1
|
Multiple kinase pathways regulate voltage-dependent Ca2+ influx and migration in oligodendrocyte precursor cells. J Neurosci 2010; 30:6422-33. [PMID: 20445068 DOI: 10.1523/jneurosci.5086-09.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It is becoming increasingly clear that voltage-operated Ca(2+) channels (VOCCs) play a fundamental role in the development of oligodendrocyte progenitor cells (OPCs). Because direct phosphorylation by different kinases is one of the most important mechanisms involved in VOCC modulation, the aim of this study was to evaluate the participation of serine-threonine kinases and tyrosine kinases (TKs) on Ca(2+) influx mediated by VOCCs in OPCs. Calcium imaging revealed that OPCs exhibited Ca(2+) influx after plasma membrane depolarization via L-type VOCCs. Furthermore, VOCC-mediated Ca(2+) influx declined with OPC differentiation, indicating that VOCCs are developmentally regulated in OPCs. PKC activation significantly increased VOCC activity in OPCs, whereas PKA activation produced the opposite effect. The results also indicated that OPC morphological changes induced by PKC activation were partially mediated by VOCCs. Our data clearly suggest that TKs exert an activating influence on VOCC function in OPCs. Furthermore, using the PDGF response as a model to probe the role of TK receptors (TKr) on OPC Ca(2+) uptake, we found that TKr activation potentiated Ca(2+) influx after membrane depolarization. Interestingly, this TKr modulation of VOCCs appeared to be essential for the PDGF enhancement of OPC migration rate, because cell motility was completely blocked by TKr antagonists, as well as VOCC inhibitors, in migration assays. The present study strongly demonstrates that PKC and TKrs enhance Ca(2+) influx induced by depolarization in OPCs, whereas PKA has an inhibitory effect. These kinases modulate voltage-operated Ca(2+) uptake in OPCs and participate in the modulation of process extension and migration.
Collapse
|
2
|
Vela J, Pérez-Millán MI, Becu-Villalobos D, Díaz-Torga G. Different kinases regulate activation of voltage-dependent calcium channels by depolarization in GH3 cells. Am J Physiol Cell Physiol 2007; 293:C951-9. [PMID: 17507432 DOI: 10.1152/ajpcell.00429.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The L-type Ca2+ channel is the primary voltage-dependent Ca2+-influx pathway in many excitable and secretory cells, and direct phosphorylation by different kinases is one of the mechanisms involved in the regulation of its activity. The aim of this study was to evaluate the participation of Ser/Thr kinases and tyrosine kinases (TKs) in depolarization-induced Ca2+ influx in the endocrine somatomammotrope cell line GH3. Intracellular Ca2+ concentration ([Ca2+]i) was measured using a spectrofluorometric method with fura 2-AM, and 12.5 mM KCl (K+) was used as a depolarization stimulus. K+ induced an abrupt spike (peak) in [Ca2+]i that was abolished in the presence of nifedipine, showing that K+ enhances [Ca2+]i, preferably activating L-type Ca2+ channels. H89, a selective PKA inhibitor, significantly reduced depolarization-induced Ca2+ mobilization in a concentration-related manner when it was applied before or after K+, and okadaic acid, an inhibitor of Ser/Thr phosphatases, which has been shown to regulate PKA-stimulated L-type Ca2+ channels, increased K+-induced Ca2+ entry. When PKC was activated by PMA, the K+-evoked peak in [Ca2+]i, as well as the plateau phase, was significantly reduced, and chelerythrine (a PKC inhibitor) potentiated the K+-induced increase in [Ca2+]i, indicating an inhibitory role of PKC in voltage-dependent Ca2+ channel (VDCC) activity. Genistein, a TK inhibitor, reduced the K+-evoked increase in [Ca2+]i, but, unexpectedly, the tyrosine phosphatase inhibitor orthovanadate reduced not only basal Ca2+ levels but, also, Ca2+ influx during the plateau phase. Both results suggest that different TKs may act differentially on VDCC activation. Activation of receptor TKs with epidermal growth factor (EGF) or vascular endothelial growth factor potentiated K+-induced Ca2+ influx, and AG-1478 (an EGF receptor inhibitor) decreased it. However, inhibition of the non-receptor TK pp60 c-Src enhanced K+-induced Ca2+ influx. The present study strongly demonstrates that a complex equilibrium among different kinases and phosphatases regulates VDCC activity in the pituitary cell line GH3: PKA and receptor TKs, such as vascular endothelial growth factor receptor and EGF receptor, enhance depolarization-induced Ca2+ influx, whereas PKC and c-Src have an inhibitory effect. These kinases modulate membrane depolarization and may therefore participate in the regulation of a plethora of intracellular processes, such as hormone secretion, gene expression, protein synthesis, and cell proliferation, in pituitary cells.
