT2 inhibitors is distinguished by 2 intriguing features: ketogenesis and erythrocytosis. Both reflect the induction of a fasting-like and hypoxia-like transcriptional paradigm that is capable of restoring and maintaining cellular homeostasis and survival. In the face of perceived nutrient and oxygen deprivation, cells activate low-energy sensors, which include sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia inducible factors (HIFs; especially HIF-2α); these enzymes and transcription factors are master regulators of hundreds of genes and proteins that maintain cellular homeostasis. The activation of SIRT1 (through its effects to promote gluconeogenesis and fatty acid oxidation) drives ketogenesis, and working in concert with AMPK, it can directly inhibit inflammasome activation and maintain mitochondrial capacity and stability. HIFs act to promote oxygen delivery (by stimulating erythropoietin and erythrocytosis) and decrease oxygen consumption. The activation of SIRT1, AMPK, and HIF-2α enhances autophagy, a lysosome-dependent degradative pathway that removes dangerous constituents, particularly damaged mitochondria and peroxisomes, which are major sources of oxidative stress and triggers of cellular dysfunction and death. SIRT1 and AMPK also act on sodium transport mechanisms to reduce intracellular sodium concentrations. It is interesting that type 2 diabetes mellitus, obesity, chronic heart failure, and chronic kidney failure are characterized by the accumulation of intracellular glucose and lipid intermediates that are perceived by cells as indicators of energy overabundance. The cells respond by downregulating SIRT1, AMPK, and HIF-2α, thus leading to an impairment of autophagic flux and acceleration of cardiomyopathy and nephropathy. SGLT2 inhibitors reverse this maladaptive signaling by triggering a state of fasting and hypoxia mimicry, which includes activation of SIRT1, AMPK, and HIF-2α, enhanced autophagic flux, reduced cellular stress, decreased sodium influx into cells, and restoration of mitochondrial homeostasis. This mechanistic framework clarifies the findings of large-scale randomized trials and the close association of ketogenesis and erythrocytosis with the cardioprotective and renoprotective benefits of these drugs.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
9
|
Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020; 22:734-742. [PMID: 31916329 DOI: 10.1111/dom.13961] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Long-term treatment with sodium-glucose co-transporter-2 (SGLT2) inhibitors slows the deterioration of renal function in patients with diabetes. This benefit cannot be ascribed to an action on blood glucose, ketone utilization, uric acid or systolic blood pressure. SGLT2 inhibitors produce a striking amelioration of glomerular hyperfiltration. Although initially ascribed to an action of these drugs to inhibit proximal tubular glucose reabsorption, SGLT2 inhibitors exert renoprotective effects, even in patients with meaningfully impaired levels of glomerular function that are sufficient to abolish their glycosuric actions. Instead, the reduction in intraglomerular pressures may be related to an action of SGLT2 inhibitors to interfere with the activity of sodium-hydrogen exchanger isoform 3, thereby inhibiting proximal tubular sodium reabsorption and promoting tubuloglomerular feedback. Yet, experimentally, such an effect may not be sufficient to prevent renal injury. It is therefore noteworthy that the diabetic kidney exhibits an important defect in adenosine monophosphate-activated protein kinase (AMPK) and sirtuin-1 (SIRT1) signalling, which may contribute to the development of nephropathy. These transcription factors exert direct effects to mute oxidative stress and inflammation, and they also stimulate autophagy, a lysosomally mediated degradative pathway that maintains cellular homeostasis in the kidney. SGLT2 inhibitors induce both AMPK and SIRT1, and they have been shown to stimulate autophagy, thereby ameliorating cellular stress and glomerular and tubular injury. Enhanced AMPK/SIRT1 signalling may also contribute to the action of SGLT2 inhibitors to interfere with sodium transport mechanisms. The dual effects of SGLT2 inhibitors on AMPK/SIRT1 activation and renal tubular sodium transport may explain the protective effects of these drugs on the kidney in type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
- Imperial College, London, UK
| |
Collapse
|
10
|
