1
|
Daher A. Using Approximate Bayesian Computation to Calibrate the Model Parameters Characterizing the Autoregulatory Behavior of Microvessels. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e70023. [PMID: 40095443 PMCID: PMC11912544 DOI: 10.1002/cnm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 03/19/2025]
Abstract
This study aims to leverage available experimental data on the myogenic and endothelial responses of the microvessels to calibrate the parameters and refine the functional form of the compliance feedback model. The experimental data used in this study trace the changes in the vessel calibre of individual arteriolar vessels in response to changes in the intraluminal pressure and/or the pressure gradient, which correspond to the myogenic and endothelial mechanisms, respectively. The compliance feedback model was previously developed to characterize the elastic and autoregulatory behavior of microvessels. We devise and employ a two-stage sequential Monte Carlo (MC) approximate Bayesian computation (ABC) scheme to obtain the posterior distribution of the model's parameters, such that the final parameter space distribution integrates information from any prior knowledge of the parameters, the model dynamics, and the available experimental data. Furthermore, the calibration scheme provides key insights into the underlying mechanistic features of the dynamical system; namely, the ABC scheme reveals that there is a marked difference in the time constants between the myogenic-induced dilation and constriction. Overall, upon parameter calibration, the computationally low-cost compliance feedback model achieves very good agreement with the experimental measurements, despite limited data availability, demonstrating that the model provides a simple, compact, yet robust and physiologically grounded characterization of the autoregulatory response, all of which are essential attributes to increase the translatability of hemodynamic models into the clinical environment for future clinical applications.
Collapse
Affiliation(s)
- Ali Daher
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Stadsholt S, Strauss A, Kintzel J, Schob S, Elolf E, Rutenkröger M, Strauss C, Scheller C, Leisz S, Prell J, Scheer M. Posterior reversible enzephalopathie syndrome (PRES) following vestibular schwannoma surgery - Case report and review of the current theories on pathophysiology of PRES. BRAIN & SPINE 2024; 5:104167. [PMID: 39898006 PMCID: PMC11786757 DOI: 10.1016/j.bas.2024.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025]
Abstract
Introduction Posterior reversible encephalopathy syndrome (PRES) is an acute form of encephalopathy. Main characteristic of this syndrome is the development of subcortical/cortical edema in the occipital lobes. The most common causes are diseases such as pre-eclampsia, autoimmune diseases, allogeneic stem cell transplantation and after treatment with immunosuppressants or cytostatics. However, PRES is also occasionally observed in connection with neurosurgical procedures, particularly in the posterior fossa in pediatric patients. Research question PRES in adults is extremely rare. After cranial surgery, the impaired consciousness caused by this syndrome may be misdiagnosed. Material and methods We present a rare case of PRES associated with vestibular schwannoma (VS) surgery and metronidazole use and have conducted a literature review. Results We found only two cases of PRES after surgery of a VS in the literature and three cases in connection with the administration of metronidazole. All cases involved women but the onset of symptoms was highly variable. The constellation of surgery and administration of metronidazole has not yet been described. Discussion and conclusion The purpose of this review is to raise awareness of a very rare complication such as PRES in this setting. Antibiotics should be chosen carefully after such an operation, as this syndrome can be triggered by certain substances.
Collapse
Affiliation(s)
- Solveig Stadsholt
- Department of Neurosurgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Aivars Strauss
- Department of Neurosurgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Jenny Kintzel
- Department of Neurosurgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Stefan Schob
- Department of Radiology, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Erck Elolf
- Department of Radiology, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Mareike Rutenkröger
- Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian Strauss
- Department of Neurosurgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Christian Scheller
- Department of Neurosurgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Sandra Leisz
- Department of Neurosurgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Maximilian Scheer
- Department of Neurosurgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany
| |
Collapse
|
3
|
Meng L, Sun Y, Rasmussen M, Libiran NBS, Naiken S, Meacham KS, Schmidt JD, Lahiri NK, Han J, Liu Z, Adams DC, Gelb AW. Lassen's Cerebral Autoregulation Plot Revisited and Validated 65 Years Later: Impacts of Vasoactive Drug Treatment on Cerebral Blood Flow. Anesth Analg 2024:00000539-990000000-01026. [PMID: 39495668 DOI: 10.1213/ane.0000000000007280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Niels Lassen's seminal 1959 cerebral autoregulation plot, a cornerstone in understanding the relationship between mean arterial pressure (MAP) and cerebral blood flow (CBF), was based on preexisting literature. However, this work has faced criticism for selective data presentation, leading to inaccurate interpretation. This review revisits and validates Lassen's original plot using contemporary data published since 2000. Additionally, we aim to understand the impact of vasoactive drug treatments on CBF, as Lassen's referenced studies used various drugs for blood pressure manipulation. Our findings confirm Lassen's concept of a plateau where CBF remains relatively stable across a specific MAP range in awake humans with normal brains. However, significant variations in cerebral autoregulation among different populations are evident. In critically ill patients and those with traumatic brain injury, the autoregulatory plateau dissipates, necessitating tight blood pressure control to avoid inadequate or excessive cerebral perfusion. A plateau is observed in patients anesthetized with intravenous agents but not with volatile agents. Vasopressor treatments have population-dependent effects, with contemporary data showing increased CBF in critically ill patients but not in awake humans with normal brains. Vasopressor treatment results in a greater increase in CBF during volatile than intravenous anesthesia. Modern antihypertensives do not significantly impact CBF based on contemporary data, exerting a smaller impact on CBF compared to historical data. These insights underscore the importance of individualized blood pressure management guided by modern data in the context of cerebral autoregulation across varied patient populations.
Collapse
Affiliation(s)
- Lingzhong Meng
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yanhua Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mads Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Nicole Bianca S Libiran
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Semanti Naiken
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kylie S Meacham
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jacob D Schmidt
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Niloy K Lahiri
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jiange Han
- Department of Anesthesiology, Tianjin Chest Hospital, Tianjin, China
| | - Ziyue Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - David C Adams
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adrian W Gelb
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California
| |
Collapse
|
4
|
Mendiola PJ, O’Herron P, Xie K, Brands MW, Bush W, Patterson RE, Di Stefano V, Filosa JA. Blood pressure variability compromises vascular function in middle-aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619509. [PMID: 39484398 PMCID: PMC11526967 DOI: 10.1101/2024.10.21.619509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Blood pressure variability (BPV) has emerged as a novel risk factor for cognitive decline and dementia, independent of alterations in average blood pressure (BP). However, the underlying consequences of large BP fluctuations on the neurovascular complex are unknown. We developed a novel mouse model of BPV in middle-aged mice based on intermittent Angiotensin II infusions. Using radio telemetry, we demonstrated that the 24-hr BP averages of these mice were similar to controls, indicating BPV without hypertension. Chronic (20-25 days) BPV led to a blunted bradycardic response and cognitive deficits. Two-photon imaging of parenchymal arterioles showed enhanced pressure-evoked constrictions (myogenic response) in BPV mice. Sensory stimulus-evoked dilations (neurovascular coupling) were greater at higher BP levels in control mice, but this pressure-dependence was lost in BPV mice. Our findings support the notion that large BP variations impair vascular function at the neurovascular complex and contribute to cognitive decline.
Collapse
Affiliation(s)
- Perenkita J. Mendiola
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Philip O’Herron
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kun Xie
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Michael W. Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Weston Bush
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rachel E. Patterson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Valeria Di Stefano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jessica A. Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
5
|
Srichawla BS. Future of neurocritical care: Integrating neurophysics, multimodal monitoring, and machine learning. World J Crit Care Med 2024; 13:91397. [PMID: 38855276 PMCID: PMC11155497 DOI: 10.5492/wjccm.v13.i2.91397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 06/03/2024] Open
Abstract
Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| |
Collapse
|
6
|
Tymko MM. Unveiling the enigma from sick to beauty: Hungry to standardize metrics for dynamic cerebral autoregulation. Exp Physiol 2024; 109:472-473. [PMID: 38402582 PMCID: PMC10988677 DOI: 10.1113/ep091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Affiliation(s)
- Michael M. Tymko
- Integrative Cerebrovascular and Environmental Physiology SB Laboratory, Department of Human Health and Nutritional Sciences, College of Biological ScienceUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
7
|
Szabo S, Totka Z, Nagy-Bozsoky J, Pinter I, Bagany M, Bodo M. Rheoencephalography: A non-invasive method for neuromonitoring. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2024; 15:10-25. [PMID: 38482467 PMCID: PMC10936697 DOI: 10.2478/joeb-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/07/2024]
Abstract
In neurocritical care, the gold standard method is intracranial pressure (ICP) monitoring for the patient's lifesaving. Since it is an invasive method, it is desirable to use an alternative, noninvasive technique. The computerized real-time invasive cerebral blood flow (CBF) autoregulation (AR) monitoring calculates the status of CBF AR, called the pressure reactivity index (PRx). Studies documented that the electrical impedance of the head (Rheoencephalography - REG) can detect the status of CBF AR (REGx) and ICP noninvasively. We aimed to test REG to reflect ICP and CBF AR. For nineteen healthy subjects we recorded bipolar bifrontal and bitemporal REG derivations and arm bioimpedance pulses with a 200 Hz sampling rate. The challenges were a 30-second breath-holding and head-down-tilt (HDT - Trendelenburg) position. Data were stored and processed offline. REG pulse wave morphology and REGx were calculated. The most relevant finding was the significant morphological change of the REG pulse waveform (2nd peak increase) during the HDT position. Breath-holding caused REG amplitude increase, but it was not significant. REGx in male and female group averages have similar trends during HDT by indicating the active status of CBF AR. The morphological change of REG pulse wave during HDT position was identical to ICP waveform change during increased ICP, reflecting decreased intracranial compliance. A correlation study between ICP and REG was initiated in neurocritical care patients. The noninvasive REG monitoring would also be useful in space research as well as in military medicine during the transport of wounded service members as well as for fighter pilots to indicate the loss of CBF and consciousness.
Collapse
Affiliation(s)
- Sandor Szabo
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | - Zsolt Totka
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | - Jozsef Nagy-Bozsoky
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | | | | | - Michael Bodo
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
8
|
Cannizzaro LA, Iwuchukwu I, Rahaman V, Hirzallah M, Bodo M. Noninvasive neuromonitoring with rheoencephalography: a case report. J Clin Monit Comput 2023; 37:1413-1422. [PMID: 36934402 PMCID: PMC10024795 DOI: 10.1007/s10877-023-00985-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/16/2023] [Indexed: 03/20/2023]
Abstract
Cerebral blood flow (CBF) autoregulation (AR) can be monitored using invasive modalities, such as intracranial pressure (ICP) and arterial blood pressure (ABP) to calculate the CBF AR index (PRx). Monitoring PRx can reduce the extent of secondary brain damage in patients. Rheoencephalography (REG) is an FDA-approved non-invasive method to measure CBF. REGx, a CBF AR index, is calculated from REG and arm bioimpedance pulse waves. Our goal was to test REG for neuromonitoring. 28 measurement sessions were performed on 13 neurocritical care patients. REG/arm bioimpedance waveforms were recorded on a laptop using a bioimpedance amplifier and custom-built software. The same program was used for offline data processing. Case #1: The patient's mean REGx increased from - 0.08 on the first day to 0.44 on the second day, indicating worsening intracranial compliance (ICC) (P < 0.0001, CI 0.46-0.58). Glasgow Coma Scale (GCS) was 5 on both days. Case #2: REGx decreased from 0.32 on the first recording to 0.07 on the last (P = 0.0003, CI - 0.38 to - 0.12). GCS was 7 and 14, respectively. Case #3: Within a 36-minute recording, REGx decreased from 0.56 to - 0.37 (P < 0.0001, 95%, CI - 1.10 to - 0.76). Central venous pressure changed from 14 to 9 mmHg. REG pulse wave morphology changed from poor ICC to good ICC morphology. Bioimpedance recording made it possible to quantify the active/passive status of CBF AR, indicate the worsening of ICC, and present it in real time. REGx can be a suitable, non-invasive alternative to PRx for use in head-injured patients.