Collapse
Affiliation(s)
- Jorge Vela
- Instituto de Biología y Medicina Experimental, CONICET, V. Obligado 2490, (1428Buenos Aires, Argentina
| | | | | | | |
Collapse
|
3
|
Greiser M, Halaszovich CR, Frechen D, Boknik P, Ravens U, Dobrev D, Lückhoff A, Schotten U. Pharmacological evidence for altered src kinase regulation of I (Ca,L) in patients with chronic atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:383-92. [PMID: 17593353 DOI: 10.1007/s00210-007-0174-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 06/02/2007] [Indexed: 01/27/2023]
Abstract
A reduction in L-type Ca(2+) current (I (Ca,L)) contributes to electrical remodeling in chronic atrial fibrillation (AF). Whether the decrease in I (Ca,L) is solely due to a reduction in channel proteins remains controversial. Protein tyrosine kinases (PTK) have been described as potent modulators of I (Ca,L) in cardiomyocytes. We studied alpha(1C) L-type Ca(2+) channel subunit expression and the regulation of I (Ca,L) by PTK in chronic AF using PTK inhibitors: genistein, a nonselective inhibitor of PTK, and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-3,4-d-pyrimidine (PP1), a selective inhibitor of src kinases. Furthermore, type-1 and type-2A protein phosphatase activity was measured with phosphorylase as substrate in whole-cell lysates derived from atrial tissue of AF patients. Right atrial appendages were obtained from patients undergoing open-heart surgery. Protein levels of alpha(1C) L-type Ca(2+) channel subunit were determined using Western blot analysis and normalized to the protein amounts of calsequestrin as internal control. The protein concentrations of alpha(1C) did not differ between AF and sinus rhythm (SR; alpha(1C)/calsequestrin: 1.0 +/- 0.1 and 1.2 +/- 0.2, respectively, n = 8 patients). In cardiomyocytes from patients in SR (n = 20 patients), genistein and PP1 both evoked similar increases in I (Ca,L) from 3.0 +/- 0.3 to 6.1 +/- 0.8 pA/pF and from 2.8 +/- 0.4 to 6.1 +/- 0.6 pA/pF, respectively. In cells from AF patients (n = 10 patients), basal I (Ca,L) was significantly lower. In this case, genistein lead to the same relative increase in I (Ca,L) as in SR cells (from 1.46 +/- 0.30 to 3.2 +/- 1.0 pA/pF), whereas no increase was elicited by PP1 suggesting impaired regulation of I (Ca,L) by src kinases in AF. Total and type 1 and type 2A-related phosphatase activities were higher in tissue from patients with chronic AF compared to SR (4.8 +/- 0.4, 2.1 +/- 0.2, and 2.7 +/- 0.4 nmol/mg/min and 3.6 +/- 0.4, 1.3 +/- 0.2, and 2.4 +/- 0.3 nmol/mg/min, respectively, n = 7 patients per group). Downregulation of I (Ca,L) in AF is not due to a reduction in L-type Ca(2+) channel protein expression. Indirect evidence for an impaired src kinase regulation of I (Ca,L) together with an increased phosphatase activity suggests that a complex alteration in the kinase/phosphatase balance leads to I (Ca,L) dysregulation in chronic AF.
