1
|
Butler S, No H, Guo F, Merchant G, Park NJ, Jackson S, Clark DE, Vitzthum L, Chin A, Horst K, Hoppe RT, Loo BW, Diehn M, Binkley MS. Predictors of Atrial Fibrillation After Thoracic Radiotherapy. JACC CardioOncol 2024; 6:935-945. [PMID: 39801654 PMCID: PMC11711808 DOI: 10.1016/j.jaccao.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 01/16/2025] Open
Abstract
Background Atrial fibrillation (AF) has been associated with thoracic radiotherapy, but the specific risk with irradiating different cardiac substructures remains unknown. Objectives This study sought to examine the relationship between irradiation of cardiac substructures and the risk of clinically significant (grade ≥3) AF. Methods We analyzed data from patients who underwent definitive radiotherapy for localized cancers (non-small cell lung, breast, Hodgkin lymphoma, or esophageal) at our institution between 2004 and 2022. The 2-Gy fraction equivalent dose was calculated for cardiac substructures, including the pulmonary veins (PVs), left atrium, sinoatrial node, and left coronary arteries (the left main, left anterior descending, and left circumflex arteries). Competing risk models (subdistribution HRs [sHRs]) for AF incidence were adjusted for the Mayo AF risk score (MAFRS). Results Among 539 patients, the median follow-up was 58.8 months. The 5-year cumulative incidence of AF was 11.1% for non-small cell lung cancer, 8.3% for esophageal cancer, 1.3% for breast cancer, and 0.8% for Hodgkin lymphoma. Increased AF risk was associated with a higher PV maximum dose (dmax) (sHR: 1.22; P < 0.001), larger left atrial volume (sHR: 1.01; P = 0.002), greater smoking history in pack-years (sHR: 1.01; P = 0.010), and higher MAFRS (sHR: 1.16; P < 0.001). PV dmax remained a significant predictor of AF across different MAFRS subgroups (P interaction = 0.11), and a PV dmax >39.7 Gy was linked to a higher AF risk, even when stratified by MAFRS. Conclusions PV dmax is a significant predictor of grade ≥3 AF regardless of underlying risk factors. These findings highlight the importance of cardiac substructures in radiation toxicity and suggest that various PV dose metrics should be further validated in clinical settings.
Collapse
Affiliation(s)
- Santino Butler
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Hyunsoo No
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Felicia Guo
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Gibran Merchant
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Natalie J. Park
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Scott Jackson
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Daniel Eugene Clark
- Department of Cardiology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Lucas Vitzthum
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Alex Chin
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kathleen Horst
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Richard T. Hoppe
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Michael Sargent Binkley
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
2
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
No HJ, Guo FB, Park NJI, Kastelowitz N, Rhee JW, Clark DE, Chin ALC, Vitzthum LK, Horst KC, Moding EJ, Loo BW, Diehn M, Binkley MS. Predicting Adverse Cardiac Events After Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer. JACC CardioOncol 2023; 5:775-787. [PMID: 38205000 PMCID: PMC10774791 DOI: 10.1016/j.jaccao.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 01/12/2024] Open
Abstract
Background Radiotherapy may cause grade ≥3 cardiac events, necessitating a better understanding of risk factors. The potential predictive role of imaging biomarkers with radiotherapy doses for cardiac event occurrence has not been studied. Objectives The aim of this study was to establish the associations between cardiac substructure dose and coronary artery calcium (CAC) scores and cardiac event occurrence. Methods A retrospective cohort analysis included patients with locally advanced non-small cell lung cancer treated with radiotherapy (2006-2018). Cardiac substructures, including the left anterior descending coronary artery, left main coronary artery, left circumflex coronary artery, right coronary artery, and TotalLeft (left anterior descending, left main, and left circumflex coronary arteries), were contoured. Doses were measured in 2-Gy equivalent units, and visual CAC scoring was compared with automated scoring. Grade ≥3 adverse cardiac events were recorded. Time-dependent receiver-operating characteristic modeling, the log-rank statistic, and competing-risk models were used to measure prediction performance, threshold modeling, and the cumulative incidence of cardiac events, respectively. Results Of the 233 eligible patients, 61.4% were men, with a median age of 68.1 years (range: 34.9-90.7 years). The median follow-up period was 73.7 months (range: 1.6-153.9 months). Following radiotherapy, 22.3% experienced cardiac events, within a median time of 21.5 months (range: 1.7-118.9 months). Visual CAC scoring showed significant correlation with automated scoring (r = 0.72; P < 0.001). In a competing-risk multivariable model, TotalLeft volume receiving 15 Gy (per 1 cc; HR: 1.38; 95% CI: 1.11-1.72; P = 0.004) and CAC score >5 (HR: 2.51; 95% CI: 1.08-5.86; P = 0.033) were independently associated with cardiac events. A model incorporating age, TotalLeft CAC (score >5), and volume receiving 15 Gy demonstrated a higher incidence of cardiac events for a high-risk group (28.9%) compared with a low-risk group (6.9%) (P < 0.001). Conclusions Adverse cardiac events associated with radiation occur in more than 20% of patients undergoing thoracic radiotherapy within a median time of <2 years. The present findings provide further evidence to support significant associations between TotalLeft radiotherapy dose and cardiac events and define CAC as a predictive risk factor.