Collapse
Affiliation(s)
| | | | | | | | - Michael Bodo
- 1Ochsner Medical Center, New Orleans, LA, USA.
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
9
|
Shoemaker LN, Milej D, Sajid A, Mistry J, Lawrence KS, Shoemaker JK. Characterization of cerebral macro- and microvascular hemodynamics during transient hypotension. J Appl Physiol (1985) 2023; 135:717-725. [PMID: 37560766 PMCID: PMC10642516 DOI: 10.1152/japplphysiol.00743.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
The aim of the current study was to establish the interplay between blood flow patterns within a large cerebral artery and a downstream microvascular segment under conditions of transiently reduced mean arterial pressure (MAP). We report data from nine young, healthy participants (5 women; 26 ± 4 yr) acquired during a 15-s bout of sudden-onset lower body negative pressure (LBNP; -80 mmHg). Simultaneous changes in microvascular cerebral blood flow (CBF) and middle cerebral artery blood velocity (MCAvmean) were captured using diffuse correlation spectroscopy (DCS) and transcranial Doppler ultrasound (TCD), respectively. Brachial blood pressure (finger photoplethysmography) and TCD waveforms were extracted at baseline and during the nadir blood pressure (BP) response to LBNP and analyzed using a modified Windkessel model to calculate indices of cerebrovascular resistance (Ri) and compliance (Ci). Compared with baseline, rapid-onset LBNP decreased MAP by 22 ± 16% and Ri by 14 ± 10% (both P ≤ 0.03). Ci increased (322 ± 298%; P < 0.01) but MCAvmean (-8 ± 16%; P = 0.09) and CBF (-2 ± 3%; P = 0.29) were preserved. The results provide evidence that changes in both vascular resistance and compliance preserve CBF, as indexed by no significant changes in MCAvmean or DCS microvascular flow, during transient hypotension.NEW & NOTEWORTHY To characterize the relationship between cerebrovascular patterns within the large middle cerebral artery (MCA) and a downstream microvascular segment, we used a novel combination of transcranial Doppler ultrasound of the MCA and optical monitoring of a downstream microvascular segment, respectively, under conditions of transiently reduced mean arterial pressure (i.e., lower body negative pressure, -80 mmHg). A rapid increase in vessel compliance accompanied the maintenance of MCA blood velocity and downstream microvascular flow.
Collapse
Affiliation(s)
- Leena N Shoemaker
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Aleena Sajid
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Jigneshkumar Mistry
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Smith CA, Carpenter KLH, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow Metab 2023; 43:1237-1253. [PMID: 37132274 PMCID: PMC10369156 DOI: 10.1177/0271678x231171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The loss of cerebral autoregulation (CA) is a common and detrimental secondary injury mechanism following acute brain injury and has been associated with worse morbidity and mortality. However patient outcomes have not as yet been conclusively proven to have improved as a result of CA-directed therapy. While CA monitoring has been used to modify CPP targets, this approach cannot work if the impairment of CA is not simply related to CPP but involves other underlying mechanisms and triggers, which at present are largely unknown. Neuroinflammation, particularly inflammation affecting the cerebral vasculature, is an important cascade that occurs following acute injury. We hypothesise that disturbances to the cerebral vasculature can affect the regulation of CBF, and hence the vascular inflammatory pathways could be a putative mechanism that causes CA dysfunction. This review provides a brief overview of CA, and its impairment following brain injury. We discuss candidate vascular and endothelial markers and what is known about their link to disturbance of the CBF and autoregulation. We focus on human traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH), with supporting evidence from animal work and applicability to wider neurologic diseases.
Collapse
Affiliation(s)
- Claudia A Smith
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Brasil S, Nogueira RC, Salinet ASM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. Contribution of intracranial pressure to human dynamic cerebral autoregulation after acute brain injury. Am J Physiol Regul Integr Comp Physiol 2023; 324:R216-R226. [PMID: 36572556 DOI: 10.1152/ajpregu.00252.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cerebral perfusion pressure (CPP) is normally expressed by the difference between mean arterial blood pressure (MAP) and intracranial pressure (ICP) but comparison of the separate contributions of MAP and ICP to human cerebral blood flow autoregulation has not been reported. In patients with acute brain injury (ABI), internal jugular vein compression (IJVC) was performed for 60 s. Dynamic cerebral autoregulation (dCA) was assessed in recordings of middle cerebral artery blood velocity (MCAv, transcranial Doppler), and invasive measurements of MAP and ICP. Patients were separated according to injury severity as having whole/undamaged skull, large fractures, or craniotomies, or following decompressive craniectomy. Glasgow coma score was not different for the three groups. IJVC induced changes in MCAv, MAP, ICP, and CPP in all three groups. The MCAv response to step changes in MAP and ICP expressed the dCA response to these two inputs and was quantified with the autoregulation index (ARI). In 85 patients, ARI was lower for the ICP input as compared with the MAP input (2.25 ± 2.46 vs. 3.39 ± 2.28; P < 0.0001), and particularly depressed in the decompressive craniectomy (DC) group (n = 24, 0.35 ± 0.62 vs. 2.21 ± 1.96; P < 0.0005). In patients with ABI, the dCA response to changes in ICP is less efficient than corresponding responses to MAP changes. These results should be taken into consideration in studies aimed to optimize dCA by manipulation of CPP in neurocritical patients.
Collapse
Affiliation(s)
- Sérgio Brasil
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Ricardo C Nogueira
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Angela S M Salinet
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Márcia H Yoshikawa
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Manoel J Teixeira
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Wellingson Paiva
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Luiz M S Malbouisson
- Department of Intensive Care, School of Medicine University of São Paulo, Brazil
| | | | - Ronney B Panerai
- Cardiovascular Sciences Department, University of Leicester, United Kingdom.,National Institute for Health and Care Research, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, United Kingdom
| |
Collapse
|
12
|
Morse CJ, Boerman EM, McDonald MW, Padilla J, Olver TD. The role of nitric oxide in flow-induced and myogenic responses in 1A, 2A, and 3A branches of the porcine middle cerebral artery. J Appl Physiol (1985) 2022; 133:1228-1236. [PMID: 36227166 PMCID: PMC9715271 DOI: 10.1152/japplphysiol.00209.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 12/15/2022] Open
Abstract
Myogenic and flow-induced reactivity contribute to cerebral autoregulation, with potentially divergent roles for smaller versus larger arteries. The present study tested the hypotheses that compared with first-order (1A) branches of the middle cerebral artery, second- and third-order branches (2A and 3A, respectively) exhibit greater myogenic reactivity but reduced flow-induced constriction. Furthermore, nitric oxide synthase (NOS) inhibition may amplify myogenic reactivity and abolish instances of flow-induced dilation. Isolated porcine cerebral arteries mounted in a pressure myograph were exposed to incremental increases in intraluminal pressure (40-120 mmHg; n = 41) or flow (1-1,170 µL/min; n = 31). Intraluminal flows were adjusted to achieve 5, 10, 20, and 40 dyn/cm2 of wall shear stress at 60 mmHg. Myogenic tone was greater in 3A versus 1A arteries (P < 0.05). There was an inverse relationship between myogenic reactivity and passive arterial diameter (P < 0.01). NOS inhibition increased basal tone to a lesser extent in 3A versus 1A arteries (P < 0.01) but did not influence myogenic reactivity (P = 0.49). Increasing flow decreased luminal diameter (P ≤ 0.01), with increased vasoconstriction at 10-40 dyn/cm2 of shear stress (P < 0.01). However, relative responses were similar between 1A, 2A, and 3A arteries (P = 0.40) with and without NOS inhibition conditions (P ≥ 0.29). Whereas NOS inhibition increases basal myogenic tone, and myogenic reactivity was less in smaller versus larger arteries (range = ∼100-550 µM), neither NOS inhibition nor luminal diameter influences flow-induced constriction in porcine cerebral arteries.NEW & NOTEWORTHY This study demonstrated size-dependent heterogeneity in myogenic reactivity in porcine cerebral arteries. Smaller branches of the middle cerebral artery exhibited increased myogenic reactivity, but attenuated NOS-dependent increases in myogenic tone compared with larger branches. Flow-dependent regulation does not exhibit the same variation; diameter-independent flow-induced vasoconstrictions occur across all branch orders and are not affected by NOS inhibition. Conceptually, flow-induced vasoconstriction contributes to cerebral autoregulation, particularly in larger arteries with low myogenic tone.