Collapse
Affiliation(s)
- Maura Greiser
- Institut für Physiologie, Universitätsklinikum Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Nakayama S, Ito Y, Sato S, Kamijo A, Liu HN, Kajioka S. Tyrosine kinase inhibitors and ATP modulate the conversion of smooth muscle L-type Ca2+ channels toward a second open state. FASEB J 2006; 20:1492-4. [PMID: 16738256 DOI: 10.1096/fj.05-5049fje] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Properties of smooth and cardiac L-type Ca2+ channels differ prominently in several physiological aspects, including sympathetic modulation. To assess the possible underlying mechanisms, we applied the whole cell patch-clamp technique to guinea pig detrusor smooth muscle cells, in which only L-type Ca2+ channel currents are observed in practice. During depolarization to large positive potentials, the conformation of the majority of L-type Ca2+ channels is converted from the normal (O1) to a second open state (O2), which undergoes little inactivation during depolarization. Extracellular application of genistein, a known tyrosine kinase inhibitor, significantly attenuated the voltage-dependent conversion of Ca2+ channels to O2, accompanied by reduction of availability, whereas genistin, an inactive analog, had little effect. In the absence of ATP in the patch pipette, intracellular application of either genistein or tyrphostin-47 suppressed the conversion to O2. Computer calculation revealed that the acceleration of the O1 to an inactivated state qualitatively reconstructs the unique effects of PTK inhibitors antagonized by ATP. We concluded that under normal conditions smooth muscle L-type Ca2+ channels are already modulated by tyrosine-kinase and ATP-related mechanism(s) and thereby easily achieve the second conversion, which yields voltage-dependent modulation of L-type Ca2+ current analogous to that in cardiac myocytes during beta-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Missan S, Zhabyeyev P, Linsdell P, McDonald TF. Insensitivity of cardiac delayed-rectifier I(Kr) to tyrosine phosphorylation inhibitors and stimulators. Br J Pharmacol 2006; 148:724-31. [PMID: 16715119 PMCID: PMC1751861 DOI: 10.1038/sj.bjp.0706776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The rapidly activating delayed-rectifying K+ current (I(Kr)) in heart cells is an important determinant of repolarisation, and decreases in its density are implicated in acquired and inherited long QT syndromes. The objective of the present study on I(Kr) in guinea-pig ventricular myocytes was to evaluate whether the current is acutely regulated by tyrosine phosphorylation. 2. Myocytes configured for ruptured-patch or perforated-patch voltage-clamp were depolarised with 200-ms steps to 0 mV for measurement of I(Kr) tail amplitude on repolarisations to -40 mV. 3. I(Kr) in both ruptured-patch and perforated-patch myocytes was only moderately (14-20%) decreased by 100 microM concentrations of protein tyrosine kinase (PTK) inhibitors tyrphostin A23, tyrphostin A25, and genistein. However, similar-sized decreases were induced by PTK-inactive analogues tyrphostin A1 and daidzein, suggesting that they were unrelated to inhibition of PTK. 4. Ruptured-patch and perforated-patch myocytes were also treated with promoters of tyrosine phosphorylation, including phosphotyrosyl phosphatase (PTP) inhibitor orthovanadate, exogenous c-Src PTK, and four receptor PTK activators (insulin, insulin-like growth factor-1, epidermal growth factor, and basic fibroblast growth factor). None of these treatments had a significant effect on the amplitude of I(Kr). 5. We conclude that Kr channels in guinea-pig ventricular myocytes are unlikely to be regulated by PTK and PTP.
Collapse
Affiliation(s)
- Sergey Missan
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | - Pavel Zhabyeyev
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | - Terence F McDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
- Author for correspondence:
| |
Collapse
|
6
|
Chu L, Zhang JX, Norota I, Endoh M. Differential action of a protein tyrosine kinase inhibitor, genistein, on the positive inotropic effect of endothelin-1 and norepinephrine in canine ventricular myocardium. Br J Pharmacol 2005; 144:430-42. [PMID: 15655501 PMCID: PMC1576021 DOI: 10.1038/sj.bjp.0706097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Experiments were carried out in isolated canine ventricular trabeculae and acetoxymethylester of indo-1-loaded single myocytes to elucidate the role of protein tyrosine kinase (PTK) in the inotropic effect of endothelin-1 (ET-1) induced by crosstalk with norepinephrine (NE). The PTK inhibitor genistein was used as a pharmacological tool. Genistein but not daidzein inhibited the positive inotropic effect and the increase in Ca(2+) transients induced by ET-1 by crosstalk with NE at low concentrations. Genistein and daidzein antagonized the negative inotropic effect and the decrease in Ca(2+) transients induced by ET-1 by crosstalk with NE at high concentrations, but genistein did not affect the antiadrenergic effect of carbachol. Genistein but not daidzein enhanced the positive inotropic effect and the increase in Ca(2+) transients induced by NE via beta-adrenoceptors, while the enhancing effect of genistein was abolished by the protein tyrosine phosphatase inhibitor vanadate. These findings indicate that genistein (1) induces a positive inotropic effect in association with an increase in Ca(2+) transients, (2) inhibits the positive inotropic effect of ET-1 induced by crosstalk with NE, and (3) enhances the positive inotropic effect of NE induced via beta-adrenoceptors by inhibition of PTK. In addition, genistein inhibits the negative inotropic effect of ET-1 induced by crosstalk with NE through a PTK-unrelated mechanism. PTK may play a crucial role in the receptor-mediated regulation of cardiac contractile function in canine ventricular myocardium.
