1
|
Zhang Z, Li X, He J, Wang S, Wang J, Liu J, Wang Y. Molecular mechanisms of endothelial dysfunction in coronary microcirculation dysfunction. J Thromb Thrombolysis 2023; 56:388-397. [PMID: 37466848 DOI: 10.1007/s11239-023-02862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Coronary microvascular endothelial cells (CMECs) react to changes in coronary blood flow and myocardial metabolites and regulate coronary blood flow by balancing vasoconstrictors-such as endothelin-1-and the vessel dilators prostaglandin, nitric oxide, and endothelium-dependent hyperpolarizing factor. Coronary microvascular endothelial cell dysfunction is caused by several cardiovascular risk factors and chronic rheumatic diseases that impact CMEC blood flow regulation, resulting in coronary microcirculation dysfunction (CMD). The mechanisms of CMEC dysfunction are not fully understood. However, the following could be important mechanisms: the overexpression and activation of nicotinamide adenine dinucleotide phosphate oxidase (Nox), and mineralocorticoid receptors; the involvement of reactive oxygen species (ROS) caused by a decreased expression of sirtuins (SIRT3/SIRT1); forkhead box O3; and a decreased SKCA/IKCA expression in the endothelium-dependent hyperpolarizing factor electrical signal pathway. In addition, p66Shc is an adapter protein that promotes oxidative stress; although there are no studies on its involvement with cardiac microvessels, it is possible it plays an important role in CMD.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, College of Pharmacy, Jilin University, Changchun, 130000, China
| | - Jiahuan He
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Shipeng Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Jingyue Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Junqian Liu
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China
| | - Yushi Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 71 of Xinmin Street, Changchun, 13000, China.
| |
Collapse
|
2
|
Xiao R, Zhao HC, Yan TT, Zhang Q, Huang YS. Angiotensin II and hypoxia induce autophagy in cardiomyocytes via activating specific protein kinase C subtypes. Cardiovasc Diagn Ther 2021; 11:744-759. [PMID: 34295701 DOI: 10.21037/cdt-20-883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
Background The purpose of this study was to explore the role of protein kinase C (PKC) isozymes and reactive oxygen species (ROS) in hypoxia and angiotensin (Ang) II-induced autophagy. Methods Primary cardiomyocytes were isolated from Sprague-Dawley (SD) neonatal rats and cultured in hypoxia and/or Ang II conditions. Dihydroethidium fluorescence staining was used to detect the content of ROS. Cardiomyocyte autophagy was determined using Monodansylcadaverine fluorescence staining and Western blot. We also inhibited ROS production to explore the relationship between ROS and autophagy. ELISA was used to detect the contents of PKC δ and PKC ε. After inhibition of PKC δ activation and PKC ε expression by lentiviral siRNA, ROS content and autophagy of cultured cardiomyocytes were detected. Results Hypoxia and Ang II stimulation increased autophagy in cardiomyocytes, accompanied by increased intracellular ROS production. Inhibiting ROS following hypoxia or Ang II stimulation significantly suppressed autophagy in comparison with hypoxia or Ang II stimulation group. Inhibiting PKC δ significantly reduced ROS production and autophagy activity following hypoxia or accompanied with Ang II stimulation except Ang II stimulation alone. Knockdown of PKC ε notably decreased ROS production and autophagy in response to Ang II alone and in combination with hypoxia rather than hypoxia alone. Conclusions Both hypoxia and Ang II stimulation can induce autophagy in cardiomyocytes through increasing intracellular ROS. However, hypoxia and Ang II stimulation induced myocardial autophagy via PKC δ and PKC ε, respectively.