Collapse
Affiliation(s)
- Cameron J Morse
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika M Boerman
- Department Medical Physiology and Pharmacology, University of Missouri, Columbia, Missouri
| | - Matthew W McDonald
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - T Dylan Olver
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Nemeth Z, Granger JP, Ryan MJ, Drummond HA. Is there a role of proinflammatory cytokines on degenerin-mediated cerebrovascular function in preeclampsia? Physiol Rep 2022; 10:e15376. [PMID: 35831968 PMCID: PMC9279847 DOI: 10.14814/phy2.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023] Open
Abstract
Preeclampsia (PE) is associated with adverse cerebrovascular effects during and following parturition including stroke, small vessel disease, and vascular dementia. A potential contributing factor to the cerebrovascular dysfunction is the loss of cerebral blood flow (CBF) autoregulation. Autoregulation is the maintenance of CBF to meet local demands with changes in perfusion pressure. When perfusion pressure rises, vasoconstriction of cerebral arteries and arterioles maintains flow and prevents the transfer of higher systemic pressure to downstream microvasculature. In the face of concurrent hypertension, loss of autoregulatory control exposes small delicate microvessels to injury from elevated systemic blood pressure. While placental ischemia is considered the initiating event in the preeclamptic cascade, the factor(s) mediating cerebrovascular dysfunction are poorly understood. Elevated plasma proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin-17 (IL-17), are potential mediators of autoregulatory loss. Impaired CBF responses to increases in systemic pressure are attributed to the impaired pressure-induced (myogenic) constriction of small cerebral arteries and arterioles in PE. Myogenic vasoconstriction is initiated by pressure-induced vascular smooth muscle cell (VSMC) stretch. Recent studies from our laboratory group indicate that proinflammatory cytokines impair the myogenic mechanism of CBF autoregulation via inhibition of vascular degenerin proteins, putative mediators of myogenic constriction in VSMCs. This brief review links studies showing the effect of proinflammatory cytokines on degenerin expression and CBF autoregulation to the pathological cerebral consequences of preeclampsia.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Institute of Translational MedicineFaculty of Medicine, Semmelweis UniversityBudapestHungary
- Department of Morphology and PhysiologyFaculty of Health Sciences, Semmelweis UniversityBudapestHungary
| | - Joey P. Granger
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Michael J. Ryan
- Department of Pharmacology, Physiology and NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Heather A. Drummond
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
14
|
Diana F, Romano DG, Peschillo S. Distribution of symptomatic cerebral vasospasm following subarachnoid hemorrhage assessed using cone beam CT angiography. J Neurointerv Surg 2021; 14:416. [PMID: 34949709 DOI: 10.1136/neurintsurg-2021-018528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Francesco Diana
- Department of Neuroradiology, University Hospital 'San Giovanni di Dio e Ruggi d'Aragona', Salerno, Campania, Italy
| | - Daniele Giuseppe Romano
- Department of Neuroradiology, University Hospital 'San Giovanni di Dio e Ruggi d'Aragona', Salerno, Campania, Italy
| | - Simone Peschillo
- Department of Surgical Medical Sciences and Advanced Technologies "G.F. Ingrassia" - Endovascular Neurosurgery, University of Catania, Catania, Italy.,Endovascular Neurosurgery, Pia Fondazione Cardinale Giovanni Panico Hospital, Tricase, LE, Italy
| |
Collapse
|
15
|
Guillon L, Kermorgant M, Charvolin T, Bonneville F, Bareille MP, Cassol E, Beck A, Beaurain M, Péran P, Lotterie JA, Traon APL, Payoux P. Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion. Front Physiol 2021; 12:789298. [PMID: 34880784 PMCID: PMC8645987 DOI: 10.3389/fphys.2021.789298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Microgravity induces a cephalad fluid shift that is responsible for cephalic venous stasis that may increase intracranial pressure (ICP) in astronauts. However, the effects of microgravity on regional cerebral blood flow (rCBF) are not known. We therefore investigated changes in rCBF in a 5-day dry immersion (DI) model. Moreover, we tested thigh cuffs as a countermeasure to prevent potential microgravity-induced modifications in rCBF. Around 18 healthy male participants underwent 5-day DI with or without a thigh cuffs countermeasure. They were randomly allocated to a control (n=9) or cuffs (n=9) group. rCBF was measured 4days before DI and at the end of the fifth day of DI (DI5), using single-photon emission computed tomography (SPECT) with radiopharmaceutical 99mTc-hexamethyl propylene amine oxime (99mTc-HMPAO). SPECT images were processed using statistical parametric mapping (SPM12) software. At DI5, we observed a significant decrease in rCBF in 32 cortical and subcortical regions, with greater hypoperfusion in basal ganglia (right putamen peak level: z=4.71, p uncorr<0.001), bilateral occipital regions (left superior occipital peak level: z=4.51, p uncorr<0.001), bilateral insula (right insula peak level: 4.10, p uncorr<0.001), and bilateral inferior temporal (right inferior temporal peak level: 4.07, p uncorr<0.001). No significant difference was found between the control and cuffs groups on change in rCBF after 5days of DI. After a 5-day DI, we found a decrease in rCBF in cortical and subcortical regions. However, thigh cuffs countermeasure failed to prevent hypoperfusion. To date, this is the first study measuring rCBF in DI. Further investigations are needed in order to better understand the underlying mechanisms in cerebral blood flow (CBF) changes after exposure to microgravity.
Collapse
Affiliation(s)
- Laurent Guillon
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Marc Kermorgant
- INSERM UMR 1297, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse University Hospital, Toulouse, France
| | - Thomas Charvolin
- Department of Neuroradiology, Toulouse University Hospital, Toulouse, France
| | - Fabrice Bonneville
- Department of Neuroradiology, Toulouse University Hospital, Toulouse, France
- INSERM URM 1214, Toulouse NeuroImaging Center (ToNIC), Toulouse University Hospital, Toulouse, France
| | | | - Emmanuelle Cassol
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | - Marie Beaurain
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Patrice Péran
- INSERM URM 1214, Toulouse NeuroImaging Center (ToNIC), Toulouse University Hospital, Toulouse, France
| | - Jean-Albert Lotterie
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
- INSERM URM 1214, Toulouse NeuroImaging Center (ToNIC), Toulouse University Hospital, Toulouse, France
| | - Anne Pavy-Le Traon
- INSERM UMR 1297, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse University Hospital, Toulouse, France
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Pierre Payoux
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
- INSERM URM 1214, Toulouse NeuroImaging Center (ToNIC), Toulouse University Hospital, Toulouse, France
| |
Collapse
|
16
|
Shen J, Guo F, Yang P, Xu F. Influence of hypertension classification on hypertensive intracerebral hemorrhage location. J Clin Hypertens (Greenwich) 2021; 23:1992-1999. [PMID: 34608743 PMCID: PMC8630601 DOI: 10.1111/jch.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023]
Abstract
The authors sought to explore whether hypertension classification was risk factor for lobar and non‐lobar hypertensive intracerebral hemorrhage (HICH) and the prognosis in patients with hematoma. This retrospective cohort study was conducted on HICH patients admitted at the First Affiliated Hospital of Soochow University. Observations with first‐ever intracerebral hemorrhage (ICH) were recruited. The authors divided the brain image into three groups according to the location of ICH to predict whether there were significant differences between lobar and non‐lobar ICH. A Mann‐Whitney U test was used and this retrospective trial also compared the operation and mortality rates. Our cohort included 209 patients (73.7% male; median age:60.5±16.7). The overall incidence of lobar HICH was less than non‐lobar HICH (24.4% vs. 68.4%), 7.2% cases of mixed HICH was included in this analysis. In a Mann‐Whitney U test analyze, it indicated that there were significant differences in hypertension classification between lobar and non‐lobar HICH (Z = ‐3.3, p<.05). And the percentage of hematoma in lobar areas with relatively slightly high blood pressure (BP) (high normal and grade 1 hypertension) accounts for 52.9% versus 30.1% in non‐lobar areas. The increasing trends of the prevalent rate of lobar ICH with BP rising were not remarkable. The non‐lobar HICH showed a sharper increase in the condition of grade 3 hypertension compared with lobar HICH. During the period of research, the fatality of lobar hemorrhage was 2.9% versus 7.7% (non‐lobar). Besides, the fatality incidence of HICH with relatively slightly high BP (high normal and grade 1 hypertension) was lower than poorly controlled hypertensive patients (grade 2 and grade 3 hypertension). (8.0% vs. 15.7%). The increase of hypertension classification will aggravate the occurrence of non‐lobar ICH and positively corrected with BP, but not in lobar areas. It is essential to understand the distinction influence of hypertension classification between lobar and non‐lobar ICH.
Collapse
Affiliation(s)
- Jun Shen
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - FengBao Guo
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 457] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
19
|
Lidington D, Wan H, Bolz SS. Cerebral Autoregulation in Subarachnoid Hemorrhage. Front Neurol 2021; 12:688362. [PMID: 34367053 PMCID: PMC8342764 DOI: 10.3389/fneur.2021.688362] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke subtype with a high rate of mortality and morbidity. The poor clinical outcome can be attributed to the biphasic course of the disease: even if the patient survives the initial bleeding emergency, delayed cerebral ischemia (DCI) frequently follows within 2 weeks time and levies additional serious brain injury. Current therapeutic interventions do not specifically target the microvascular dysfunction underlying the ischemic event and as a consequence, provide only modest improvement in clinical outcome. SAH perturbs an extensive number of microvascular processes, including the “automated” control of cerebral perfusion, termed “cerebral autoregulation.” Recent evidence suggests that disrupted cerebral autoregulation is an important aspect of SAH-induced brain injury. This review presents the key clinical aspects of cerebral autoregulation and its disruption in SAH: it provides a mechanistic overview of cerebral autoregulation, describes current clinical methods for measuring autoregulation in SAH patients and reviews current and emerging therapeutic options for SAH patients. Recent advancements should fuel optimism that microvascular dysfunction and cerebral autoregulation can be rectified in SAH patients.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Hoyee Wan
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Abstract
Cerebral infarction or ischemic death of brain tissue, most notably neurons, is a primary response to vascular occlusion that if minimized leads to better stroke outcome. However, many cell types are affected in the brain during ischemia and reperfusion, including vascular cells of the cerebral circulation. Importantly, the structure and function of all brain vascular segments are major determinants of the depth of ischemia during the occlusion, the extent of collateral flow (and therefore amount of potentially salvageable tissue) and the degree of reperfusion. Thus, appropriate function of the cerebral circulation can influence stroke outcome. The brain vasculature is also directly involved in secondary injury to ischemia, including edema, hemorrhage, and infarct expansion, and provides a key delivery route for neuroprotective agents. Therefore, the cerebral circulation provides a therapeutic target for multiple aspects of stroke injury, including aiding neuroprotection. Understanding how ischemia and reperfusion affect the brain vasculature is key to this therapeutic potential, that is, vascular protection. This report is focused on regional differences in the cerebral circulation, how ischemia and reperfusion differentially affects these segments, and how the response of large versus small vessels in the brain to ischemia and reperfusion can influence stroke outcome. Last, how chronic hypertension, a common comorbidity in patients with stroke, affects the brain microvasculature to worsen stroke outcome will be described.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont, Burlington
| |
Collapse
|
21
|
Caldwell HG, Howe CA, Hoiland RL, Carr JMJR, Chalifoux CJ, Brown CV, Patrician A, Tremblay JC, Panerai RB, Robinson TG, Minhas JS, Ainslie PN. Alterations in arterial CO 2 rather than pH affect the kinetics of neurovascular coupling in humans. J Physiol 2021; 599:3663-3676. [PMID: 34107079 DOI: 10.1113/jp281615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS We investigated the influence of arterial P C O 2 ( P aC O 2 ) with and without acute experimental metabolic alkalosis on neurovascular coupling (NVC). We assessed stepwise iso-oxic alterations in P aC O 2 prior to and following intravenous NaHCO3 to acutely elevate arterial pH and [HCO3 - ]. The NVC response was not altered following NaHCO3 between stepwise P aC O 2 stages; therefore, NVC is acutely mediated by P aC O 2 rather than the prevailing arterial [H+ ]/pH. The NVC response was attenuated by 27-38% with -10 mmHg P aC O 2 and the absolute peak change was reduced by -19% with +10 mmHg P aC O 2 irrespective of acutely elevated arterial pH/[HCO3 - ]. The NVC kinetics (i.e. time to peak) were markedly slower with hypercapnia versus hypocapnia (24 ± 5 vs. 7 ± 5 s, respectively) likely indicating an influence of resting cerebrovascular tone on NVC responsiveness. ABSTRACT Elevations in cerebral metabolism necessitate appropriate coordinated and localized increases in cerebral blood flow (i.e. neurovascular coupling; NVC). Recent pre-clinical work indicates that arterial P C O 2 ( P aC O 2 ) mediates NVC independently of arterial/extracellular pH; this has yet to be experimentally tested in humans. The goal of this study was to investigate the hypotheses that: (1) the NVC response would be unaffected by acute experimentally elevated arterial pH; rather, P aC O 2 would regulate any changes in NVC; and (2) stepwise respiratory alkalosis and acidosis would each progressively reduce the NVC response. Ten healthy males completed a standardized visual stimulus-evoked NVC test during matched stepwise iso-oxic alterations in P aC O 2 (hypocapnia: -5, -10 mmHg; hypercapnia: +5, +10 mmHg) prior to and following intravenous NaHCO3 (8.4%, 50 mEq/50 ml) that elevated arterial pH (7.406 ± 0.019 vs. 7.457 ± 0.029; P < 0.001) and [HCO3 - ] (26.2 ± 1.5 vs. 29.3 ± 0.9 mEq/l; P < 0.001). Although the NVC response was collectively attenuated by 27-38% with -10 mmHg P aC O 2 (stage post hoc: all P < 0.05), this response was unaltered following NaHCO3 (all P > 0.05) irrespective of the higher pH (P = 0.002) at each matched stage of P aC O 2 (P = 0.417). The absolute peak change was reduced by -19 ± 41% with +10 mmHg P aC O 2 irrespective of acutely elevated arterial pH/[HCO3 - ] (stage post hoc: P = 0.022). The NVC kinetics (i.e. time to peak) were markedly slower with hypercapnia versus hypocapnia (24 ± 5 vs. 7 ± 5 s, respectively; stage effect: P < 0.001). Overall, these findings indicate that temporal patterns in NVC are acutely regulated by P aC O 2 rather than arterial pH per se in the setting of acute metabolic alkalosis in humans.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology, and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Carter J Chalifoux
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Courtney V Brown
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
22
|
Aryal R, Patabendige A. Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes? Open Biol 2021; 11:200396. [PMID: 33878948 PMCID: PMC8059575 DOI: 10.1098/rsob.200396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) has become one of the most significant health problems worldwide, warranting urgent answers to currently pending questions on the effects of AF on brain function. Recent evidence has emerged to show an association between AF and an increased risk of developing dementia and worsening of stroke outcomes. A healthy brain is protected by the blood–brain barrier (BBB), which is formed by the endothelial cells that line cerebral capillaries. These endothelial cells are continuously exposed to shear stress (the frictional force generated by blood flow), which affects endothelial cell structure and function. Flow disturbances as experienced during AF can disrupt the BBB and leave the brain vulnerable to damage. Investigating the plausible mechanisms in detail, linking AF to cerebrovascular damage is difficult in humans, leading to paucity of available clinical data. Here, we discuss the available evidence for BBB disruption during AF due to altered cerebral blood flow, and how this may contribute to an increased risk of dementia and worsening of stroke outcomes.