Collapse
Affiliation(s)
- Hyunsoo Joshua No
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Felicia B. Guo
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Natalie Jung-In Park
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Noah Kastelowitz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - June-Wha Rhee
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Daniel Eugene Clark
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexander Li-Che Chin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Lucas Kas Vitzthum
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Kathleen Claire Horst
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Everett James Moding
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Sargent Binkley
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Trayanova NA, Doshi AN, Prakosa A. How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1477. [PMID: 31917524 DOI: 10.1002/wsbm.1477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Precision Cardiology is a targeted strategy for cardiovascular disease prevention and treatment that accounts for individual variability. Computational heart modeling is one of the novel approaches that have been developed under the umbrella of Precision Cardiology. Personalized computational modeling of patient hearts has made strides in the development of models that incorporate the individual geometry and structure of the heart as well as other patient-specific information. Of these developments, one of the potentially most impactful is the research aimed at noninvasively predicting the targets of ablation of lethal arrhythmia, ventricular tachycardia (VT), using patient-specific models. The approach has been successfully applied to patients with ischemic cardiomyopathy in proof-of-concept studies. The goal of this paper is to review the strategies for computational VT ablation guidance in ischemic cardiomyopathy patients, from model developments to the intricacies of the actual clinical application. To provide context in describing the road these computational modeling applications have undertaken, we first review the state of the art in VT ablation in the clinic, emphasizing the benefits that personalized computational prediction of ablation targets could bring to the clinical electrophysiology practice. This article is characterized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Translational, Genomic, and Systems Medicine > Translational Medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ashish N Doshi
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland
| | - Adityo Prakosa
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
5
|
Arevalo HJ, Boyle PM, Trayanova NA. Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:185-94. [PMID: 27334789 DOI: 10.1016/j.pbiomolbio.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022]
Abstract
Current understanding of cardiac electrophysiology has been greatly aided by computational work performed using rabbit ventricular models. This article reviews the contributions of multiscale models of rabbit ventricles in understanding cardiac arrhythmia mechanisms. This review will provide an overview of multiscale modeling of the rabbit ventricles. It will then highlight works that provide insights into the role of the conduction system, complex geometric structures, and heterogeneous cellular electrophysiology in diseased and healthy rabbit hearts to the initiation and maintenance of ventricular arrhythmia. Finally, it will provide an overview on the contributions of rabbit ventricular modeling on understanding the mechanisms underlying shock-induced defibrillation.
Collapse
Affiliation(s)
- Hermenegild J Arevalo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Simula Research Laboratory, Oslo, Norway
| | - Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Trayanova NA, Chang KC. How computer simulations of the human heart can improve anti-arrhythmia therapy. J Physiol 2016; 594:2483-502. [PMID: 26621489 DOI: 10.1113/jp270532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/25/2015] [Indexed: 01/26/2023] Open
Abstract
Over the last decade, the state-of-the-art in cardiac computational modelling has progressed rapidly. The electrophysiological function of the heart can now be simulated with a high degree of detail and accuracy, opening the doors for simulation-guided approaches to anti-arrhythmic drug development and patient-specific therapeutic interventions. In this review, we outline the basic methodology for cardiac modelling, which has been developed and validated over decades of research. In addition, we present several recent examples of how computational models of the human heart have been used to address current clinical problems in cardiac electrophysiology. We will explore the use of simulations to improve anti-arrhythmic pacing and defibrillation interventions; to predict optimal sites for clinical ablation procedures; and to aid in the understanding and selection of arrhythmia risk markers. Together, these studies illustrate how the tremendous advances in cardiac modelling are poised to revolutionize medical treatment and prevention of arrhythmia.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kelly C Chang
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
7
|
LU WEIGANG, LI JIE, YANG FEI, LUO CUNJIN, WANG KUANQUAN, ADENIRAN ISMAIL, ZHANG HENGGUI. EFFECTS OF ACUTE GLOBAL ISCHEMIA ON RE-ENTRANT ARRHYTHMOGENESIS: A SIMULATION STUDY. J BIOL SYST 2015. [DOI: 10.1142/s0218339015500114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sudden cardiac death is mainly caused by arrhythmogenesis. For a functional abnormal heart, such as an ischemic heart, the probability of arrhythmia occurring is greatly increased. During myocardial ischemia, re-entry is prone to degenerate into ventricular fibrillation (VF). Therefore it has important meaning to investigate the intricate mechanisms underlying VF under an ischemic condition in order to better facilitate therapeutic interventions. In this paper, to analyze the functional influence of acute global ischemia on cardiac electrical activity and subsequently on re-entrant arrhythmogenesis, we take into account three main pathophysiological consequences of ischemia: hyperkalaemia, acidosis, and anoxia, and develop a 3D human ventricular ischemic model that combines a detailed biophysical description of the excitation kinetics of human ventricular cells with an integrated geometry of human ventricular tissue which incorporates fiber direction anisotropy and the stimulation activation sequence. The results show that under acute global ischemia, the tissue excitability and the slope of ventricular cellular action potential duration restitution (APDR) are greatly decreased. As a result, the complexity of VF activation patterns is reduced. For the three components of ischemia, hyperkalaemia is the dominant contributor to the stability of re-entry under acute global ischemia. Increasing [K+]o acts to prolong the cell refractory period, reduce the tissue excitability and slow the conduction velocity. Our results also show that VF can be eliminated by decreasing cellular excitability, primarily by elevating the concentration value of extracellular K+.