Collapse
Affiliation(s)
- Rong Xiao
- Burn Center of PLA, No. 990 Hospital of PLA, Zhumadian, China
| | - Hai-Chun Zhao
- Burn Center of PLA, No. 990 Hospital of PLA, Zhumadian, China
| | - Tian-Tian Yan
- Burn Center of PLA, No. 990 Hospital of PLA, Zhumadian, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yue-Sheng Huang
- Department of Wound Repair, Institute of Wound Repair, Shenzhen People's Hospital, the First Affiliated Hospital of Southern University of Science and Technology, and the Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
3
|
The relationship between habitual dietary sodium intake and RAAS blockade on circulating microparticle levels in type two diabetes. Clin Sci (Lond) 2018; 132:2207-2220. [PMID: 30249722 DOI: 10.1042/cs20180472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Low sodium intake is paradoxically associated with adverse cardiovascular outcomes in individuals with type 2 diabetes mellitus (T2D), possibly from renin-angiotensin-aldosterone system (RAAS) activation, leading to endothelial dysfunction. In the present study, we investigated the associations between habitual sodium intake and RAAS blockade on endothelial function by measuring circulating microparticles (MPs) in individuals with T2D. METHODS We conducted a prospective, cross-sectional study in 74 individuals with T2D. Habitual dietary sodium intake was estimated by using the mean of three corrected 24-h urine sodium excretion measurements (24hUNa). MP subtypes in platelet-free plasma were quantitated using flow cytometry. RESULTS No associations between 24hUNa with levels of endothelial MPs were observed. Instead, a trend toward higher diabetes related CD36+/CD235a+ MP levels was associated with lower 24hUNa (rho = -0.23, P=0.05). When stratified according to tertiles of 24hUNa, platelet-derived CD42b+/CD41+ and CD42+/CD41+/Annexin V+ MPs were higher in the lowest tertile (24hUNa < 157 mmol/24 h) (P=0.02 respectively). Despite RAAS blockade being associated with lower levels of most MP subsets, it was not associated with lower MPs, in the setting of low sodium intake. CONCLUSION Lower sodium intake is associated with higher circulating procoagulant MPs, but not with evidence of endothelial dysfunction in individuals with T2D.
Collapse
|
4
|
Kong YW, Baqar S, Jerums G, Ekinci EI. Sodium and Its Role in Cardiovascular Disease - The Debate Continues. Front Endocrinol (Lausanne) 2016; 7:164. [PMID: 28066329 PMCID: PMC5179550 DOI: 10.3389/fendo.2016.00164] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023] Open
Abstract
Guidelines have recommended significant reductions in dietary sodium intake to improve cardiovascular health. However, these dietary sodium intake recommendations have been questioned as emerging evidence has shown that there is a higher risk of cardiovascular disease with a low sodium diet, including in individuals with type 2 diabetes. This may be related to the other pleotropic effects of dietary sodium intake. Therefore, despite recent review of dietary sodium intake guidelines by multiple organizations, including the dietary guidelines for Americans, American Diabetes Association, and American Heart Association, concerns about the impact of the degree of sodium restriction on cardiovascular health continue to be raised. This literature review examines the effects of dietary sodium intake on factors contributing to cardiovascular health, including left ventricular hypertrophy, heart rate, albuminuria, rennin-angiotensin-aldosterone system activation, serum lipids, insulin sensitivity, sympathetic nervous system activation, endothelial function, and immune function. In the last part of this review, the association between dietary sodium intake and cardiovascular outcomes, especially in individuals with diabetes, is explored. Given the increased risk of cardiovascular disease in individuals with diabetes and the increasing incidence of diabetes worldwide, this review is important in summarizing the recent evidence regarding the effects of dietary sodium intake on cardiovascular health, especially in this population.
Collapse
Affiliation(s)
- Yee Wen Kong
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Sara Baqar
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - George Jerums
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Elif I. Ekinci
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
- Menzies School of Health Research, Darwin, NT, Australia
| |
Collapse
|
5
|
Boegehold MA, Drenjancevic I, Lombard JH. Salt, Angiotensin II, Superoxide, and Endothelial Function. Compr Physiol 2015; 6:215-54. [PMID: 26756632 DOI: 10.1002/cphy.c150008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper function of the vascular endothelium is essential for cardiovascular health, in large part due to its antiproliferative, antihypertrophic, and anti-inflammatory properties. Crucial to the protective role of the endothelium is the production and liberation of nitric oxide (NO), which not only acts as a potent vasodilator, but also reduces levels of reactive oxygen species, including superoxide anion (O2•-). Superoxide anion is highly injurious to the vasculature because it not only scavenges NO molecules, but has other damaging effects, including direct oxidative disruption of normal signaling mechanisms in the endothelium and vascular smooth muscle cells. The renin-angiotensin system plays a crucial role in the maintenance of normal blood pressure. This function is mediated via the peptide hormone angiotensin II (ANG II), which maintains normal blood volume by regulating Na+ excretion. However, elevation of ANG II above normal levels increases O2•- production, promotes oxidative stress and endothelial dysfunction, and plays a major role in multiple disease conditions. Elevated dietary salt intake also leads to oxidant stress and endothelial dysfunction, but these occur in the face of salt-induced ANG II suppression and reduced levels of circulating ANG II. While the effects of abnormally high levels of ANG II have been extensively studied, far less is known regarding the mechanisms of oxidant stress and endothelial dysfunction occurring in response to chronic exposure to abnormally low levels of ANG II. The current article focuses on the mechanisms and consequences of this less well understood relationship among salt, superoxide, and endothelial function.