Collapse
Affiliation(s)
- Ritambhara Aryal
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia.,Brain and Mental Health Research Programme, Hunter Medical Research Institute, Newcastle, Australia
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia.,Brain and Mental Health Research Programme, Hunter Medical Research Institute, Newcastle, Australia.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
23
|
Montgomery LD, Montgomery RW, Bodo M, Mahon RT, Pearce FJ. Thoracic, Peripheral, and Cerebral Volume, Circulatory and Pressure Responses To PEEP During Simulated Hemorrhage in a Pig Model: a Case Study. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:103-116. [PMID: 35069946 PMCID: PMC8713386 DOI: 10.2478/joeb-2021-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 06/14/2023]
Abstract
Positive end-expiratory pressure (PEEP) is a respiratory/ventilation procedure that is used to maintain or improve breathing in clinical and experimental cases that exhibit impaired lung function. Body fluid shift movement is not monitored during PEEP application in intensive care units (ICU), which would be interesting specifically in hypotensive patients. Brain injured and hypotensive patients are known to have compromised cerebral blood flow (CBF) autoregulation (AR) but currently, there is no non-invasive way to assess the risk of implementing a hypotensive resuscitation strategy and PEEP use in these patients. The advantage of electrical bioimpedance measurement is that it is noninvasive, continuous, and convenient. Since it has good time resolution, it is ideal for monitoring in intensive care units (ICU). The basis of its future use is to establish physiological correlates. In this study, we demonstrate the use of electrical bioimpedance measurement during bleeding and the use of PEEP in pig measurement. In an anesthetized pig, we performed multimodal recording on the torso and head involving electrical bioimpedance spectroscopy (EIS), fixed frequency impedance plethysmography (IPG), and bipolar (rheoencephalography - REG) measurements and processed data offline. Challenges (n=16) were PEEP, bleeding, change of SAP, and CO2 inhalation. The total measurement time was 4.12 hours. Systemic circulatory results: Bleeding caused a continuous decrease of SAP, cardiac output (CO), and increase of heart rate, temperature, shock index (SI), vegetative - Kerdo index (KI). Pulse pressure (PP) decreased only after second bleeding which coincided with loss of CBF AR. Pulmonary arterial pressure (PAP) increased during PEEP challenges as a function of time and bleeding. EIS/IPG results: Body fluid shift change was characterized by EIS-related variables. Electrical Impedance Spectroscopy was used to quantify the intravascular, interstitial, and intracellular volume changes during the application of PEEP and simulated hemorrhage. The intravascular fluid compartment was the primary source of blood during hemorrhage. PEEP produced a large fluid shift out of the intravascular compartment during the first bleeding period and continued to lose more blood following the second and third bleeding. Fixed frequency IPG was used to quantify the circulatory responses of the calf during PEEP and simulated hemorrhage. PEEP reduced the arterial blood flow into the calf and venous outflow from the calf. Head results: CBF AR was evaluated as a function of SAP change. Before bleeding, and after moderate bleeding, intracranial pressure (ICP), REG, and carotid flow pulse amplitudes (CFa) increased. This change reflected vasodilatation and active CBF AR. After additional hemorrhaging during PEEP, SAP, ICP, REG, CFa signal amplitudes decreased, indicating passive CBF AR. 1) The indicators of active AR status by modalities was the following: REG (n=9, 56 %), CFa (n=7, 44 %), and ICP (n=6, 38 %); 2) CBF reactivity was better for REG than ICP; 3) REG and ICP correlation coefficient were high (R2 = 0.81) during CBF AR active status; 4) PRx and REGx reflected active CBF AR status. CBF AR monitoring with REG offers safety for patients by preventing decreased CBF and secondary brain injury. We used different types of bioimpedance instrumentation to identify physiologic responses in the different parts of the body (that have not been discussed before) and how the peripheral responses ultimately lead to decreased cardiac output and changes in the head. These bioimpedance methods can improve ICU monitoring, increase the adequacy of therapy, and decrease mortality and morbidity.
Collapse
Affiliation(s)
| | | | - Michael Bodo
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Current position: Ochsner Medical Center, New Orleans, LA, USA
| | | | | |
Collapse
|
24
|
Machado MF, Muela HCS, Costa-Hong VA, Yassuda MS, Moraes NC, Memória CM, Bor-Seng-Shu E, Massaro AR, Nitrini R, Bortolotto LA, Nogueira RDC. Evaluation of cerebral autoregulation performance in patients with arterial hypertension on drug treatment. J Clin Hypertens (Greenwich) 2020; 22:2114-2120. [PMID: 32966689 DOI: 10.1111/jch.14052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022]
Abstract
Cerebral autoregulation (AR) keeps cerebral blood flow constant despite fluctuations in systemic arterial pressure. The final common AR pathway is made up of vasomotor adjustments of cerebrovascular resistance mediated by arterioles. Structural and functional changes in the arteriolar wall arise with age and systemic arterial hypertension. This study evaluated whether AR is impaired in hypertensive patients and whether this impairment differs with disease control. Three groups of patients were prospectively compared: hypertensive patients under treatment with systolic blood pressure (SBP) <140 and diastolic blood pressure (DBP) <90 mm Hg (n = 54), hypertensive patients under treatment with SBP > 140 or DBP > 90 mm Hg (n = 31), and normotensive volunteers (n = 30). Simultaneous measurements of cerebral blood flow velocity (CBFV) and BP were obtained by digital plethysmography and transcranial Doppler, and the AR index (ARI) was defined according to the step response to spontaneous fluctuations in BP. Compared to the uncontrolled hypertension, the normotensive individuals were younger (age 43.42 ± 11.14, P < .05) and had a lower resistance-area product (1.17 ± 0.24, P < .05), although age and greater arteriolar stiffness did not affect the CBFV mean of hypertensive patients, whether controlled or uncontrolled (62.85 × 58.49 × 58.30 cm/s, P = .29), most likely because their ARIs were not compromised (5.54 × 5.91 × 5.88, P = .6). Hypertensive patients under treatment, regardless of their BP control, have intact AR capacity.
Collapse
Affiliation(s)
- Michel Ferreira Machado
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Monica Sanches Yassuda
- Gerontology, School of Arts, Sciences and Humanities, University of São Paulo Medical School, São Paulo, Brazil
| | - Natalia Cristina Moraes
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Claudia Maia Memória
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Edson Bor-Seng-Shu
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Ayrton Roberto Massaro
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Luiz Aparecido Bortolotto
- Instituto do Coração (Incor), University of São Paulo Medical School - Hypertension Unit, São Paulo, Brazil
| | | |
Collapse
|
25
|
Elsamadicy AA, Koo AB, Reeves BC, Sujijantarat N, David WB, Malhotra A, Gilmore EJ, Matouk CC, Hebert R. Posterior Reversible Encephalopathy Syndrome Caused by Induced Hypertension to Treat Cerebral Vasospasm Secondary to Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2020; 143:e309-e323. [PMID: 32721559 DOI: 10.1016/j.wneu.2020.07.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of the present study was to describe the case of a patient who had presented to a university hospital with induced-hypertension (IH) posterior reversible encephalopathy syndrome (PRES). We also reviewed all other reports of such patients. METHODS We have described the clinical course of a patient who had presented to the university hospital neurosurgical department. We also performed a systematic review of studies related to the incidence of PRES caused by the use of IH in the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. RESULTS The patient had presented with an acute-onset headache and found to have a subarachnoid hemorrhage due to anterior communicating artery aneurysm rupture. She underwent coiling the next day. During the subsequent days, she demonstrated fluctuating clinical examination findings, aphasia, and decreased levels of arousal. Digital subtraction angiography was performed, and the findings were concerning for mild vasospasm of the anterior and middle cerebral arteries. The systolic blood pressure goal was increased to 180-220 mm Hg for an IH trial, which had initially resulted in some transient clinical improvements in her level of arousal. However, the improvement was not sustained. During the next 36 hours, the patient worsened, and she developed left middle cerebral artery syndrome. Given the concern for a possible ischemic event, magnetic resonance imaging was performed, which demonstrated interval development of multiple areas of cortical-based fluid-attenuated inversion recovery hyperintensity consistent with PRES. The systolic blood pressure goal was relaxed to normotension, and ~48 hours later, the patient's clinical status had significantly improved. CONCLUSION IH-PRES is a rare complication that should be remembered in the differential diagnosis for at-risk patients.