Collapse
Affiliation(s)
- WEIGANG LU
- Department of Educational Technology, Ocean University of China, Qingdao, P. R. China
| | - JIE LI
- School of Electrical Engineering, Yanshan University, Qinhuangdao, P. R. China
| | - FEI YANG
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, P. R. China
| | - CUNJIN LUO
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, P. R. China
| | - KUANQUAN WANG
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, P. R. China
| | - ISMAIL ADENIRAN
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - HENGGUI ZHANG
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Lopez-Perez A, Sebastian R, Ferrero JM. Three-dimensional cardiac computational modelling: methods, features and applications. Biomed Eng Online 2015; 14:35. [PMID: 25928297 PMCID: PMC4424572 DOI: 10.1186/s12938-015-0033-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/02/2015] [Indexed: 01/19/2023] Open
Abstract
The combination of computational models and biophysical simulations can help to interpret an array of experimental data and contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmias. For this reason, three-dimensional (3D) cardiac computational modelling is currently a rising field of research. The advance of medical imaging technology over the last decades has allowed the evolution from generic to patient-specific 3D cardiac models that faithfully represent the anatomy and different cardiac features of a given alive subject. Here we analyse sixty representative 3D cardiac computational models developed and published during the last fifty years, describing their information sources, features, development methods and online availability. This paper also reviews the necessary components to build a 3D computational model of the heart aimed at biophysical simulation, paying especial attention to cardiac electrophysiology (EP), and the existing approaches to incorporate those components. We assess the challenges associated to the different steps of the building process, from the processing of raw clinical or biological data to the final application, including image segmentation, inclusion of substructures and meshing among others. We briefly outline the personalisation approaches that are currently available in 3D cardiac computational modelling. Finally, we present examples of several specific applications, mainly related to cardiac EP simulation and model-based image analysis, showing the potential usefulness of 3D cardiac computational modelling into clinical environments as a tool to aid in the prevention, diagnosis and treatment of cardiac diseases.
Collapse
Affiliation(s)
- Alejandro Lopez-Perez
- Centre for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, València, Spain.
| | - Rafael Sebastian
- Computational Multiscale Physiology Lab (CoMMLab), Universitat de València, València, Spain.
| | - Jose M Ferrero
- Centre for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, València, Spain.
| |
Collapse
|
9
|
Ferrero JM, Trenor B, Romero L. Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction. Europace 2014; 16:405-15. [PMID: 24569895 DOI: 10.1093/europace/eut405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ischaemic heart disease is considered as the single most frequent cause of death, provoking more than 7 000 000 deaths every year worldwide. A high percentage of patients experience sudden cardiac death, caused in most cases by tachyarrhythmic mechanisms associated to myocardial ischaemia and infarction. These diseases are difficult to study using solely experimental means due to their complex dynamics and unstable nature. In the past decades, integrative computational simulation techniques have become a powerful tool to complement experimental and clinical research when trying to elucidate the intimate mechanisms of ischaemic electrophysiological processes and to aid the clinician in the improvement and optimization of therapeutic procedures. The purpose of this paper is to briefly review some of the multiscale computational models of myocardial ischaemia and infarction developed in the past 20 years, ranging from the cellular level to whole-heart simulations.
Collapse
Affiliation(s)
- Jose M Ferrero
- Departamento de Ingeniería Electrónica, Instituto I3BH, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | |
Collapse
|
10
|
Trayanova NA, Rantner LJ. New insights into defibrillation of the heart from realistic simulation studies. Europace 2014; 16:705-13. [PMID: 24798960 PMCID: PMC4010179 DOI: 10.1093/europace/eut330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/17/2013] [Indexed: 11/12/2022] Open
Abstract
Cardiac defibrillation, as accomplished nowadays by automatic, implantable devices, constitutes the most important means of combating sudden cardiac death. Advancing our understanding towards a full appreciation of the mechanisms by which a shock interacts with the heart, particularly under diseased conditions, is a promising approach to achieve an optimal therapy. The aim of this article is to assess the current state-of-the-art in whole-heart defibrillation modelling, focusing on major insights that have been obtained using defibrillation models, primarily those of realistic heart geometry and disease remodelling. The article showcases the contributions that modelling and simulation have made to our understanding of the defibrillation process. The review thus provides an example of biophysically based computational modelling of the heart (i.e. cardiac defibrillation) that has advanced the understanding of cardiac electrophysiological interaction at the organ level, and has the potential to contribute to the betterment of the clinical practice of defibrillation.