Collapse
Affiliation(s)
| | - Ines Drenjancevic
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Thengchaisri N, Hein TW, Ren Y, Kuo L. Endothelin-1 impairs coronary arteriolar dilation: Role of p38 kinase-mediated superoxide production from NADPH oxidase. J Mol Cell Cardiol 2015. [PMID: 26211713 DOI: 10.1016/j.yjmcc.2015.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated levels of endothelin-1 (ET-1), a potent vasoactive peptide, are implicated as a risk factor for cardiovascular diseases by exerting vasoconstriction. The aim of this study was to address whether ET-1, at sub-vasomotor concentrations, elicits adverse effects on coronary microvascular function. Porcine coronary arterioles (50-100μm) were isolated, cannulated and pressurized without flow for in vitro study. Diameter changes were recorded using a videomicrometer. Arterioles developed basal tone (60±3μm) and dilated to the endothelium-dependent nitric oxide (NO)-mediated vasodilators serotonin (1nmol/L to 0.1μmol/L) and adenosine (1nmol/L to 10μmol/L). Treating the vessels with a clinically relevant sub-vasomotor concentration of ET-1 (10pmol/L, 60min) significantly attenuated arteriolar dilations to adenosine and serotonin but not to endothelium-independent vasodilator sodium nitroprusside. The arteriolar wall contains ETA receptors and the adverse effect of ET-1 was prevented by ETA receptor antagonist BQ123, the superoxide scavenger Tempol, the NADPH oxidase inhibitors apocynin and VAS2870, the NOX2-based NADPH oxidase inhibitor gp91 ds-tat, or the p38 kinase inhibitor SB203580. However, ETB receptor antagonist BQ788, H2O2 scavenger catalase, scrambled gp91 ds-tat, or inhibitors of xanthine oxidase (allopurinol), PKC (Gö 6983), Rho kinase (Y27632), and c-Jun N-terminal kinase (SP600125) did not protect the vessel. Immunohistochemical staining showed that ET-1 elicited Tempol-, apocynin- and SB203580-sensitive superoxide productions in the arteriolar wall. Our results indicate that exposure of coronary arterioles to a pathophysiological, sub-vasomotor concentration of ET-1 leads to vascular dysfunction by impairing endothelium-dependent NO-mediated dilation via p38 kinase-mediated production of superoxide from NADPH oxidase following ETA receptor activation.
Collapse
Affiliation(s)
- Naris Thengchaisri
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA; Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Travis W Hein
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Yi Ren
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Lih Kuo
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA; Department of Surgery, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA.
| |
Collapse
|
7
|
Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda) 2015; 29:343-60. [PMID: 25180264 DOI: 10.1152/physiol.00009.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells and smooth muscle cells of resistance arteries mediate opposing responses to mechanical forces acting on the vasculature, promoting dilation in response to flow and constriction in response to pressure, respectively. In this review, we explore the role of TRP channels, particularly endothelial TRPV4 and smooth muscle TRPC6 and TRPM4 channels, in vascular mechanosensing circuits, placing their putative mechanosensitivity in context with other proposed upstream and downstream signaling pathways.