Collapse
Affiliation(s)
- Aladine A Elsamadicy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew B Koo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nanthiya Sujijantarat
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wyatt B David
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily J Gilmore
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles C Matouk
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ryan Hebert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
26
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
27
|
Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, Guo Y, Li M, Gao W, Fang X, Paul IA, Rajkowska G, Shaffery JP, Mosley TH, Hu X, Liu R, Wang Y, Yu H, Roman RJ, Fan F. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. GeroScience 2020; 42:1387-1410. [PMID: 32696219 DOI: 10.1007/s11357-020-00233-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a leading risk factor for aging-related dementia; however, the underlying mechanisms are not well understood. The present study, utilizing a non-obese T2DN diabetic model, demonstrates that the myogenic response of the middle cerebral artery (MCA) and parenchymal arteriole (PA) and autoregulation of cerebral blood flow (CBF) in the surface and deep cortex were impaired at both young and old ages. The impaired CBF autoregulation was more severe in old than young DM rats, and in the deep than the surface cortex. The myogenic tone of the MCA was enhanced at perfusion pressure in the range of 40-100 mmHg in young DM rats but was reduced at 140-180 mmHg in old DM rats. No change of the myogenic tone of the PA was observed in young DM rats, whereas it was significantly reduced at 30-60 mmHg in old DM rats. Old DM rats had enhanced blood-brain barrier (BBB) leakage and neurodegeneration, reduced vascular density, tight junction, and pericyte coverage on cerebral capillaries in the CA3 region in the hippocampus. Additionally, DM rats displayed impaired functional hyperemia and spatial learning and short- and long-term memory at both young and old ages. Old DM rats had impaired non-spatial short-term memory. These results revealed that impaired CBF autoregulation and enhanced BBB leakage plays an essential role in the pathogenesis of age- and diabetes-related dementia. These findings will lay the foundations for the discovery of anti-diabetic therapies targeting restoring CBF autoregulation to prevent the onset and progression of dementia in elderly DM.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.,Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Longyang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Joshua R Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Man Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ian A Paul
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - James P Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Thomas H Mosley
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Department of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Xinlin Hu
- Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
28
|
Bogdanov EI, Khasanov IA. [Posterior reversible encephalopathy syndrome and arterial hypertension]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:17-23. [PMID: 32678543 DOI: 10.17116/jnevro202012006117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To identify a correlation between systolicdiastolic blood pressure (BP) and severity of clinical/radiological presentations in patients with posterior reversible encephalopathy syndrome (PRES). MATERIAL AND METHODS Clinical and paraclinic data of patients with PRES hospitalized in the Republican Clinical Hospital, Kazan in 2010-2018 were analyzed. Nineteen patients were found, all of them were women, aged 18-67 years, mean age 33.50±15.03 years. Clinical and paraclinic data included anamnesis, neurological examination, neuroimaging, first measurements of systolic and diastolic BP after symptoms'onset. RESULTS AND CONCLUSION Diastolic BP values can be associated with the incidence of depression of consciousness, systolic BP values - with the number of damaged structures. In total, BP is the significant factor implemented in the presence of endothelial dysfunction that defines the severity of encephalopathy.
Collapse
Affiliation(s)
- E I Bogdanov
- Kazan State Medical University, Kazan, Russia.,Republican Clinical Hospital, Kazan, Russia
| | - I A Khasanov
- Kazan State Medical University, Kazan, Russia.,Republican Clinical Hospital, Kazan, Russia
| |
Collapse
|
29
|
Multiscale modeling of human cerebrovasculature: A hybrid approach using image-based geometry and a mathematical algorithm. PLoS Comput Biol 2020; 16:e1007943. [PMID: 32569287 PMCID: PMC7332106 DOI: 10.1371/journal.pcbi.1007943] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/02/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
The cerebral vasculature has a complex and hierarchical network, ranging from vessels of a few millimeters to superficial cortical vessels with diameters of a few hundred micrometers, and to the microvasculature (arteriole/venule) and capillary beds in the cortex. In standard imaging techniques, it is difficult to segment all vessels in the network, especially in the case of the human brain. This study proposes a hybrid modeling approach that determines these networks by explicitly segmenting the large vessels from medical images and employing a novel vascular generation algorithm. The framework enables vasculatures to be generated at coarse and fine scales for individual arteries and veins with vascular subregions, following the personalized anatomy of the brain and macroscale vasculatures. In this study, the vascular structures of superficial cortical (pial) vessels before they penetrate the cortex are modeled as a mesoscale vasculature. The validity of the present approach is demonstrated through comparisons with partially observed data from existing measurements of the vessel distributions on the brain surface, pathway fractal features, and vascular territories of the major cerebral arteries. Additionally, this validation provides some biological insights: (i) vascular pathways may form to ensure a reasonable supply of blood to the local surface area; (ii) fractal features of vascular pathways are not sensitive to overall and local brain geometries; and (iii) whole pathways connecting the upstream and downstream entire-scale cerebral circulation are highly dependent on the local curvature of the cerebral sulci. Cerebral autoregulation in the complex vascular networks of the brain is an amazing achievement. We believe that numerical analysis of the cerebral blood circulation using an anatomically precise vascular model provides a powerful tool for evaluating the direct relationships between local- and global-scale blood flows. However, there is a lack of information about the overall vascular pathways in the human brain, preventing a monolithic model of the human cerebrovasculature from being established. This paper presents a multiscale model of human cerebrovasculature based on a hybrid approach that uses image-based geometries and a newly developed mathematical algorithm. One important argument of this paper is the validity of the cerebrovasculature represented in the model, which reflects anatomical features of major cerebral vasculatures and brain shape, and has strong similarities with available data for human superficial cortical vessels. Investigations of the reconstructed model allow us to derive some biological insights and associated hypotheses for the cerebral vasculature. The authors believe the present cerebrovascular model can be applied to numerical simulations of the entire-scale cerebral blood flow.
Collapse
|
30
|
Ghaffari-Rafi A, Netzel AC, Prat M, Miles DT. Cerebellar Parieto-occipital Posterior Reversible Encephalopathy Syndrome and Cerebral Metamorphopsia Associated with Asymptomatic Atrial Septum Vegetation and Renal Disease: Case Report. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e923441. [PMID: 32516303 PMCID: PMC7304656 DOI: 10.12659/ajcr.923441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patient: Female, 25-year-old Final Diagnosis: Posterior reversible encephalopathy syndrome Symptoms: Visual disturbances Medication: — Clinical Procedure: — Specialty: Neurology
Collapse
Affiliation(s)
- Arash Ghaffari-Rafi
- Queen Square Institute of Neurology, University College London, London, United Kingdom.,John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Anthony C Netzel
- Department of Medicine, Tripler Army Medical Center, Honolulu, HI, USA
| | - Madeline Prat
- Department of Medicine, Tripler Army Medical Center, Honolulu, HI, USA
| | - Daniel T Miles
- Department of Medicine, Tripler Army Medical Center, Honolulu, HI, USA
| |
Collapse
|
31
|
Kang CH, Roh J, Yeom JA, Ahn SH, Park MG, Park KP, Baik SK. Asymptomatic Cerebral Vasoconstriction after Carotid Artery Stenting. AJNR Am J Neuroradiol 2020; 41:305-309. [PMID: 31974083 DOI: 10.3174/ajnr.a6385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/01/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Carotid artery stent placement is widely performed for treatment of carotid stenosis. The purpose of this study is to present our observations on cerebral vasoconstriction in ipsilateral anterior circulation during immediate poststenting angiography in patients with near-total occlusion of the proximal ICA. MATERIALS AND METHODS We retrospectively reviewed patient data from December 2008 to December 2018. There were 28 patients with carotid near-total occlusion. Two neuroradiologists reviewed the final cerebral angiographic finding of carotid artery stent placement to evaluate the presence of vasoconstriction or vasodilation. RESULTS A total of 28 patients with near-total occlusion (mean ± standard deviation age, 69.0 ± 6.5 years; 92.9% male) were analyzed. Ten patients showed vasoconstriction in the treated territory, and 18 patients did not show vasoconstriction after carotid artery stenting. There were no statistically significant differences in comorbidity, frequency of symptomatic lesions, antiplatelet medication, mean procedure time, and initial NIHSS and baseline modified Rankin scale scores between the 2 groups. However, vasoconstriction is more likely to happen in patients with isolated territory from the contralateral anterior and posterior circulation (66.7% in the isolated territory group and 12.5% in the not-isolated territory group; P < .05). No headache or neurologic deficit was noted in all 10 patients with cerebral vasoconstriction. CONCLUSIONS Cerebral vasoconstriction may occur after carotid artery stenting more frequently than expected. It occurs more frequently in patients with near-total occlusion and with isolation of the cerebral circulation. A large-scale study is necessary to assess the clinical implications of cerebral vasoconstriction after carotid artery stenting.
Collapse
Affiliation(s)
- C H Kang
- From the Departments of Radiology (C.H.K., J.R., J.A.Y., S.K.B.)
| | - J Roh
- From the Departments of Radiology (C.H.K., J.R., J.A.Y., S.K.B.)
| | - J A Yeom
- From the Departments of Radiology (C.H.K., J.R., J.A.Y., S.K.B.)
| | - S H Ahn
- Neurology (S.H.A., M.G.P., K.P.P.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - M G Park
- Neurology (S.H.A., M.G.P., K.P.P.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - K P Park
- Neurology (S.H.A., M.G.P., K.P.P.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - S K Baik
- From the Departments of Radiology (C.H.K., J.R., J.A.Y., S.K.B.)
| |
Collapse
|
32
|
Müller M, Österreich M. Cerebrovascular Dynamics During Continuous Motor Task. Physiol Res 2019; 68:997-1004. [PMID: 31647292 DOI: 10.33549/physiolres.934147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated the cerebral autoregulation (CA) dynamics parameter phase and gain change when exposed to a longlasting motor task. 25 healthy subjects (mean age ± SE, 38±2.6 years, 13 females) underwent simultaneous recordings of spontaneous fluctuations in blood pressure (BP), cerebral blood flow velocity (CBFV), and end-tidal CO(2) (ETCO(2)) over 5 min of rest followed by 5 min of left elbow flexion at a frequency of 1 Hz. Tansfer function gain and phase between BP and CBFV were assessed in the frequency ranges of very low frequencies (VLF, 0.02-0.07 Hz), low frequencies (LF, 0.07-0.15), and high frequencies (HF, >0.15). CBFV increased on both sides rapidly to maintain an elevated steady state until movement stopped. Cerebrovascular resistance fell on the right side (rest 1.35±0.06, movement 1.28±0.06, p<0.01), LF gain decreased from baseline (right side 0.97±0.07 %/mm Hg, left 1.01±0.09) to movement epoch (right 0.73±0.08, left 0.76±0.06, p</=0.01). VLF phase decreased from baseline (right 1.03±0.05 radians, left 1.10±0.06) to the movement epoch (right 0.81±0.07, left 0.82±0.10, p?0.05). CA regulates continuous motor efforts by changes in resistance, gain and phase.
Collapse
Affiliation(s)
- M Müller
- Neurocenter, Neurovascular Laboratory, Lucerne Kantonsspital, Lucerne, Switzerland.
| | | |
Collapse
|
33
|
Forsyth A, McMillan R, Campbell D, Malpas G, Maxwell E, Sleigh J, Dukart J, Hipp J, Muthukumaraswamy SD. Modulation of simultaneously collected hemodynamic and electrophysiological functional connectivity by ketamine and midazolam. Hum Brain Mapp 2019; 41:1472-1494. [PMID: 31808268 PMCID: PMC7267972 DOI: 10.1002/hbm.24889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
The pharmacological modulation of functional connectivity in the brain may underlie therapeutic efficacy for several neurological and psychiatric disorders. Functional magnetic resonance imaging (fMRI) provides a noninvasive method of assessing this modulation, however, the indirect nature of the blood‐oxygen level dependent signal restricts the discrimination of neural from physiological contributions. Here we followed two approaches to assess the validity of fMRI functional connectivity in developing drug biomarkers, using simultaneous electroencephalography (EEG)/fMRI in a placebo‐controlled, three‐way crossover design with ketamine and midazolam. First, we compared seven different preprocessing pipelines to determine their impact on the connectivity of common resting‐state networks. Independent components analysis (ICA)‐denoising resulted in stronger reductions in connectivity after ketamine, and weaker increases after midazolam, than pipelines employing physiological noise modelling or averaged signals from cerebrospinal fluid or white matter. This suggests that pipeline decisions should reflect a drug's unique noise structure, and if this is unknown then accepting possible signal loss when choosing extensive ICA denoising pipelines could engender more confidence in the remaining results. We then compared the temporal correlation structure of fMRI to that derived from two connectivity metrics of EEG, which provides a direct measure of neural activity. While electrophysiological estimates based on the power envelope were more closely aligned to BOLD signal connectivity than those based on phase consistency, no significant relationship between the change in electrophysiological and hemodynamic correlation structures was found, implying caution should be used when making cross‐modal comparisons of pharmacologically‐modulated functional connectivity.