Collapse
Affiliation(s)
- Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 3400 N Charles Street, 216 Hackerman Hall, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Lukas J. Rantner
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 3400 N Charles Street, 216 Hackerman Hall, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Trayanova NA, Boyle PM. Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:209-24. [PMID: 24375958 DOI: 10.1002/wsbm.1256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 11/12/2022]
Abstract
Modern cardiovascular research has increasingly recognized that heart models and simulation can help interpret an array of experimental data and dissect important mechanisms and interrelationships, with developments rooted in the iterative interaction between modeling and experimentation. This article reviews the progress made in simulating cardiac electrical behavior at the level of the organ and, specifically, in the development of models of ventricular arrhythmias and fibrillation, as well as their termination (defibrillation). The ability to construct multiscale models of ventricular arrhythmias, representing integrative behavior from the molecule to the entire organ, has enabled mechanistic inquiry into the dynamics of ventricular arrhythmias in the diseased myocardium, in understanding drug-induced proarrhythmia, and in the development of new modalities for defibrillation, to name a few. In this article, we also review the initial use of ventricular models of arrhythmia in personalized diagnosis, treatment planning, and prevention of sudden cardiac death. Implementing individualized cardiac simulations at the patient bedside is poised to become one of the most thrilling examples of computational science and engineering approaches in translational medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
12
|
Arevalo H, Plank G, Helm P, Halperin H, Trayanova N. Tachycardia in post-infarction hearts: insights from 3D image-based ventricular models. PLoS One 2013; 8:e68872. [PMID: 23844245 PMCID: PMC3699514 DOI: 10.1371/journal.pone.0068872] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/02/2013] [Indexed: 02/01/2023] Open
Abstract
Ventricular tachycardia, a life-threatening regular and repetitive fast heart rhythm, frequently occurs in the setting of myocardial infarction. Recently, the peri-infarct zones surrounding the necrotic scar (termed gray zones) have been shown to correlate with ventricular tachycardia inducibility. However, it remains unknown how the latter is determined by gray zone distribution and size. The goal of this study is to examine how tachycardia circuits are maintained in the infarcted heart and to explore the relationship between the tachycardia organizing centers and the infarct gray zone size and degree of heterogeneity. To achieve the goals of the study, we employ a sophisticated high-resolution electrophysiological model of the infarcted canine ventricles reconstructed from imaging data, representing both scar and gray zone. The baseline canine ventricular model was also used to generate additional ventricular models with different gray zone sizes, as well as models in which the gray zone was represented as different heterogeneous combinations of viable tissue and necrotic scar. The results of the tachycardia induction simulations with a number of high-resolution canine ventricular models (22 altogether) demonstrated that the gray zone was the critical factor resulting in arrhythmia induction and maintenance. In all models with inducible arrhythmia, the scroll-wave filaments were contained entirely within the gray zone, regardless of its size or the level of heterogeneity of its composition. The gray zone was thus found to be the arrhythmogenic substrate that promoted wavebreak and reentry formation. We found that the scroll-wave filament locations were insensitive to the structural composition of the gray zone and were determined predominantly by the gray zone morphology and size. The findings of this study have important implications for the advancement of improved criteria for stratifying arrhythmia risk in post-infarction patients and for the development of new approaches for determining the ablation targets of infarct-related tachycardia.
Collapse
Affiliation(s)
- Hermenegild Arevalo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Patrick Helm
- Medtronic Inc., Minneapolis, Minnesota, United States of America
| | - Henry Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis. PLoS One 2013; 8:e60323. [PMID: 23577101 PMCID: PMC3618345 DOI: 10.1371/journal.pone.0060323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of [Formula: see text] from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to [Formula: see text] depletion in the ischemic region.
Collapse
|
14
|
Trayanova NA. Computational cardiology: the heart of the matter. ISRN CARDIOLOGY 2012; 2012:269680. [PMID: 23213566 PMCID: PMC3505657 DOI: 10.5402/2012/269680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022]
Abstract
This paper reviews the newest developments in computational cardiology. It focuses on the contribution of cardiac modeling to the development of new therapies as well as the advancement of existing ones for cardiac arrhythmias and pump dysfunction. Reviewed are cardiac modeling efforts aimed at advancing and optimizing existent therapies for cardiac disease (defibrillation, ablation of ventricular tachycardia, and cardiac resynchronization therapy) and at suggesting novel treatments, including novel molecular targets, as well as efforts to use cardiac models in stratification of patients likely to benefit from a given therapy, and the use of models in diagnostic procedures.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Hackerman Hall Room 216, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Jie X, Rodriguez B, Trayanova N. The ischemic heart: what causes ectopic beating? CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2005:7194-7. [PMID: 17281937 DOI: 10.1109/iembs.2005.1616168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanisms by which spontaneous electrical activity originates in the ischemic heart and leads to arrhythmia remain unknown, however mechanical stretch of the diseased region has been hypothesized to play a role. The goal of this study is to investigate the conditions that favor the initiation of stretch-induced premature beats in the ischemic heart. We employ a mathematical model of the ischemic cell subjected to stretch. The study found that upon stretch, spontaneous beats occur in the ischemic cell, which are due to the stretch-induced re-activation of the L-type calcium current.
Collapse
Affiliation(s)
- Xiao Jie
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
16
|
Roberts BN, Yang PC, Behrens SB, Moreno JD, Clancy CE. Computational approaches to understand cardiac electrophysiology and arrhythmias. Am J Physiol Heart Circ Physiol 2012; 303:H766-83. [PMID: 22886409 DOI: 10.1152/ajpheart.01081.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy.