Collapse
Affiliation(s)
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
8
|
Huang A, Pinto JT, Froogh G, Kandhi S, Qin J, Wolin MS, Hintze TH, Sun D. Role of homocysteinylation of ACE in endothelial dysfunction of arteries. Am J Physiol Heart Circ Physiol 2014; 308:H92-100. [PMID: 25416191 DOI: 10.1152/ajpheart.00577.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The direct impact of de novo synthesis of homocysteine (Hcy) and its reactive metabolites, Hcy-S-S-Hcy and Hcy thiolactone (HCTL), on vascular function has not been fully elucidated. We hypothesized that Hcy synthesized within endothelial cells affects activity of angiotensin-converting enzyme (ACE) by direct homocysteinylation of its amino- and/or sulfhydryl moieties. This covalent modification enhances ACE reactivity toward angiotensin II (ANG II)-NADPH oxidase-superoxide-dependent endothelial dysfunction. Mesenteric and coronary arteries isolated from normal rats were incubated for 3 days with or without exogenous methionine (Met, 0.1-0.3 mM), a precursor to Hcy. Incubation of arteries in Met-free media resulted in time-dependent decreases in vascular Hcy formation. By contrast, vessels incubated with Met produced Hcy in a dose-dependent manner. There was a notably greater de novo synthesis of Hcy from endothelial than from smooth muscle cells. Enhanced levels of Hcy production significantly impaired shear stress-induced dilation and release of nitric oxide, events that are associated with elevated production of vascular superoxide. Each of these processes was attenuated by ANG II type I receptor blocker or ACE and NADPH oxidase inhibitors. In addition, in vitro exposure of purified ACE to Hcy-S-S-Hcy/HCTL resulted in formation of homocysteinylated ACE and an enhanced ACE activity. The enhanced ACE activity was confirmed in isolated coronary and mesenteric arteries that had been exposed directly to Hcy-S-S-Hcy/HCTL or after Met incubation. In conclusion, vasculature-derived Hcy initiates endothelial dysfunction that, in part, may be mediated by ANG II-dependent activation of NADPH oxidase in association with homocysteinylation of ACE.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - John T Pinto
- Department of Biochemistry, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
9
|
Relationship between urinary sodium excretion and serum aldosterone in patients with diabetes in the presence and absence of modifiers of the renin-angiotensin-aldosterone system. Clin Sci (Lond) 2013; 126:147-54. [PMID: 23875766 DOI: 10.1042/cs20130128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although low dietary salt intake has beneficial effects on BP (blood pressure), low 24hUNa (24 h urinary sodium excretion), the most accurate estimate of dietary salt intake, is associated with increased mortality in people with diabetes. In the non-diabetic population, low salt intake is associated with increased RAAS (renin-angiotensin-aldosterone system) activity. In this cross-sectional study, we examined the relationship between 24hUNa, PRA (plasma renin activity), serum aldosterone and BNP (brain natriuretic peptide) in patients with diabetes. Clinical characteristics, 24hUNa, PRA, serum aldosterone and BNP were recorded in 222 consecutive patients (77% with Type 2 diabetes) attending a diabetes clinic at a tertiary hospital. The relationship between 24hUNa, serum aldosterone, PRA, BNP, urinary potassium excretion, serum potassium, serum sodium, eGFR (estimated glomerular filtration rate), urinary albumin excretion and HbA1c (glycated haemoglobin) was examined by a multivariable regression model. Levels of 24hUNa significantly predicted serum aldosterone in a linear fashion (R²=0.20, P=0.002). In the subgroup of patients (n=46) not taking RAAS-modifying agents, this relationship was also observed (R²=0.10, P=0.03), and the effect of 24hUNa on serum aldosterone was found to be more pronounced than in the whole cohort (coefficient=-0.0014, compared with -0.0008). There was no demonstrable relationship between 24hUNa and PRA or BNP. Low 24hUNa is associated with increased serum aldosterone in people with diabetes, in the presence and absence of RAAS-modifying agents. This raises the possibility that stimulation of the RAAS may be a mechanism that contributes to adverse outcomes observed in patients with low 24hUNa.