Collapse
Affiliation(s)
- Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesiology Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Marzolini S, Robertson AD, Oh P, Goodman JM, Corbett D, Du X, MacIntosh BJ. Aerobic Training and Mobilization Early Post-stroke: Cautions and Considerations. Front Neurol 2019; 10:1187. [PMID: 31803129 PMCID: PMC6872678 DOI: 10.3389/fneur.2019.01187] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Knowledge gaps exist in how we implement aerobic exercise programs during the early phases post-stroke. Therefore, the objective of this review was to provide evidence-based guidelines for pre-participation screening, mobilization, and aerobic exercise training in the hyper-acute and acute phases post-stroke. In reviewing the literature to determine safe timelines of when to initiate exercise and mobilization we considered the following factors: arterial blood pressure dysregulation, cardiac complications, blood-brain barrier disruption, hemorrhagic stroke transformation, and ischemic penumbra viability. These stroke-related impairments could intensify with inappropriate mobilization/aerobic exercise, hence we deemed the integrity of cerebral autoregulation to be an essential physiological consideration to protect the brain when progressing exercise intensity. Pre-participation screening criteria are proposed and countermeasures to protect the brain from potentially adverse circulatory effects before, during, and following mobilization/exercise sessions are introduced. For example, prolonged periods of standing and static postures before and after mobilization/aerobic exercise may elicit blood pooling and/or trigger coagulation cascades and/or cerebral hypoperfusion. Countermeasures such as avoiding prolonged standing or incorporating periodic lower limb movement to activate the venous muscle pump could counteract blood pooling after an exercise session, minimize activation of the coagulation cascade, and mitigate potential cerebral hypoperfusion. We discuss patient safety in light of the complex nature of stroke presentations (i.e., type, severity, and etiology), medical history, comorbidities such as diabetes, cardiac manifestations, medications, and complications such as anemia and dehydration. The guidelines are easily incorporated into the care model, are low-risk, and use minimal resources. These and other strategies represent opportunities for improving the safety of the activity regimen offered to those in the early phases post-stroke. The timeline for initiating and progressing exercise/mobilization parameters are contingent on recovery stages both from neurobiological and cardiovascular perspectives, which to this point have not been specifically considered in practice. This review includes tailored exercise and mobilization prescription strategies and precautions that are not resource intensive and prioritize safety in stroke recovery.
Collapse
Affiliation(s)
- Susan Marzolini
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
| | - Andrew D. Robertson
- Schlegel-University of Waterloo Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul Oh
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
| | - Jack M. Goodman
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Dale Corbett
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xiaowei Du
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Bradley J. MacIntosh
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
- Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
35
|
Schiller RM, IJsselstijn H, Madderom MJ, van Rosmalen J, van Heijst AFJ, Smits M, Verhulst F, Tibboel D, White T. Training-induced white matter microstructure changes in survivors of neonatal critical illness: A randomized controlled trial. Dev Cogn Neurosci 2019; 38:100678. [PMID: 31299479 PMCID: PMC6969347 DOI: 10.1016/j.dcn.2019.100678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
In a nationwide randomized controlled trial, white matter microstructure was assessed before and immediately after Cogmed Working-Memory Training (CWMT) in school-age neonatal critical illness survivors. Eligible participants were survivors (8-12 years) with an IQ ≥ 80 and a z-score of ≤ -1.5 on (working)memory test at first assessment. Diffusion Tensor Imaging was used to assess white matter microstructure. Associations between any training-induced changes and improved neuropsychological outcome immediately and one year post-CWMT were evaluated as well. The trial was conducted between October 2014-June 2017 at Erasmus MC-Sophia, Rotterdam, Netherlands. Researchers involved were blinded to group allocation. Participants were randomized to CWMT(n = 14) or no-intervention(n = 20). All children completed the CWMT. Global fractional anisotropy(FA) increased significantly post-CWMT compared to no-intervention(estimated-coefficient = .007, p = .015). Increased FA(estimated coefficient = .009, p = .033) and decreased mean diffusivity(estimated-coefficient = -.010, p = .018) were found in the left superior longitudinal fasciculus(SFL) post-CWMT compared no-intervention. Children after CWMT who improved with >1SD on verbal working-memory had significantly higher FA in the left SLF post-CWMT(n = 6; improvement = .408 ± .01) than children without this improvement post-CWMT(n = 6; no-improvement = .384 ± .02), F(1,12) = 6.22, p = .041, ηp2 = .47. No other structure-function relationships were found post-CWMT. Our findings demonstrate that white matter microstructure and associated cognitive outcomes are malleable by CWMT in survivors of neonatal critical illness.
Collapse
Affiliation(s)
- Raisa M Schiller
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, 3015 CN Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, 3015 CN Rotterdam, the Netherlands
| | - Hanneke IJsselstijn
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, 3015 CN Rotterdam, the Netherlands
| | - Marlous J Madderom
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, 3015 CN Rotterdam, the Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Arno F J van Heijst
- Department of Neonatology, Amalia Children's Hospital, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Frank Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, 3015 CN Rotterdam, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, 3015 CN Rotterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, 3015 CN Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
36
|
Moir ME, Klassen SA, Al-Khazraji BK, Woehrle E, Smith SO, Matushewski BJ, Kozić D, Dujić Ž, Barak OF, Shoemaker JK. Impaired dynamic cerebral autoregulation in trained breath-hold divers. J Appl Physiol (1985) 2019; 126:1694-1700. [PMID: 31070952 DOI: 10.1152/japplphysiol.00210.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Breath-hold divers (BHD) experience repeated bouts of severe hypoxia and hypercapnia with large increases in blood pressure. However, the impact of long-term breath-hold diving on cerebrovascular control remains poorly understood. The ability of cerebral blood vessels to respond rapidly to changes in blood pressure represents the property of dynamic autoregulation. The current investigation tested the hypothesis that breath-hold diving impairs dynamic autoregulation to a transient hypotensive stimulus. Seventeen BHD (3 women, 11 ± 9 yr of diving) and 15 healthy controls (2 women) completed two or three repeated sit-to-stand trials during spontaneous breathing and poikilocapnic conditions. Heart rate (HR), finger arterial blood pressure (BP), and cerebral blood flow velocity (BFV) from the right middle cerebral artery were measured continuously with three-lead electrocardiography, finger photoplethysmography, and transcranial Doppler ultrasonography, respectively. End-tidal carbon dioxide partial pressure was measured with a gas analyzer. Offline, an index of cerebrovascular resistance (CVRi) was calculated as the quotient of mean BP and BFV. The rate of the drop in CVRi relative to the change in BP provided the rate of regulation [RoR; (∆CVRi/∆T)/∆BP]. The BHD demonstrated slower RoR than controls (P ≤ 0.001, d = 1.4). Underlying the reduced RoR in BHD was a longer time to reach nadir CVRi compared with controls (P = 0.004, d = 1.1). In concert with the longer CVRi response, the time to reach peak BFV following standing was longer in BHD than controls (P = 0.01, d = 0.9). The data suggest impaired dynamic autoregulatory mechanisms to hypotension in BHD. NEW & NOTEWORTHY Impairments in dynamic cerebral autoregulation to hypotension are associated with breath-hold diving. Although weakened autoregulation was observed acutely in this group during apneic stress, we are the first to report on chronic adaptations in cerebral autoregulation. Impaired vasomotor responses underlie the reduced rate of regulation, wherein breath-hold divers demonstrate a prolonged dilatory response to transient hypotension. The slower cerebral vasodilation produces a longer perturbation in cerebral blood flow velocity, increasing the risk of cerebral ischemia.
Collapse
Affiliation(s)
- M Erin Moir
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Stephen A Klassen
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Baraa K Al-Khazraji
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Emilie Woehrle
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Sydney O Smith
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Brad J Matushewski
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Duško Kozić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Željko Dujić
- Department of Physiology, University of Split School of Medicine , Split , Croatia
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sports and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada.,Department of Physiology and Pharmacology, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
37
|
Birkl C, Langkammer C, Sati P, Enzinger C, Fazekas F, Ropele S. Quantitative Susceptibility Mapping to Assess Cerebral Vascular Compliance. AJNR Am J Neuroradiol 2019; 40:460-463. [PMID: 30679209 PMCID: PMC6422309 DOI: 10.3174/ajnr.a5933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/01/2018] [Indexed: 11/07/2022]
Abstract
This study explored whether autoregulatory shifts in cerebral blood volume induce susceptibility changes large enough to be depicted by quantitative susceptibility mapping. Eight healthy subjects underwent fast quantitative susceptibility mapping at 3T while lying down to slowly decrease mean arterial pressure. A linear relationship between mean arterial pressure and susceptibility was observed in cortical and subcortical structures, likely representing vessels involved in autoregulation. The slope of this relationship is assumed to indicate the extent of cerebral vascular compliance.
Collapse
Affiliation(s)
- C. Birkl
- From the Department of Neurology (C.B., C.L., C.E., F.F., S.R.), Medical University of Graz, Graz, Austria,University of British Columbia MRI Research Centre (C.B.), University of British Columbia, Vancouver, British Columbia, Canada
| | - C. Langkammer
- From the Department of Neurology (C.B., C.L., C.E., F.F., S.R.), Medical University of Graz, Graz, Austria
| | - P. Sati
- Translational Neuroradiology Unit (P.S.), Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - C. Enzinger
- From the Department of Neurology (C.B., C.L., C.E., F.F., S.R.), Medical University of Graz, Graz, Austria
| | - F. Fazekas
- From the Department of Neurology (C.B., C.L., C.E., F.F., S.R.), Medical University of Graz, Graz, Austria
| | - S. Ropele
- From the Department of Neurology (C.B., C.L., C.E., F.F., S.R.), Medical University of Graz, Graz, Austria
| |
Collapse
|
38
|
Masamoto K, Vazquez A. Optical imaging and modulation of neurovascular responses. J Cereb Blood Flow Metab 2018; 38:2057-2072. [PMID: 30334644 PMCID: PMC6282226 DOI: 10.1177/0271678x18803372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/02/2018] [Indexed: 12/17/2022]
Abstract
The cerebral microvasculature consists of pial vascular networks, parenchymal descending arterioles, ascending venules and parenchymal capillaries. This vascular compartmentalization is vital to precisely deliver blood to balance continuously varying neural demands in multiple brain regions. Optical imaging techniques have facilitated the investigation of dynamic spatial and temporal properties of microvascular functions in real time. Their combination with transgenic animal models encoding specific genetic targets have further strengthened the importance of optical methods for neurovascular research by allowing for the modulation and monitoring of neuro vascular function. Image analysis methods with three-dimensional reconstruction are also helping to understand the complexity of microscopic observations. Here, we review the compartmentalized cerebral microvascular responses to global perturbations as well as regional changes in response to neural activity to highlight the differences in vascular action sites. In addition, microvascular responses elicited by optical modulation of different cell-type targets are summarized with emphasis on variable spatiotemporal dynamics of microvascular responses. Finally, long-term changes in microvascular compartmentalization are discussed to help understand potential relationships between CBF disturbances and the development of neurodegenerative diseases and cognitive decline.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| | - Alberto Vazquez
- Departments of Radiology and Bioengineering, University of Pittsburgh, PA, USA
| |
Collapse
|
39
|
Kasuya C, Suzuki M, Koda Y, Sato H, Kashima K, Honda K, Kazama Y, Akiyama K, Seki Y, Yoneoka Y. A headache-free reversible cerebral vasoconstriction syndrome (RCVS) with symptomatic brain stem ischemia at late pregnancy as a rare manifestation of RCVS resolved with termination of pregnancy by semi-urgent cesarean section. Oxf Med Case Reports 2018; 2018:omy101. [PMID: 30487987 PMCID: PMC6247141 DOI: 10.1093/omcr/omy101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
A 32-year-old pregnant woman in her 39th week of pregnancy presented at the emergency room complaining of sudden-onset dizziness with gaze disturbance and was admitted to our hospital. Her past medical history included hypertension, diabetes mellitus and infarction in the right medulla oblongata 18 months prior to this event. Magnetic resonance (MR) angiography showed multiple irregular stenosis of the intracranial arterial system. Although MR images revealed no fresh ischemic or hemorrhagic lesions, she was diagnosed with reversible cerebral vasoconstriction syndrome (RVCS) associated with pregnancy. Cesarean section immediately resolved the headache-free ischemic RCVS. The postpartum course of the patient was uneventful as well as that of her baby. Follow-up MR angiography showed improvement of intracranial vasoconstriction and follow-up MR imaging showed improvement of a left medial pontine ischemic lesion on diffusion-weighted image. This report describes a rare manifestation of pregnancy-related RCVS.