Chang JC, Lien CF, Lee WS, Chang HR, Hsu YC, Luo YP, Jeng JR, Hsieh JC, Yang KT. Intermittent Hypoxia Prevents Myocardial Mitochondrial Ca 2+ Overload and Cell Death during Ischemia/Reperfusion: The Role of Reactive Oxygen Species. Cells 2019; 8:cells8060564. [PMID: 31181855 PMCID: PMC6627395 DOI: 10.3390/cells8060564] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022] Open
Abstract
It has been documented that reactive oxygen species (ROS) contribute to oxidative stress, leading to diseases such as ischemic heart disease. Recently, increasing evidence has indicated that short-term intermittent hypoxia (IH), similar to ischemia preconditioning, could yield cardioprotection. However, the underlying mechanism for the IH-induced cardioprotective effect remains unclear. The aim of this study was to determine whether IH exposure can enhance antioxidant capacity, which contributes to cardioprotection against oxidative stress and ischemia/reperfusion (I/R) injury in cardiomyocytes. Primary rat neonatal cardiomyocytes were cultured in IH condition with an oscillating O2 concentration between 20% and 5% every 30 min. An MTT assay was conducted to examine the cell viability. Annexin V-FITC and SYTOX green fluorescent intensity and caspase 3 activity were detected to analyze the cell death. Fluorescent images for DCFDA, Fura-2, Rhod-2, and TMRM were acquired to analyze the ROS, cytosol Ca2+, mitochondrial Ca2+, and mitochondrial membrane potential, respectively. RT-PCR, immunocytofluorescence staining, and antioxidant activity assay were conducted to detect the expression of antioxidant enzymes. Our results show that IH induced slight increases of O2−· and protected cardiomyocytes against H2O2- and I/R-induced cell death. Moreover, H2O2-induced Ca2+ imbalance and mitochondrial membrane depolarization were attenuated by IH, which also reduced the I/R-induced Ca2+ overload. Furthermore, treatment with IH increased the expression of Cu/Zn SOD and Mn SOD, the total antioxidant capacity, and the activity of catalase. Blockade of the IH-increased ROS production abolished the protective effects of IH on the Ca2+ homeostasis and antioxidant defense capacity. Taken together, our findings suggest that IH protected the cardiomyocytes against H2O2- and I/R-induced oxidative stress and cell death through maintaining Ca2+ homeostasis as well as the mitochondrial membrane potential, and upregulation of antioxidant enzymes.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| | - Chih-Feng Lien
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan.
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Huai-Ren Chang
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan.
| | - Yu-Cheng Hsu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| | - Yu-Po Luo
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan.
| | - Jing-Ren Jeng
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan.
| | - Jen-Che Hsieh
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan.
| | - Kun-Ta Yang
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
11
|
Yan X, Xun M, Wu L, Du X, Zhang F, Zheng J. DRm217 attenuates myocardial ischemia-reperfusion injury via stabilizing plasma membrane Na + -K + -ATPase, inhibiting Na + -K + -ATPase/ROS pathway and activating PI3K/Akt and ERK1/2. Toxicol Appl Pharmacol 2018; 349:62-71. [DOI: 10.1016/j.taap.2018.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 11/17/2022]
|
12
|
Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 2018; 315:H216-H232. [PMID: 29652543 DOI: 10.1152/ajpheart.00060.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The calibrated application of limited-duration, cyclic, moderately intense hypoxia-reoxygenation increases cardiac resistance to ischemia-reperfusion stress. These intermittent hypoxic conditioning (IHC) programs consistently produce striking reductions in myocardial infarction and ventricular tachyarrhythmias after coronary artery occlusion and reperfusion and, in many cases, improve contractile function and coronary blood flow. These IHC protocols are fundamentally different from those used to simulate sleep apnea, a recognized cardiovascular risk factor. In clinical studies, IHC improved exercise capacity and decreased arrhythmias in patients with coronary artery or pulmonary disease and produced robust, persistent, antihypertensive effects in patients with essential hypertension. The protection afforded by IHC develops gradually and depends on β-adrenergic, δ-opioidergic, and reactive oxygen-nitrogen signaling pathways that use protein kinases and adaptive transcription factors. In summary, adaptation to intermittent hypoxia offers a practical, largely unrecognized means of protecting myocardium from impending ischemia. The myocardial and perhaps broader systemic protection provided by IHC clearly merits further evaluation as a discrete intervention and as a potential complement to conventional pharmaceutical and surgical interventions.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Eugenia B Manukhina