Collapse
|
10
|
Priestley JRC, Buelow MW, McEwen ST, Weinberg BD, Delaney M, Balus SF, Hoeppner C, Dondlinger L, Lombard JH. Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. Microvasc Res 2013; 89:134-45. [PMID: 23628292 PMCID: PMC3758804 DOI: 10.1016/j.mvr.2013.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/19/2013] [Accepted: 04/18/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVES We investigated the effect of suppressing plasma angiotensin II (ANG II) levels on arteriolar relaxation in the hamster cheek pouch. METHODS Arteriolar diameters were measured via television microscopy during short-term (3-6days) high salt (HS; 4% NaCl) diet and angiotensin converting enzyme (ACE) inhibition with captopril (100mg/kg/day). RESULTS ACE inhibition and/or HS diet eliminated endothelium-dependent arteriolar dilation to acetylcholine, endothelium-independent dilation to the NO donor sodium nitroprusside, the prostacyclin analogs carbacyclin and iloprost, and the KATP channel opener cromakalim; and eliminated arteriolar constriction during KATP channel blockade with glibenclamide. Scavenging of superoxide radicals and low dose ANG II infusion (25ng/kg/min, subcutaneous) reduced oxidant stress and restored arteriolar dilation in arterioles of HS-fed hamsters. Vasoconstriction to topically-applied ANG II was unaffected by HS diet while arteriolar responses to elevation of superfusion solution PO2 were unaffected (5% O2, 10% O2) or reduced (21% O2) by HS diet. CONCLUSIONS These findings indicate that sustained exposure to low levels of circulating ANG II leads to widespread dysfunction in endothelium-dependent and independent vascular relaxation mechanisms in cheek pouch arterioles by increasing vascular oxidant stress, but does not potentiate O2- or ANG II-induced constriction of arterioles in the distal microcirculation of normotensive hamsters.
Collapse
|
11
|
Sun D, Ojaimi C, Wu H, Kaley G, Huang A. CYP2C29 produces superoxide in response to shear stress. Microcirculation 2013; 19:696-704. [PMID: 22708815 DOI: 10.1111/j.1549-8719.2012.00202.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Activation of CYP2C29 releases superoxide during shear stress-induced dilation (SSID). METHODS Mesenteric arteries isolated from female eNOS-KO and WT mice were cannulated and pressurized. Vasodilation and superoxide production in response to shear stress were assessed. RESULTS Shear stress-induced dilation was significantly attenuated in vessels of eNOS-KO compared with WT mice, which was normalized by tempol and PEG-Catalase, in a PPOH (inhibitor of CYP2C29)-sensitive manner, but remained unaffected by VAS2870 and allopurinol, inhibitors of NADPH oxidase and xanthine oxidase, respectively. NaNO(2)-induced dilation was comparable in both strains of mice. Confocal microscopy shows that SS-stimulated superoxide was increased particularly in the endothelium of eNOS-KO mice. HPLC analysis of 2-EOH indicated an increase in SS-stimulated superoxide in vessels of eNOS-KO mice, a response that was sensitive to PPOH. Inhibition of soluble epoxide hydrolase significantly enhanced SSID without affecting SS-stimulated superoxide production. CYP2C29 and catalase were upregulated, and exogenous H(2)O(2) caused vasoconstriction in vessels of eNOS-KO mice. CONCLUSIONS CYP2C29 synthesizes EETs to mediate SSID, and simultaneously releases superoxide and sequential H(2)O(2), which in turn impair SSID.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | |
Collapse
|
12
|
Huang A, Yang YM, Yan C, Kaley G, Hintze TH, Sun D. Altered MAPK signaling in progressive deterioration of endothelial function in diabetic mice. Diabetes 2012; 61:3181-8. [PMID: 22933112 PMCID: PMC3501862 DOI: 10.2337/db12-0559] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We aimed to investigate specific roles of mitogen-activated protein kinases (MAPK) in the deterioration of endothelial function during the progression of diabetes and the potential therapeutic effects of MAPK inhibitors and agonists in the amelioration of endothelial function. Protein expression and phosphorylation of p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular signal-regulated kinase (Erk) were assessed in mesenteric arteries of 3- (3M) and 9-month-old (9M) male diabetic and control mice. The expression of p38, JNK, and Erk was comparable in all groups of mice, but the phosphorylation of p38 and JNK was increased in 3M and further increased in 9M diabetic mice, whereas the phosphorylation of Erk was substantially reduced in 9M diabetic mice. NADPH oxidase-dependent superoxide production was significantly