Collapse
Affiliation(s)
- Chisato Kasuya
- Department of Obstetrics and Gynecology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Mina Suzuki
- Department of Obstetrics and Gynecology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Yukako Koda
- Department of Obstetrics and Gynecology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Hitomi Sato
- Department of Obstetrics and Gynecology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Katsunori Kashima
- Department of Obstetrics and Gynecology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Keisuke Honda
- Department of Obstetrics and Gynecology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Yoshiki Kazama
- Department of Obstetrics and Gynecology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Katsuhiko Akiyama
- Department of Neurosurgery, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Yasuhiro Seki
- Department of Neurosurgery, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Yuichiro Yoneoka
- Department of Neurosurgery, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| |
Collapse
|
40
|
Gadda G, Majka M, Zieliński P, Gambaccini M, Taibi A. A multiscale model for the simulation of cerebral and extracerebral blood flows and pressures in humans. Eur J Appl Physiol 2018; 118:2443-2454. [DOI: 10.1007/s00421-018-3971-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023]
|
41
|
Multimodality neuromonitoring in severe pediatric traumatic brain injury. Pediatr Res 2018; 83:41-49. [PMID: 29084196 DOI: 10.1038/pr.2017.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
Each year, the annual hospitalization rates of traumatic brain injury (TBI) in children in the United States are 57.7 per 100K in the <5 years of age and 23.1 per 100K in the 5-14 years age group. Despite this, little is known about the pathophysiology of TBI in children and how to manage it most effectively. Historically, TBI management has been guided by clinical examination. This has been assisted progressively by clinical imaging, intracranial pressure (ICP) monitoring, and finally a software that can calculate optimal brain physiology. Multimodality monitoring affords clinicians an early indication of secondary insults to the recovering brain including raised ICP and decreased cerebral perfusion pressure. From variables such as ICP and arterial blood pressure, correlations can be drawn to determine parameters of cerebral autoregulation (pressure reactivity index) and "optimal cerebral perfusion pressure" at which the vasculature is most reactive. More recently, significant advances using both direct and near-infrared spectroscopy-derived brain oxygenation plus cerebral microdialysis to drive management have been described. Here in, we provide a perspective on the state-of-the-art techniques recently implemented in clinical practice for pediatric TBI.
Collapse
|
42
|
Bodo M, D. Montgomery L, J. Pearce F, Armonda R. Measurement of Cerebral Blood Flow Autoregulation with Rheoencephalography: A Comparative Pig Study. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2018; 9:123-132. [PMID: 33584928 PMCID: PMC7852005 DOI: 10.2478/joeb-2018-0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Indexed: 05/11/2023]
Abstract
Neuromonitoring is performed to prevent further (secondary) brain damage by detecting low brain blood flow following a head injury, stroke or neurosurgery. This comparative neuromonitoring study is part of an ongoing investigation of brain bioimpedance (rheoencephalography-REG) as a measuring modality for use in both civilian and military medical settings, such as patient transport, emergency care and neurosurgery intensive care. In a previous animal study, we validated that REG detects cerebral blood flow autoregulation (CBF AR), the body's physiological mechanism that protects the brain from adverse effects of low brain blood flow (hypoxia/ischemia). In the current descriptive pig study, the primary goal was to compare measurements of CBF AR made with REG to measurements made with other neuromonitoring modalities: laser Doppler flow (LDF); intracranial pressure (ICP); absolute CBF; carotid flow (CF); and systemic arterial pressure (SAP). Challenges administered to anesthetized pigs were severe induced hemorrhage (bleeding) and resuscitation; CO2 inhalation; and positive end expiratory pressure (PEEP). Data were stored on a computer and processed offline. After hemorrhage, the loss of CBF AR was detected by REG, ICP, and CF, all of which passively followed systemic arterial SAP after bleeding. Loss of CBF AR was the earliest indicator of low brain blood flow: loss of CBF AR occurred before a decrease in cardiac output, which is the cardiovascular response to hemorrhage. A secondary goal of this study was to validate the usefulness of new automated data processing software developed to detect the status of CBF AR. Both the new automated software and the traditional (observational) evaluation indicated the status of CBF AR. REG indicates the earliest breakdown of CBF AR; cessation of EEG for 2 seconds and respiration would be used as additional indicators of loss of CBF AR. The clinical significance of this animal study is that REG shows potential for use as a noninvasive, continuous and non-operator dependent neuromonitor of CBF AR in both civilian and military medical settings. Human validation studies of neuromonitoring with REG are currently in progress.
Collapse
Affiliation(s)
- Michael Bodo
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Current position: Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | |
Collapse
|
43
|
Curtelin D, Morales-Alamo D, Torres-Peralta R, Rasmussen P, Martin-Rincon M, Perez-Valera M, Siebenmann C, Pérez-Suárez I, Cherouveim E, Sheel AW, Lundby C, Calbet JA. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. J Cereb Blood Flow Metab 2018; 38:136-150. [PMID: 28186430 PMCID: PMC5757439 DOI: 10.1177/0271678x17691986] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebral blood flow (CBF) is regulated to secure brain O2 delivery while simultaneously avoiding hyperperfusion; however, both requisites may conflict during sprint exercise. To determine whether brain O2 delivery or CBF is prioritized, young men performed sprint exercise in normoxia and hypoxia (PIO2 = 73 mmHg). During the sprints, cardiac output increased to ∼22 L min-1, mean arterial pressure to ∼131 mmHg and peak systolic blood pressure ranged between 200 and 304 mmHg. Middle-cerebral artery velocity (MCAv) increased to peak values (∼16%) after 7.5 s and decreased to pre-exercise values towards the end of the sprint. When the sprints in normoxia were preceded by a reduced PETCO2, CBF and frontal lobe oxygenation decreased in parallel ( r = 0.93, P < 0.01). In hypoxia, MCAv was increased by 25%, due to a 26% greater vascular conductance, despite 4-6 mmHg lower PaCO2 in hypoxia than normoxia. This vasodilation fully accounted for the 22 % lower CaO2 in hypoxia, leading to a similar brain O2 delivery during the sprints regardless of PIO2. In conclusion, when a conflict exists between preserving brain O2 delivery or restraining CBF to avoid potential damage by an elevated perfusion pressure, the priority is given to brain O2 delivery.
Collapse
Affiliation(s)
- David Curtelin
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,2 Emergency Medicine Department, Insular Universitary Hospital of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rafael Torres-Peralta
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Peter Rasmussen
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Marcos Martin-Rincon
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Christoph Siebenmann
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Ismael Pérez-Suárez
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Evgenia Cherouveim
- 5 Department of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - A William Sheel
- 6 School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Carsten Lundby
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - José Al Calbet
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
44
|
Tong LS, Guo ZN, Ou YB, Yu YN, Zhang XC, Tang J, Zhang JH, Lou M. Cerebral venous collaterals: A new fort for fighting ischemic stroke? Prog Neurobiol 2017; 163-164:172-193. [PMID: 29199136 DOI: 10.1016/j.pneurobio.2017.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/03/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Stroke therapy has entered a new era highlighted by the use of endovascular therapy in addition to intravenous thrombolysis. However, the efficacy of current therapeutic regimens might be reduced by their associated adverse events. For example, over-reperfusion and futile recanalization may lead to large infarct, brain swelling, hemorrhagic complication and neurological deterioration. The traditional pathophysiological understanding on ischemic stroke can hardly address these occurrences. Accumulating evidence suggests that a functional cerebral venous drainage, the major blood reservoir and drainage system in brain, may be as critical as arterial infusion for stroke evolution and clinical sequelae. Further exploration of the multi-faceted function of cerebral venous system may add new implications for stroke outcome prediction and future therapeutic decision-making. In this review, we emphasize the anatomical and functional characteristics of the cerebral venous system and illustrate its necessity in facilitating the arterial infusion and maintaining the cerebral perfusion in the pathological stroke content. We then summarize the recent critical clinical studies that underscore the associations between cerebral venous collateral and outcome of ischemic stroke with advanced imaging techniques. A novel three-level venous system classification is proposed to demonstrate the distinct characteristics of venous collaterals in the setting of ischemic stroke. Finally, we discuss the current directions for assessment of cerebral venous collaterals and provide future challenges and opportunities for therapeutic strategies in the light of these new concepts.
Collapse
Affiliation(s)
- Lu-Sha Tong
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Departments of Physiology, Loma Linda University, School of Medicine, CA, USA
| | - Zhen-Ni Guo
- Department of Neurology, The First Affiliated Hospital of Jilin University, Changchun, China; Departments of Physiology, Loma Linda University, School of Medicine, CA, USA
| | - Yi-Bo Ou
- Department of Neurosurgery, Tong-ji Hospital, Wuhan, China; Departments of Physiology, Loma Linda University, School of Medicine, CA, USA
| | - Yan-Nan Yu
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiao-Cheng Zhang
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jiping Tang
- Department of Anesthesiology, Loma Linda University, School of Medicine, CA, USA
| | - John H Zhang
- Departments of Physiology, Loma Linda University, School of Medicine, CA, USA.
| | - Min Lou
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
45
|
Chen JH, Wu T, Yang LK, Chen L, Zhu J, Li PP, Hu X, Wang YH. Protective effects of atorvastatin on cerebral vessel autoregulation in an experimental rabbit model of subarachnoid hemorrhage. Mol Med Rep 2017; 17:1651-1659. [PMID: 29257200 PMCID: PMC5780106 DOI: 10.3892/mmr.2017.8074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/08/2017] [Indexed: 02/02/2023] Open
Abstract
The aim of the present study was to assess the therapeutic effects of atorvastatin on cerebral vessel autoregulation and to explore the underlying mechanisms in a rabbit model of subarachnoid hemorrhage (SAH). A total of 48 healthy male New Zealand rabbits (weight, 2–2.5 kg) were randomly allocated into SAH, Sham or SAH + atorvastatin groups (n=16/group). The Sham group received 20 mg/kg/d saline solution, whereas 20 mg/kg/d atorvastatin was administered to rabbits in the SAH + atorvastatin group following SAH induction. Changes in diameter, perimeter and basilar artery (BA) area were assessed and expression levels of the vasoactive molecules endothelin-1 (ET-1), von Willebrand factor (vWF) and thrombomodulin (TM) were measured. Neuronal apoptosis was analyzed 72 h following SAH by terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling (TUNEL) staining. The mortality rate in the SAH group was 18.75, 25% in the SAH + atorvastatin treated group and 0% in the Sham group (n=16/group). The neurological score in the SAH + atorvastatin group was 1.75±0.68, which was significantly higher compared with the Sham group (0.38±0.49; P<0.05). The BA area in the SAH + atorvastatin group (89.6±9.11) was significantly lower compared with the SAH group (115.4±11.0; P<0.01). The present study demonstrated that SAH induction resulted in a significant increase in the diameter, perimeter and cross-sectional area of the BA in the SAH + atorvastatin group. Administration of atorvastatin may significantly downregulate the expression levels of ET-1, vWF and TM (all P<0.01) vs. sham and SAH groups. TUNEL staining demonstrated that neuronal apoptosis was remarkably reduced in the hippocampus of SAH rabbits following treatment with atorvastatin (P<0.05). Atorvastatin treatment may alleviate cerebral vasospasm and mediate structural and functional remodeling of vascular endothelial cells, in addition to promoting anti-apoptotic signaling. These results provided supporting evidence for the use of atorvastatin as an effective and well-tolerated treatment for SAH in various clinical settings and may protect the autoregulation of cerebral vessels.