Collapse
Affiliation(s)
- Byron N Roberts
- Tri-Institutional MD-PhD Program, Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College/The Rockefeller University/Sloan-Kettering Cancer Institute, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | |
Collapse
|
17
|
Potse M. Mathematical modeling and simulation of ventricular activation sequences: implications for cardiac resynchronization therapy. J Cardiovasc Transl Res 2012; 5:146-58. [PMID: 22282106 PMCID: PMC3294217 DOI: 10.1007/s12265-011-9343-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/18/2011] [Indexed: 02/04/2023]
Abstract
Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy.
Collapse
Affiliation(s)
- Mark Potse
- Institute of Computational Science, University of Lugano, Via Giuseppe Buffi 13, 6904 Lugano, Switzerland.
| |
Collapse
|
18
|
Di Diego JM, Antzelevitch C. Ischemic ventricular arrhythmias: experimental models and their clinical relevance. Heart Rhythm 2011; 8:1963-8. [PMID: 21740880 DOI: 10.1016/j.hrthm.2011.06.036] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/29/2011] [Indexed: 12/12/2022]
Abstract
In the United States, sudden cardiac death accounts for an estimated 300,000 to 350,000 cases each year, with 80,000 presenting as the first manifestation of a preexisting, sometimes unrecognized, coronary artery disease. Acute myocardial infarction (AMI)-induced ventricular fibrillation frequently occurs without warning, often leading to death within minutes in patients who do not receive prompt medical attention. Identification of patients at risk for AMI-induced lethal ventricular arrhythmias remains an unmet medical need. Recent studies suggest that a genetic predisposition may significantly contribute to the vulnerability of the ischemic myocardium to ventricular tachycardia/ventricular fibrillation. Numerous experimental models have been developed for the purpose of advancing our understanding of the mechanisms responsible for the development of cardiac arrhythmias in the setting of ischemia and with the aim of identifying antiarrhythmic therapies that could be of clinical benefit. While our understanding of the mechanisms underlying AMI-induced ventricular arrhythmias is coming into better focus, the risk stratification of patients with AMI remains a major challenge. This review briefly discusses our current state of knowledge regarding the mechanisms of ischemic ventricular arrhythmias and their temporal distribution as revealed by available experimental models, how these correlate with the clinical syndromes, as well as prospective prophylactic therapies for the prevention and treatment of ischemia-induced life-threatening arrhythmias.
Collapse
Affiliation(s)
- José M Di Diego
- Masonic Medical Research Laboratory, Utica, New York 13501, USA
| | | |
Collapse
|
19
|
Clayton RH, Nash MP, Bradley CP, Panfilov AV, Paterson DJ, Taggart P. Experiment-model interaction for analysis of epicardial activation during human ventricular fibrillation with global myocardial ischaemia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:101-11. [PMID: 21741985 DOI: 10.1016/j.pbiomolbio.2011.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 11/25/2022]
Abstract
We describe a combined experiment-modelling framework to investigate the effects of ischaemia on the organisation of ventricular fibrillation in the human heart. In a series of experimental studies epicardial activity was recorded from 10 patients undergoing routine cardiac surgery. Ventricular fibrillation was induced by burst pacing, and recording continued during 2.5 min of global cardiac ischaemia followed by 30 s of coronary reflow. Modelling used a 2D description of human ventricular tissue. Global cardiac ischaemia was simulated by (i) decreased intracellular ATP concentration and subsequent activation of an ATP sensitive K⁺ current, (ii) elevated extracellular K⁺ concentration, and (iii) acidosis resulting in reduced magnitude of the L-type Ca²⁺ current I(Ca,L). Simulated ischaemia acted to shorten action potential duration, reduce conduction velocity, increase effective refractory period, and flatten restitution. In the model, these effects resulted in slower re-entrant activity that was qualitatively consistent with our observations in the human heart. However, the flattening of restitution also resulted in the collapse of many re-entrant waves to several stable re-entrant waves, which was different to the overall trend we observed in the experimental data. These findings highlight a potential role for other factors, such as structural or functional heterogeneity in sustaining wavebreak during human ventricular fibrillation with global myocardial ischaemia.
Collapse
Affiliation(s)
- R H Clayton
- Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello S14DP, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Wilhelms M, Dössel O, Seemann G. In silico investigation of electrically silent acute cardiac ischemia in the human ventricles. IEEE Trans Biomed Eng 2011; 58:2961-4. [PMID: 21672673 DOI: 10.1109/tbme.2011.2159381] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute cardiac ischemia, which is caused by the occlusion of a coronary artery, often leads to lethal ventricular arrhythmias or heart failure. The early diagnosis of this pathology is based on changes of the electrocardiogram (ECG), i.e., mainly shifts of the ST segment. However, the underlying mechanisms responsible for these shifts are not completely understood. Furthermore, clinical observations indicate that some acute ischemia cases can hardly be detected using standard 12-lead ECG only. Therefore, multiscale computer simulations of cardiac ischemia using realistic models of human ventricles were carried out in this work. For this purpose, the transmembrane voltage distributions in the heart and the corresponding body surface potentials were computed with varying transmural extent of the ischemic region at different ischemia stages. Some of the simulated ischemia cases were " electrically silent," i.e., they could hardly be identified in the 12-lead ECG.