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russian Federation.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| | - Steven Shea Ruelas
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - James L Caffrey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - H Fred Downey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| |
Collapse
|
13
|
Hu Y, Wang Z, Ge N, Huang T, Zhang M, Wang H. Sodium pump alpha-2 subunit (ATP1A2) alleviates cardiomyocyte anoxia-reoxygenation injury via inhibition of endoplasmic reticulum stress-related apoptosis. Can J Physiol Pharmacol 2018; 96:515-520. [PMID: 29394489 DOI: 10.1139/cjpp-2017-0349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have found decreased functional capacity of the sodium pump (Na+-K+-ATPase) alpha and beta subunits and recovery of Na+-K+-ATPase activity significantly decreased myocyte apoptosis in myocardial ischemia-reperfusion (I/R) injury. However, the potential role of the Na+-K+-ATPase α-2 subunit (ATP1A2) in cardiomyocyte anoxia-reoxygenation (A/R) injury has not been elucidated. Rat myocardial cells were subjected to siRNA transfection followed by A/R injury. Apoptosis and expression of endoplasmic reticulum (ER) stress proteins CHOP, GRP78, and caspase-12 were detected in 4 groups of cells: ATP1A2 siRNA + A/R, control siRNA + A/R, control, and A/R injury model. We found that apoptosis was significantly elevated in the ATP1A2 siRNA + A/R group as compared with control siRNA + A/R, control, and A/R injury model groups (p < 0.05, p < 0.01, and p < 0.05). Furthermore, expression of CHOP, GRP78, and caspase-12 were significantly elevated in the ATP1A2 siRNA + A/R group as compared with control siRNA + A/R, control, and A/R injury model groups (p < 0.05, p < 0.01, and p < 0.05). Our findings suggest that cardiomyocyte ATP1A2 is a target of A/R injury, and its cardioprotective function may be mediated via inhibiting the ER-stress-related apoptosis.
Collapse
Affiliation(s)
- Yulong Hu
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zheng Wang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Nannan Ge
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ting Huang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Mingchao Zhang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hegui Wang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
14
|
Shemarova IV, Nesterov VP, Korotkov SM, Sylkin YA. Evolutionary Aspects of Cardioprotection. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Protective Effects of Chronic Intermittent Hypobaric Hypoxia Pretreatment against Aplastic Anemia through Improving the Adhesiveness and Stress of Mesenchymal Stem Cells in Rats. Stem Cells Int 2017; 2017:5706193. [PMID: 28798776 PMCID: PMC5534323 DOI: 10.1155/2017/5706193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 11/29/2022] Open
Abstract
Aplastic anemia (AA) is a common malignant blood disease, and chronic intermittent hypobaric hypoxia (CIHH) has a beneficial effect against different diseases. The aim of the present study was to investigate the protective effect of CIHH against AA and underlying mechanisms. 5-Fluorouracil and busulfan treatment induced AA model in rats with reduction of hematological parameters and bone marrow tissue injury and decrease of the colony numbers of progenitor cells. CIHH pretreatment significantly reduced the incidence rate of AA and alleviated above symptoms in AA model. The adhesive molecules of bone marrow mesenchymal stem cells (BMMSCs) in AA model, VLA-4, VCAM-1, and ICAM-1 were upregulated, and those of CD162 and CD164 were downregulated by CIHH pretreatment. The expressions of HIF-1α and NF-κB in BMMSCs were also decreased through CIHH pretreatment. Overall, the results demonstrated for the first time that CIHH has an anti-AA effect through improving the adhesiveness and stress of mesenchymal stem cells in rats. CIHH could be a promising and effective therapy for AA.