Collapse
Affiliation(s)
- Jun-Hui Chen
- Department of Neurosurgery, l0lst Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Ting Wu
- Department of Cardiology, l0lst Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Li-Kun Yang
- Department of Neurosurgery, l0lst Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Lei Chen
- Department of Neurosurgery, l0lst Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Jie Zhu
- Department of Neurosurgery, l0lst Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Pei-Pei Li
- Department of Neurosurgery, l0lst Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Xu Hu
- Department of Neurosurgery, l0lst Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Yu-Hai Wang
- Department of Neurosurgery, l0lst Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
46
|
Waltz X, Beaudin AE, Hanly PJ, Mitsis GD, Poulin MJ. Effects of continuous positive airway pressure and isocapnic-hypoxia on cerebral autoregulation in patients with obstructive sleep apnoea. J Physiol 2017; 594:7089-7104. [PMID: 27644162 DOI: 10.1113/jp272967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/16/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Altered cerebral autoregulation (CA) in obstructive sleep apnoea (OSA) patients may contribute to increased stroke risk in this population; the gold standard treatment for OSA is continuous positive airway pressure, which improves cerebrovascular regulation and may decrease the risk of stroke. Isocapnic-hypoxia impairs CA in healthy subjects, but it remains unknown in OSA whether impaired CA is further exacerbated by isocapnic-hypoxia and whether it is improved by treatment with continuous positive airway pressure. During normoxia, CA was altered in the more severe but not in the less severe OSA patients, while, in contrast, during isocapnic-hypoxia, CA was similar between groups and tended to improve in patients with more severe OSA compared to normoxia. From a clinical perspective, one month of continuous positive airway pressure treatment does not improve CA. From a physiological perspective, this study suggests that sympathetic overactivity may be responsible for altered CA in the more severe OSA patients. ABSTRACT Cerebral autoregulation (CA) impairment may contribute to the increased risk of stroke associated with obstructive sleep apnoea (OSA). It is unknown if impaired CA is further exacerbated by isocapnic-hypoxia and whether it is improved by treatment of OSA with continuous positive airway pressure (CPAP). CA was assessed during wakefulness in 53 OSA patients (50.3 ± 9.3 years) and 21 controls (49.8 ± 8.6 years) at baseline and following a minimum of 1 month of effective CPAP therapy (OSA patients, n = 40). Control participants (n = 21) performed a follow-up visit to control for time effects within OSA patients between baseline and the post-CPAP visit. Beat-by-beat middle cerebral artery blood flow velocity and mean arterial blood pressure (MBP), and breath-by-breath end-tidal partial pressure of CO2 (P ET ,CO2) were monitored. CA was determined during normoxia and isocapnic-hypoxia using transfer function (phase and gain) and coherence analysis (including multiple and partial coherence (using MBP and P ET ,CO2 as inputs)) in the very low frequency range (0.03-0.07 Hz). OSA patients were divided into two subgroups (less severe and more severe) based upon the median respiratory disturbance index (RDI). During normoxia, the more severe OSA patients (RDI 45.9 ± 10.3) exhibited altered CA compared to controls and the less severe OSA patients (RDI 24.5 ± 5.9). In contrast, during isocapnic-hypoxia, CA was similar between groups. CPAP had no effect on CA. In conclusion, CA is altered in the more severe OSA patients during normoxia but not during isocapnic-hypoxia and CPAP treatment does not impact CA.
Collapse
Affiliation(s)
- Xavier Waltz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew E Beaudin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick J Hanly
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
47
|
Csiszar A, Tarantini S, Fülöp GA, Kiss T, Valcarcel-Ares MN, Galvan V, Ungvari Z, Yabluchanskiy A. Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer's disease. GeroScience 2017; 39:359-372. [PMID: 28853030 PMCID: PMC5636770 DOI: 10.1007/s11357-017-9991-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension in the elderly substantially increases both the risk of vascular cognitive impairment (VCI) and Alzheimer's disease (AD); however, the underlying mechanisms are not completely understood. This review discusses the effects of hypertension on structural and functional integrity of cerebral microcirculation, including hypertension-induced alterations in neurovascular coupling responses, cellular and molecular mechanisms involved in microvascular damage (capillary rarefaction, blood-brain barrier disruption), and the genesis of cerebral microhemorrhages and their potential role in exacerbation of cognitive decline associated with AD. Understanding and targeting the hypertension-induced cerebromicrovascular alterations that are involved in the onset and progression of AD and contribute to cognitive impairment are expected to have a major role in preserving brain health in high-risk older individuals.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor A Fülöp
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, Barshop Institute for Longevity and Aging Studies University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
48
|
Flück D, Ainslie PN, Bain AR, Wildfong KW, Morris LE, Fisher JP. Extra- and intracranial blood flow regulation during the cold pressor test: influence of age. J Appl Physiol (1985) 2017; 123:1071-1080. [PMID: 28663374 DOI: 10.1152/japplphysiol.00224.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022] Open
Abstract
We determined how the extra- and intracranial circulations respond to generalized sympathetic activation evoked by a cold pressor test (CPT) and whether this is affected by healthy aging. Ten young [23 ± 2 yr (means ± SD)] and nine older (66 ± 3 yr) individuals performed a 3-min CPT by immersing the left foot into 0.8 ± 0.3°C water. Common carotid artery (CCA) and internal carotid artery (ICA) diameter, velocity, and flow were simultaneously measured (duplex ultrasound) along with middle cerebral artery and posterior cerebral artery mean blood velocity (MCAvmean and PCAvmean) and cardiorespiratory variables. The increases in heart rate (~6 beats/min) and mean arterial blood pressure (~14 mmHg) were similar in young and older groups during the CPT (P < 0.01 vs. baseline). In the young group, the CPT elicited an ~5% increase in CCA diameter (P < 0.01 vs. baseline) and a tendency for an increase in CCA flow (~12%, P = 0.08); in contrast, both diameter and flow remained unchanged in the older group. Although ICA diameter was not changed during the CPT in either group, ICA flow increased (~8%, P = 0.02) during the first minute of the CPT in both groups. Whereas the CPT elicited an increase in MCAvmean and PCAvmean in the young group (by ~20 and ~10%, respectively, P < 0.01 vs. baseline), these intracranial velocities were unchanged in the older group. Collectively, during the CPT, these findings suggest a differential mechanism(s) of regulation between the ICA compared with the CCA in young individuals and a blunting of the CCA and intracranial responses in older individuals.NEW & NOTEWORTHY Sympathetic activation evoked by a cold pressor test elicits heterogeneous extra- and intracranial blood vessel responses in young individuals that may serve an important protective role. The extra- and intracranial responses to the cold pressor test are blunted in older individuals.
Collapse
Affiliation(s)
- Daniela Flück
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Anthony R Bain
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Kevin W Wildfong
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Laura E Morris
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - James P Fisher
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
49
|
Nordström CH, Koskinen LO, Olivecrona M. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Front Neurol 2017; 8:274. [PMID: 28674514 PMCID: PMC5474476 DOI: 10.3389/fneur.2017.00274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022] Open
Abstract
Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood-brain barrier (BBB) and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2) and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP) ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia) or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the information from all monitoring techniques should be presented bedside online. Accordingly, in the future, the chemical variables obtained from microdialysis will probably be analyzed by biochemical sensors.
Collapse
Affiliation(s)
| | - Lars-Owe Koskinen
- Department of Clinical Neuroscience, Division of Neurosurgery, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Faculty of Health and Medicine, Department of Anesthesia and Intensive Care, Section for Neurosurgery Örebro University Hospital, Örebro University, Örebro, Sweden
- Department for Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
50
|
Blanco PJ, Müller LO, Spence JD. Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol 2017; 2:108-117. [PMID: 28989801 PMCID: PMC5628379 DOI: 10.1136/svn-2017-000087] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/25/2022] Open
Abstract
Rationale The role of hypertension in cerebral small vessel disease is poorly understood. At the base of the brain (the ‘vascular centrencephalon’), short straight arteries transmit blood pressure directly to small resistance vessels; the cerebral convexity is supplied by long arteries with many branches, resulting in a drop in blood pressure. Hypertensive small vessel disease (lipohyalinosis) causes the classically described lacunar infarctions at the base of the brain; however, periventricular white matter intensities (WMIs) seen on MRI and WMI in subcortical areas over the convexity, which are often also called ‘lacunes’, probably have different aetiologies. Objectives We studied pressure gradients from proximal to distal regions of the cerebral vasculature by mathematical modelling. Methods and results Blood flow/pressure equations were solved in an Anatomically Detailed Arterial Network (ADAN) model, considering a normotensive and a hypertensive case. Model parameters were suitably modified to account for structural changes in arterial vessels in the hypertensive scenario. Computations predict a marked drop in blood pressure from large and medium-sized cerebral vessels to cerebral peripheral beds. When blood pressure in the brachial artery is 192/113 mm Hg, the pressure in the small arterioles of the posterior parietal artery bed would be only 117/68 mm Hg. In the normotensive case, with blood pressure in the brachial artery of 117/75 mm Hg, the pressure in small parietal arterioles would be only 59/38 mm Hg. Conclusion These findings have important implications for understanding small vessel disease. The marked pressure gradient across cerebral arteries should be taken into account when evaluating the pathogenesis of small WMIs on MRI. Hypertensive small vessel disease, affecting the arterioles at the base of the brain should be distinguished from small vessel disease in subcortical regions of the convexity and venous disease in the periventricular white matter.
Collapse
Affiliation(s)
- Pablo J Blanco
- National Laboratory for Scientific Computing, Petrópolis, Brazil.,National Institute of Science and Technology in Medicine Assisted by Scientific Computing, INCT-MACC, Petrópolis, Brazil
| | - Lucas O Müller
- National Laboratory for Scientific Computing, Petrópolis, Brazil.,National Institute of Science and Technology in Medicine Assisted by Scientific Computing, INCT-MACC, Petrópolis, Brazil
| | - J David Spence
- Stroke Prevention & Atherosclerosis Research Centre, Robarts Research Institute, Western University, London, Canada
| |
Collapse
|