Collapse
Affiliation(s)
- Mathias Wilhelms
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| | | | | |
Collapse
|
21
|
Caldwell JC, Burton FL, Cobbe SM, Smith GL. Slowing of Electrical Activity in Ventricular Fibrillation is Not Associated with Increased Defibrillation Energies in the Isolated Rabbit Heart. Front Physiol 2011; 2:11. [PMID: 21519386 PMCID: PMC3078558 DOI: 10.3389/fphys.2011.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/09/2011] [Indexed: 11/13/2022] Open
Abstract
Prolonged out-of-hospital ventricular fibrillation (VF) arrests are associated with reduced ECG dominant frequency (DF) and diminished defibrillation success. Partial reversal of ischemia increases ECG DF and improves defibrillation outcome. We have investigated the metabolic components of ischemia responsible for the decline in ECG DF and defibrillation success. Isolated Langendorff-perfused rabbit hearts were loaded with the voltage-sensitive dye RH237. Using a photodiode array, epicardial membrane potentials were recorded at 252 sites (15 mm × 15 mm) on the anterior surface of the left and right ventricles. Simultaneously, a global ECG was recorded. VF was induced by burst pacing, and after 60s, perfusion was either reduced to 6 ml/min or the perfusate composition changed to impose hypoxia (95% N(2)/5% CO(2)), pH 6.7 (80% O(2)/20% CO(2)), or hyperkalemia (8 mM). Using fast Fourier transform, power spectra were created from the optical signals and the global ECG. The optical power spectra were summated to give a global power spectrum (pseudoECG). At 600 s the minimum defibrillation voltage (MDV) was determined by step-up protocol. During VF, the ECG and pseudoECG DF were reduced by low-flow ischemia (9.0 ± 1.0 Hz, p < 0.01, n = 5) and raised [K(+)](o) (12.2 ± 1.3 Hz, p < 0.05, n = 7) compared to control (19.2 ± 1.5 Hz, n = 20), but were unaffected by acidic pH(o) (16.7 ± 1.1 Hz, n = 11) and hypoxia (14.0 ± 1.2 Hz, n = 10). In contrast, the MDV was raised by acidic pH (156.1 ± 26.4 V, p < 0.001) and hypoxia (154.1 ± 22.1 V, p < 0.01) compared to control (65.6 ± 2.3 V), but comparable changes were not observed in low-flow ischemia (61.0 ± 0.5 V) or raised [K(+)](o) (56 ± 3 V). In summary, different metabolites are responsible for the reduction in DF and the increase in defibrillation energy during ischemic VF.
Collapse
Affiliation(s)
- Jane C Caldwell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow Glasgow, UK
| | | | | | | |
Collapse
|
22
|
Comparing Simulated Electrocardiograms of Different Stages of Acute Cardiac Ischemia. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-21028-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
23
|
Roth BJ. Long versus short duration fibrillation: what's the difference? Heart Rhythm 2008; 5:1607-8. [PMID: 18984540 DOI: 10.1016/j.hrthm.2008.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Indexed: 10/21/2022]
|
24
|
Linge SO, Lines GT, Sundnes J, Tveito A. On the frequency of automaticity during ischemia in simulations based on stochastic perturbations of the Luo–Rudy 1 model. Comput Biol Med 2008; 38:1218-27. [DOI: 10.1016/j.compbiomed.2008.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 05/30/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
25
|
Tice BM, Rodríguez B, Eason J, Trayanova N. Mechanistic investigation into the arrhythmogenic role of transmural heterogeneities in regional ischaemia phase 1A. Europace 2008; 9 Suppl 6:vi46-58. [PMID: 17959693 DOI: 10.1093/europace/eum204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIMS Studies of arrhythmogenesis during ischemia have focused primarily on reentrant mechanisms manifested on the epicardial surface. The goal of this study was to use a physiologically-accurate model of acute regional ischemia phase 1A to determine the contribution of ischaemia-induced transmural electrophysiological heterogeneities to arrhythmogenesis following left anterior descending artery occlusion. METHODS AND RESULTS A slice through a geometrical model of the rabbit ventricles was extracted and a model of regional ischaemia developed. The model included a central ischaemic zone incorporating transmural gradients of I(K(ATP)) activation and [K+]o, surrounded by ischaemic border zones (BZs), with the degree of ischaemic effects varied to represent progression of ischaemia 2-10 min post-occlusion. Premature stimulation was applied over a range of coupling intervals to induce re-entry. The presence of ischaemic BZs and a transmural gradient in I(K(ATP)) activation provided the substrate for re-entrant arrhythmias. Increased dispersion of refractoriness and conduction velocity in the BZs with time post-occlusion led to a progressive increase in arrhythmogenesis. In the absence of a transmural gradient of I(K(ATP)) activation, re-entry was rarely sustained. CONCLUSION Knowledge of the mechanism by which specific electrophysiological heterogeneities underlie arrhythmogenesis during acute ischaemia could be useful in developing preventative treatments for patients at risk of coronary vascular disease.