increased in vessels of two ages of diabetic mice. Inhibition of either p38 with SB203580 or JNK with SP600125 reduced superoxide production and improved shear stress-induced dilation (SSID) in 3M, but not in 9M, diabetic mice. Treating the vessels of 9M diabetic mice with resveratrol increased Erk phosphorylation and shear stress-induced endothelial nitric oxide synthase (eNOS) phosphorylation and activity, but resveratrol alone did not improve SSID. Administration of resveratrol and SB203580 or resveratrol and SP600125 together significantly improved SSID in vessels of 9M diabetic mice. The improved response was prevented by U0126, an Erk inhibitor. Thus, p38/JNK-dependent increase in oxidative stress diminished nitric oxide-mediated dilation in vessels of 3M diabetic mice. Oxidative stress and impaired Erk-dependent activation of eNOS exacerbates endothelial dysfunction in the advanced stage of diabetes.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
- Corresponding authors: An Huang, , and Dong Sun,
| | - Yang-Ming Yang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Changdong Yan
- Department of Physiology, Xuzhou Medical College, China
| | - Gabor Kaley
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Thomas H. Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
- Department of Physiology, Xuzhou Medical College, China
- Corresponding authors: An Huang, , and Dong Sun,
| |
Collapse
|
13
|
Beyer AM, Raffai G, Weinberg B, Fredrich K, Lombard JH. Dahl salt-sensitive rats are protected against vascular defects related to diet-induced obesity. Hypertension 2012; 60:404-10. [PMID: 22710645 DOI: 10.1161/hypertensionaha.112.191551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity increases plasma renin activity and angiotensin II levels, leading to vascular damage, elevated blood pressure, diabetes mellitus, and renal damage. Because genetic deletion of crucial parts of the renin-angiotensin system protect against obesity-related cardiovascular defects, we hypothesized that Dahl salt-sensitive (SS) rats, a model of chronically low plasma renin activity and angiotensin II levels, would be protected against vascular defects during diet-induced obesity compared with SS.13(BN) consomic rats showing normal renin-angiotensin system regulation. We evaluated vascular function in middle cerebral arteries of SS or SS.13(BN) rats fed high-fat (45% kcal from fat) versus normal-fat diet for 15 to 20 weeks from weaning. Endothelium-dependent relaxation in response to acetylcholine (10(-8) to 10(-4) mol/L) was restored in middle cerebral arteries of high-fat SS rats versus normal-fat diet controls, whereas vasodilation to acetylcholine was dramatically reduced in high-fat SS 13(BN) rats versus normal-fat diet controls. These findings support the hypothesis that physiological levels of angiotensin II play an important role in maintaining normal vascular relaxation in cerebral arteries and suggest that the cerebral vasculature of the SS rat model is genetically protected against endothelial dysfunction in diet-induced obesity.
Collapse
Affiliation(s)
- Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
14
|
The NADPH oxidase family and its inhibitors. Arch Immunol Ther Exp (Warsz) 2012; 60:277-94. [PMID: 22696046 DOI: 10.1007/s00005-012-0176-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/27/2012] [Indexed: 12/16/2022]
Abstract
The classical nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was originally detected in neutrophils as a multicomponent enzyme that catalyzes the generation of superoxide from oxygen and the reduced form of NADPH. This enzyme is composed of two membrane-bound subunits (p22phox and gp91phox), three cytosolic subunits (p67phox, p47phox, and p40phox) and a small G-protein Rac (Rac1 and Rac2). Recently, it has been demonstrated that there are several isoforms of nonphagocytic NADPH oxidase. Endothelial cells, vascular smooth muscle cells or adventitial fibroblasts possess multiple isoforms of this enzyme. The new homologs, along with gp91phox are now designated the Nox family of NADPH oxidases and are key sources of reactive oxygen species in the vasculature. Reactive oxygen species play a significant role in regulating endothelial function and vascular tone. However, besides the participation in the processes of physiological cell, these enzymes can also be the perpetrator of oxidative stress that causes endothelial dysfunction. This review summarizes the current state of knowledge of the structure and functions of NADPH oxidase and NADPH oxidase inhibitors in the treatment of disorders with endothelial damage.