Collapse
|
16
|
Yan X, Xun M, Dou X, Wu L, Zhang F, Zheng J. Activation of Na+-K+-ATPase with DRm217 attenuates oxidative stress-induced myocardial cell injury via closing Na+-K+-ATPase/Src/Ros amplifier. Apoptosis 2017; 22:531-543. [DOI: 10.1007/s10495-016-1342-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model. Sci Rep 2016; 6:38219. [PMID: 27910887 PMCID: PMC5133557 DOI: 10.1038/srep38219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting.
Collapse
|
18
|
Tian YM, Guan Y, Li N, Ma HJ, Zhang L, Wang S, Zhang Y. Chronic intermittent hypobaric hypoxia ameliorates diabetic nephropathy through enhancing HIF1 signaling in rats. Diabetes Res Clin Pract 2016; 118:90-7. [PMID: 27351799 DOI: 10.1016/j.diabres.2016.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/13/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
Abstract
AIM Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) had anti-diabetes effect. The present study was to explore the renal protective effect of CIHH in diabetic rats. METHODS Sprague-Dawley rats were randomly divided into three groups: diabetes mellitus group (DM, induced by high-fat diet combined with low-dose streptozotocin), diabetes plus CIHH treatment group (DM+CIHH, simulated 5000-m altitude, 6h per day for 28days, after diabetes model confirmed) and control group (CON). Systolic arterial blood pressure (SAP), blood biochemicals, urinary albumin, and histopathology of kidney were determined. The superoxide dismutase (SOD) activity, malondialdehyde (MDA) level, protein levels of hypoxia induced factors (HIFs) and transforming growth factor β1 (TGF-β1) in kidney were assayed. RESULTS The increased SAP, urinary albumin, hyperplasia of glomerular, fibrosis in mesangial and glomerular, and abnormal lipid metabolism in diabetic rats were ameliorated by CIHH treatment. And decreased superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) level in diabetic kidney were reversed in CIHH-treated DM rats. In addition up-regulated TGF-β1 and down-regulated HIF1α in diabetic kidney returned back to normal level in CIHH-treated DM rats. CONCLUSIONS These data demonstrated for the first time that CIHH had protective effects against the early stage damage of diabetic nephropathy through activating HIF1 signaling, improving anti-oxidation and inhibiting TGF-β1 signaling in diabetic rats.
Collapse
Affiliation(s)
- Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Na Li
- Department of Physiology, Medical College, Hebei University, Baoding 071000, PR China
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Li Zhang
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang 050082, PR China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China.
| |
Collapse
|
19
|
Zhao Q, Wu J, Hua Q, Lin Z, Ye L, Zhang W, Wu G, Du J, Xia J, Chu M, Hu X. Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. J Transl Med 2016; 14:81. [PMID: 27009328 PMCID: PMC4806414 DOI: 10.1186/s12967-016-0835-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Energy metabolism disorder is a critical process in lung ischemia-reperfusion injury (LIRI). This study was aimed to determine the effects of resolvin D1 (RvD1) on the energy metabolism in LIRI. METHODS Forty Sprague-Dawley rats were divided into the following groups: Sham group; untreated ischemia-reperfusion (IR) control; IR treated with normal saline (IR-NS); and IR treated with RvD1 (IR-RV) (100 μg/kg, iv). LIRI and energy metabolism disorder were determined in these rats. RESULTS The results revealed that the levels of interleukin (IL)-1β, tumor necrosis factor-α, IL-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, cytokine-induced neutrophil chemoattractant-1, injured alveoli rate, apoptosis index, pulmonary permeability index, malondialdehyde, ADP, and lactic acid were increased, whereas the levels of ATP, ATP/ADP, glycogen, Na(+)-K(+)-ATPase, superoxide dismutase, glutathione peroxidase activity, pulmonary surfactant associated protein-A, and oxygenation index were decreased in rats with LIRI. Except for IL-10, all these biomarkers of LIRI and its related energy metabolism disorder were significantly inhibited by RvD1 treatment. In addition, histological analysis via hematoxylin-eosin staining, and transmission electron microscopy confirmed that IR-induced structure damages of lung tissues were reduced by RvD1. CONCLUSION RvD1 improves the energy metabolism of LIRI disturbance, protects the mitochondrial structure and function, increases the ATP, glycogen content and Na(+)-K(+)-ATPase activity of lung tissue, balances the ratio of ATP/ADP and finally decreases the rate of apoptosis, resulting in the protection of IR-induced lung injury. The improved energy metabolism after LIRI may be related to the reduced inflammatory response, the balance of the oxidative/antioxidant and the pro-inflammatory/anti-inflammatory systems in rats.