Collapse
Affiliation(s)
- Brock M Tice
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, CSEB 216, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Myocardial ischemia is one of the main causes of sudden cardiac death, with 80% of victims suffering from coronary heart disease. In acute myocardial ischemia, the obstruction of coronary flow leads to the interruption of oxygen flow, glucose, and washout in the affected tissue. Cellular metabolism is impaired and severe electrophysiological changes in ionic currents and concentrations ensue, which favor the development of lethal cardiac arrhythmias such as ventricular fibrillation. Due to the burden imposed by ischemia in our societies, a large body of research has attempted to unravel the mechanisms of initiation, sustenance, and termination of cardiac arrhythmias in acute ischemia, but the rapidity and complexity of ischemia-induced changes as well as the limitations in current experimental techniques have hampered evaluation of ischemia-induced alterations in cardiac electrical activity and understanding of the underlying mechanisms. Over the last decade, computer simulations have demonstrated the ability to provide insight, with high spatiotemporal resolution, into ischemic abnormalities in cardiac electrophysiological behavior from the ionic channel to the whole organ. This article aims to review and summarize the results of these studies and to emphasize the role of computer simulations in improving the understanding of ischemia-related arrhythmias and how to efficiently terminate them.
Collapse
Affiliation(s)
- Blanca Rodríguez
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, UK.
| | | | | |
Collapse
|
27
|
Zhang H, Zhang ZX, Yang L, Jin YB, Huang YZ. Mechanisms of the acute ischemia-induced arrhythmogenesis – A simulation study. Math Biosci 2006; 203:1-18. [PMID: 16904128 DOI: 10.1016/j.mbs.2006.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/10/2006] [Accepted: 06/24/2006] [Indexed: 11/15/2022]
Abstract
The underlying ionic mechanisms of ischemic-induced arrhythmia were studied by the computer simulation method. To approximate the real situation, ischemic cells were simulated by considering the three major component conditions of acute ischemia (elevated extracellular K(+) concentration, acidosis and anoxia) at the level of ionic currents and ionic concentrations, and a round ischemic zone was introduced into a homogeneous healthy sheet to avoid sharp angle of the ischemic tissue. The constructed models were solved using the operator splitting and adaptive time step methods, and the perturbation finite difference (PFD) scheme was first used to integrate the partial differential equations (PDEs) in the model. The numerical experiments showed that the action potential durations (APDs) of ischemic cells did not exhibited rate adaptation characteristic, resulting in flattening of the APD restitution curve. With reduction of sodium channel availability and long recovery of excitability, refractory period of the ischemic tissue was significantly prolonged, and could no longer be considered as same as APD. Slope of the conduction velocity (CV) restitution curve increased both in normal and ischemic region when pacing cycle length (PCL) was short, and refractory period dispersion increased with shortening of PCL as well. Therefore, dynamic changes of CV and dispersion of refractory period rather than APD were suggested to be the fundamental mechanisms of arrhythmia in regional ischemic myocardium.
Collapse
Affiliation(s)
- Hong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education of China, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | | | |
Collapse
|
28
|
Abstract
Despite its critical role in restoring cardiac rhythm and thus in saving human life, cardiac defibrillation remains poorly understood. Further mechanistic inquiry is hampered by the inability of presently available experimental techniques to resolve, with sufficient accuracy, electrical behaviour confined to the depth of the ventricles. The objective of this review article is to demonstrate that realistic 3-D simulations of the ventricular defibrillation process in close conjunction with experimental observations are capable of bringing a new level of understanding of the electrical events that ensue from the interaction between fibrillating myocardium and applied shock. The article does this by reviewing the results of two studies, one on vulnerability to electric shocks and another on defibrillation. An overview of the modelling tools used in these studies is also provided.
Collapse
Affiliation(s)
- Natalia Trayanova
- Department of Biomedical Engineering, 500 Lindy Boggs Center, Suite 500, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
29
|
Rodríguez B, Tice BM, Eason JC, Aguel F, Trayanova N. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia. Heart Rhythm 2005; 1:695-703. [PMID: 15851241 DOI: 10.1016/j.hrthm.2004.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 08/24/2004] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study is to characterize the changes in vulnerability to electric shocks during phase 1A of global ischemia in the rabbit ventricles and to determine the mechanisms responsible for these changes. BACKGROUND Mechanisms responsible for the changes in cardiac vulnerability over the course of ischemia phase 1A remain poorly understood. The lack of understanding results from the rapid ischemic change in cardiac electrophysiologic properties, which renders experimental evaluation of vulnerability difficult. METHODS To examine dynamic changes in vulnerability to electric shocks over the course of acute global ischemia phase 1A, this study used a three-dimensional anatomically accurate bidomain model of ischemic rabbit ventricles. Monophasic shocks are applied at various coupling intervals to construct vulnerability grids in normoxia and at various stages of ischemia phase 1A. RESULTS Our simulations demonstrate that 2 to 3 minutes after the onset of ischemia, the upper limit of vulnerability remains at its normoxic value (12.75 V/cm); however, arrhythmias are induced at shorter coupling intervals. As ischemia progresses, the upper limit of vulnerability decreases, reaching 6.4 V/cm in the advanced stage of ischemia phase 1A, and the vulnerable window shifts towards longer coupling intervals. CONCLUSIONS Changes in the upper limit of vulnerability result from an increase in the spatial extent of the shock-end excitation wavefronts and the slower recovery from shock-induced positive polarization. Shifts in the vulnerable window stem from decreases in local repolarization times and the occurrence of postshock conduction failure caused by prolonged postrepolarization refractoriness.