Collapse
|
15
|
Kittikulsuth W, Pollock JS, Pollock DM. Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II. Am J Physiol Renal Physiol 2012; 303:F659-66. [PMID: 22674027 DOI: 10.1152/ajprenal.00213.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have recently demonstrated that chronic infusion of exogenous ANG II, which induces blood pressure elevation, attenuates renal medullary endothelin B (ET(B)) receptor function in rats. Moreover, this was associated with a reduction of ET(B) receptor expression in the renal inner medulla. The aim of this present work was to investigate the effect of a physiological increase in endogenous ANG II (low-salt diet) on the renal ET system, including ET(B) receptor function. We hypothesized that endogenous ANG II reduces renal medullary ET(B) receptor function during low-salt intake. Rats were placed on a low-salt diet (0.01-0.02% NaCl) for 2 wk to allow an increase in endogenous ANG II. In rats on normal-salt chow, the stimulation of renal medullary ET(B) receptor by ET(B) receptor agonist sarafotoxin 6c (S6c) causes an increase in water (3.6 ± 0.4 from baseline vs. 10.5 ± 1.3 μl/min following S6c infusion; P < 0.05) and sodium excretion (0.38 ± 0.06 vs. 1.23 ± 0.17 μmol/min; P < 0.05). The low-salt diet reduced the ET(B)-dependent diuresis (4.5 ± 0.5 vs. 6.1 ± 0.9 μl/min) and natriuresis (0.40 ± 0.11 vs. 0.46 ± 0.12 μmol/min) in response to acute intramedullary infusion of S6c. Chronic treatment with candesartan restored renal medullary ET(B) receptor function; urine flow was 7.1 ± 0.9 vs. 15.9 ± 1.7 μl/min (P < 0.05), and sodium excretion was 0.4 ± 0.1 vs. 1.1 ± 0.1 μmol/min (P < 0.05) before and after intramedullary S6c infusion, respectively. Receptor binding assays determined that the sodium-depleted diet resulted in a similar level of ET(B) receptor binding in renal inner medulla compared with rats on a normal-salt diet. Candesartan reduced renal inner medullary ET(B) receptor binding (1,414 ± 95 vs. 862 ± 50 fmol/mg; P < 0.05). We conclude that endogenous ANG II attenuates renal medullary ET(B) receptor function to conserve sodium during salt deprivation independently of receptor expression.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Section of Experimental Medicine, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
16
|
Vanholder R. The ultimate salt war? Uraemic toxins are all that count in dialysis patients. Nephrol Dial Transplant 2012; 27:62-6. [DOI: 10.1093/ndt/gfr637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Ishida K, Matsumoto T, Taguchi K, Kamata K, Kobayashi T. Mechanisms underlying altered extracellular nucleotide-induced contractions in mesenteric arteries from rats in later-stage type 2 diabetes: effect of ANG II type 1 receptor antagonism. Am J Physiol Heart Circ Physiol 2011; 301:H1850-61. [PMID: 21856926 DOI: 10.1152/ajpheart.00502.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the vascular contractile responsiveness to, and signaling pathways for, extracellular nucleotides in the chronic stage of type 2 diabetes or whether the ANG II type 1 receptor blocker losartan might alter such responses. We hypothesized that nucleotide-induced arterial contractions are augmented in diabetic Goto-Kakizaki (GK) rats and that treatment with losartan would normalize the contractions. Here, we investigated the vasoconstrictor effects of ATP/UTP in superior mesenteric arteries isolated from GK rats (37-42 wk old) that had or had not received 2 wk of losartan (25 mg·kg(-1)·day(-1)). In arteries from GK rats (vs. those from Wistar rats), 1) ATP- and UTP-induced contractions, which were blocked by the nonselective P2 antagonist suramin, were enhanced, and these enhancements were suppressed by endothelial denudation, by cyclooxygenase (COX) inhibitors, or by a cytosolic phospholipase A(2) (cPLA(2)) inhibitor; 2) both nucleotides induced increased release of PGE(2) and PGF(2α); 3) nucleotide-stimulated cPLA(2) phosphorylations were increased; 4) COX-1 and COX-2 expressions were increased; and 5) neither P2Y2 nor P2Y6 receptor expression differed, but P2Y4 receptor expression was decreased. Mesenteric arteries from GK rats treated with losartan exhibited (vs. untreated GK) 1) reduced nucleotide-induced contractions, 2) suppressed UTP-induced release of PGE(2) and PGF(2α), 3) suppressed UTP-stimulated cPLA(2) phosphorylation, 4) normalized expressions of COX-2 and P2Y4 receptors, and 5) reduced superoxide generation. Our data suggest that the diabetes-related enhancement of ATP-mediated vasoconstriction was due to P2Y receptor-mediated activation of the cPLA(2)/COX pathway and, moreover, that losartan normalizes such contractions by a suppressing action within this pathway.
Collapse
Affiliation(s)
- Keiko Ishida
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|