Collapse
Affiliation(s)
- Qifeng Zhao
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Ji Wu
- Wuhan Medical & Healthcare Center for Woman and Children, 430015, Wuhan, People's Republic of China
| | - Qingwang Hua
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Zhiyong Lin
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Leping Ye
- The Department of Children's Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Weixi Zhang
- The Department of Children's Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Guowei Wu
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Jie Du
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Jie Xia
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Maoping Chu
- The Department of Children's Cardiovascular Medicine, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Xingti Hu
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China.
| |
Collapse
|
20
|
Herrera EA, Farías JG, González-Candia A, Short SE, Carrasco-Pozo C, Castillo RL. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats. Mar Drugs 2015; 13:838-60. [PMID: 25658050 PMCID: PMC4344605 DOI: 10.3390/md13020838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/29/2023] Open
Abstract
Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg−1·day−1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)—normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 μmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Alejandro González-Candia
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Stefania E Short
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Catalina Carrasco-Pozo
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Rodrigo L Castillo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| |
Collapse
|
21
|
Li W, Wang X, He M, Wang C, Qiao Z, Wang Q, Ren S, Yu Q. Activating Na+-K+ ATPase: a potential cardioprotective therapy during early hemorrhagic shock. Med Hypotheses 2014; 83:685-7. [PMID: 25459134 DOI: 10.1016/j.mehy.2014.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
Abstract
Cell volume and resting potential are heavily affected by the activity of Na+-K+ ATPase (NKA, Na+-K+ pump), an essential membrane protein that regulates plasma K+ and Na+ levels. It is generally accepted that the ineffective perfusion of body tissues inhibits NKA activity and that NKA activity and heart failure are closely related. Recently, research has proven that the activation of NKA provides significant cardioprotection against ischemic injury. Based on these data, we propose that NKA stimulation could attenuate the development of heart arrhythmia during the early phase of hemorrhagic shock.
Collapse
Affiliation(s)
- Weijing Li
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Xuanlin Wang
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Min He
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Chunyan Wang
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Zhixin Qiao
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Qingjun Wang
- Shenzhou Biology & Technology Co., Ltd., Hohhot, Inner Mongolia 010206, China
| | - Suping Ren
- Beijing Institute of Transfusion Medicine, Beijing 100850, China.
| | - Qun Yu
- Beijing Institute of Transfusion Medicine, Beijing 100850, China.
| |
Collapse
|
22
|
Lipoxin a4 preconditioning and postconditioning protect myocardial ischemia/reperfusion injury in rats. Mediators Inflamm 2013; 2013:231351. [PMID: 23956501 PMCID: PMC3730367 DOI: 10.1155/2013/231351] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/15/2013] [Accepted: 06/16/2013] [Indexed: 12/23/2022] Open
Abstract
This study aims to investigate the pre- and postconditioning effects of lipoxin A4 (LXA4) on myocardial damage caused by ischemia/reperfusion (I/R) injury. Seventy-two rats were divided into 6 groups: sham groups (C1 and C2), I/R groups (I/R1 and I/R2), and I/R plus LXA4 preconditioning and postconditioning groups (LX1 and LX2). The serum levels of IL-1β, IL-6, IL-8, IL-10, TNF-α, and cardiac troponin I (cTnI) were measured. The content and the activity of Na+-K+-ATPase as well as the superoxide dismutase (SOD), and malondialdehyde (MDA) levels were determined. Along with the examination of myocardium ultrastructure and ventricular arrhythmia scores (VAS), connexin 43 (Cx43) expression were also detected. Lower levels of IL-1β, IL-6, IL-8, TNF-α, cTnI, MDA content, and VAS and higher levels of IL-10, SOD activity, Na+-K+-ATPase content and activity, and Cx43 expression appeared in LX groups than I/R groups. Besides, H&E staining, TEM examination as well as analysis of gene, and protein confirmed that LXA4 preconditioning was more effective than postconditioning in preventing arrhythmogenesis via the upregulation of Cx43. That is, LXA4 postconditioning had better protective effect on Na+-K+-ATPase and myocardial ultrastructure.