Collapse
|
30
|
Mackerle J. Finite element modelling and simulations in cardiovascular mechanics and cardiology: A bibliography 1993–2004. Comput Methods Biomech Biomed Engin 2005; 8:59-81. [PMID: 16154871 DOI: 10.1080/10255840500141486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The paper gives a bibliographical review of the finite element modelling and simulations in cardiovascular mechanics and cardiology from the theoretical as well as practical points of views. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1993 and 2004. At the end of this paper, more than 890 references are given dealing with subjects as: Cardiovascular soft tissue modelling; material properties; mechanisms of cardiovascular components; blood flow; artificial components; cardiac diseases examination; surgery; and other topics.
Collapse
Affiliation(s)
- Jaroslav Mackerle
- Department of Mechanical Engineering, Linköping Institute of Technology, Sweden.
| |
Collapse
|
31
|
Sharma V, Susil RC, Tung L. Paradoxical loss of excitation with high intensity pulses during electric field stimulation of single cardiac cells. Biophys J 2005; 88:3038-49. [PMID: 15665123 PMCID: PMC1305396 DOI: 10.1529/biophysj.104.047142] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmembrane potential responses of single cardiac cells stimulated at rest were studied with uniform rectangular field pulses having durations of 0.5-10 ms. Cells were enzymatically isolated from guinea pig ventricles, stained with voltage sensitive dye di-8-ANEPPS, and stimulated along their long axes. Fluorescence signals were recorded with spatial resolution of 17 microm for up to 11 sites along the cell. With 5 and 10 ms pulses, all cells (n = 10) fired an action potential over a broad range of field amplitudes (approximately 3-65 V/cm). With 0.5 and 1 ms pulses, all cells (n = 7) fired an action potential for field amplitudes ranging from the threshold value (approximately 4-8 V/cm) to 50-60 V/cm. However, when the field amplitude was further increased, five of seven cells failed to fire an action potential. We postulated that this paradoxical loss of excitation for higher amplitude field pulses is the result of nonuniform polarization of the cell membrane under conditions of electric field stimulation, and a counterbalancing interplay between sodium current and inwardly rectifying potassium current with increasing field strength. This hypothesis was verified using computer simulations of a field-stimulated guinea pig ventricular cell. In conclusion, we show that for stimulation with short-duration pulses, cells can be excited for fields ranging between a low amplitude excitation threshold and a high amplitude threshold above which the excitation is suppressed. These results can have implications for the mechanistic understanding of defibrillation outcome, especially in the setting of diseased myocardium.
Collapse
Affiliation(s)
- Vinod Sharma
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
32
|
Alonso Atienza F, Requena Carrión J, García Alberola A, Rojo Alvarez JL, Sánchez Muñoz JJ, Martínez Sánchez J, Valdés Chávarri M. [A probabilistic model of cardiac electrical activity based on a cellular automata system]. Rev Esp Cardiol 2005. [PMID: 15680130 DOI: 10.1016/s1885-5857(06)60233-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION AND OBJECTIVES Mathematical models of cardiac electrical activity may help to elucidate the electrophysiological mechanisms involved in the genesis of arrhythmias. The most realistic simulations are based on reaction-diffusion models and involve a considerable computational burden. The aim of this study was to develop a computer model of cardiac electrical activity able to simulate complex electrophysiological phenomena but free of the large computational demands required by other commonly used models. MATERIAL AND METHOD A cellular automata system was used to model the cardiac tissue. Each individual unit had several discrete states that changed according to simple rules as a function of the previous state and the state of the neighboring cells. Activation was considered as a probabilistic process and was adjusted using restitution curves. In contrast, repolarization was modeled as a deterministic phenomenon. Cell currents in the model were calculated with a prototypical action potential that allowed virtual monopolar and bipolar electrograms to be simulated at any point in space. RESULTS Reproducible flat activation fronts, propagation from a focal stimulus, and reentry processes that were stable and unstable in two dimensions (with their corresponding electrograms) were obtained. The model was particularly suitable for the simulation of the effects observed in curvilinear activation fronts. Fibrillatory conduction and stable rotors in two- and three-dimensional substrates were also obtained. CONCLUSIONS The probabilistic cellular automata model was simple to implement and was not associated with a high computational burden. It provided a realistic simulation of complex phenomena of interest in electrophysiology.
Collapse
Affiliation(s)
- Felipe Alonso Atienza
- Departamento de Teoría de la Señal y Comunicaciones, Universidad Carlos III, Leganés, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Alonso Atienza F, Requena Carrión J, García Alberola A, Rojo Álvarez JL, Sánchez Muñoz JJ, Martínez Sánchez J, Valdés Chávarri M. Desarrollo de un modelo probabilístico de la actividad eléctrica cardíaca basado en un autómata celular. Rev Esp Cardiol 2005. [DOI: 10.1157/13070507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|