Collapse
|
23
|
Natural products inspired synthesis of neuroprotective agents against H2O2-induced cell death. Bioorg Med Chem Lett 2013; 23:1232-7. [DOI: 10.1016/j.bmcl.2013.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 11/22/2022]
|
24
|
Abstract
Based on a wealth of mechanistic evidence supported by the fact that ouabain mimics the spleen-liver effect in this article, the hypothesis is established that the endogenous hormone ouabain not only mimics the effects of ischemic preconditioning but also may be an ideal drug for the prevention of ischemic diseases. Moreover, it is argued that the spleen-liver effect may represent a general protective mechanism for the protection of organisms against oxygen deficiency. Investigating the spleen-liver mechanism offers a new approach to decipher the secrets of ischemic conditioning. Preconditioning represents a basic mechanism to protect a wide variety of cells against stressful stimuli such as ischemia. The ability to undergo preconditioning is almost ubiquitous in tissues and is highly conserved across species. Reinvestigation of the "spleen-liver mechanism" will allow the study of metabolic inhibitors and hormone mimics that all could help to transform ischemic preconditioning into a cure of the epidemic ischemic heart disease. Ouabain mimics the effects of the spleen factor. Cardioprotection induced by ouabain is due to the activation of pathways that are also activated in ischemic preconditioning. Just like ischemic preconditioning, ouabain activates the reperfusion injury salvage kinase pathway. Activation of nuclear factor kappa B and other transcription factors contribute to the long lasting effects of ouabain. The endogenous hormone ouabain just like preconditioning offers multiorgan protection based on innate mechanisms, which warrants clinical investigation. Clinical studies with ouabain that correspond to current standards are warranted.
Collapse
|
25
|
Yin X, Zheng Y, Liu Q, Cai J, Cai L. Cardiac response to chronic intermittent hypoxia with a transition from adaptation to maladaptation: the role of hydrogen peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:569520. [PMID: 22685619 PMCID: PMC3364002 DOI: 10.1155/2012/569520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/20/2012] [Indexed: 12/13/2022]
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent respiratory disorder of sleep, and associated with chronic intermittent hypoxia (CIH). Experimental evidence indicates that CIH is a unique physiological state with potentially "adaptive" and "maladaptive" consequences for cardio-respiratory homeostasis. CIH is also a critical element accounting for most of cardiovascular complications of OSA. Cardiac response to CIH is time-dependent, showing a transition from cardiac compensative (such as hypertrophy) to decompensating changes (such as failure). CIH-provoked mild and transient oxidative stress can induce adaptation, but severe and persistent oxidative stress may provoke maladaptation. Hydrogen peroxide as one of major reactive oxygen species plays an important role in the transition of adaptive to maladaptive response to OSA-associated CIH. This may account for the fact that although oxidative stress has been recognized as a driver of cardiac disease progression, clinical interventions with antioxidants have had little or no impact on heart disease and progression. Here we focus on the role of hydrogen peroxide in CIH and OSA, trying to outline the potential of antioxidative therapy in preventing CIH-induced cardiac damage.
Collapse
Affiliation(s)
- Xia Yin
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Department of Pediatrics, Kosair Children Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA
| | - Yang Zheng
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Quan Liu
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jun Cai
- Department of Pediatrics, Kosair Children Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA
| | - Lu Cai
- Department of Pediatrics, Kosair Children Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|