Collapse
Affiliation(s)
- Li Chu
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Jian-Xin Zhang
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Ikuo Norota
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Masao Endoh
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Author for correspondence:
| |
Collapse
|
7
|
Sims C, Harvey RD. Redox modulation of basal and beta-adrenergically stimulated cardiac L-type Ca(2+) channel activity by phenylarsine oxide. Br J Pharmacol 2004; 142:797-807. [PMID: 15172960 PMCID: PMC1575054 DOI: 10.1038/sj.bjp.0705845] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Phenylarsine oxide (PAO) is commonly used to inhibit tyrosine phosphatase activity. However, PAO can affect a variety of different processes because of its ability to promote sulfhydryl oxidation. In the present study, we investigated the effects that PAO has on basal and beta-adrenergically stimulated L-type Ca(2+) channel activity in isolated cardiac myocytes. 2. Extracellular application of PAO transiently stimulated the basal L-type Ca(2+) channel activity, whereas it irreversibly inhibited protein kinase A (PKA)-dependent regulation of channel activity by isoproterenol, forskolin and 8-CPT-cAMP (8-p-chlorophenylthioadenosine 3',5'-cyclic monophosphate). PAO also inhibited channel activity irreversibly stimulated in the presence of adenosine 5'-(3-thiotriphosphate) tetralithium salt. 3. Neither the stimulatory nor the inhibitory effects of PAO were affected by the tyrosine kinase inhibitor lavendustin A, suggesting that tyrosine phosphorylation is not involved. 4. Extracellular application of the sulfhydryl-reducing agent dithiothreitol (DTT) antagonized both the stimulatory and inhibitory effects of PAO. Yet, following intracellular dialysis with DTT, only the inhibitory effect of PAO was antagonized. 5. The inhibitory effect of PAO was mimicked by intracellular, but not extracellular application of the membrane impermeant thiol oxidant 5,5'-dithio-bis(2-nitrobenzoic acid). 6. These results suggest that the stimulatory effect of PAO results from oxidation of sulfhydryl residues at an extracellular site and the inhibitory effect is due to redox regulation of an intracellular site that affects the response of the channel to PKA-dependent phosphorylation. It is concluded that the redox state of the cell may play a critical role in modulating beta-adrenergic responsiveness of the L-type Ca(2+) channel in cardiac myocytes.
Collapse
MESH Headings
- Animals
- Arsenicals/antagonists & inhibitors
- Arsenicals/pharmacology
- Calcium/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Colforsin/pharmacology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- Dithiothreitol/pharmacology
- Drug Evaluation, Preclinical/methods
- Electrophysiology
- Guinea Pigs
- Isoproterenol/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/physiology
- Oxidation-Reduction/drug effects
- Phosphorylation/drug effects
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/drug effects
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/drug effects
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Signal Transduction
- Thionucleotides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Carl Sims
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, U.S.A
| | - Robert D Harvey
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, U.S.A
- Author for correspondence:
| |
Collapse
|
8
|
Liew R, Macleod KT, Collins P. Novel stimulatory actions of the phytoestrogen genistein: effects on the gain of cardiac excitation-contraction coupling. FASEB J 2003; 17:1307-9. [PMID: 12759336 DOI: 10.1096/fj.02-0760fje] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genistein, a phytoestrogen found abundantly in soy products, is thought to be cardioprotective, partly through its ability to act as a natural Ca2+ channel antagonist. However, the precise nature and significance of such direct cardiac actions remain obscure. We investigated the hypothesis that genistein exerts important additional actions on cardiac excitation-contraction coupling (ECC). Genistein acutely increased cell shortening and the Ca2+ transient in field stimulated guinea-pig ventricular myocytes despite potently inhibiting the L-type Ca2+ current, I(Ca,L). The specific phosphotyrosine phosphatase inhibitor, bpV(phen), diminished the stimulatory effects of genistein on myocyte contractility, suggesting that the mechanism partly involved tyrosine kinase inhibition. Genistein increased sarcoplasmic reticulum (SR) Ca2+ load as measured with a caffeine pulse in Na+-free/ Ca2+-free solution. Furthermore, in the continued presence of caffeine, genistein increased the time constant of decline of the caffeine-induced Ca2+ transient, implying impaired sarcolemmal Na+/Ca2+ exchanger function. Tetanization studies in intact myocytes revealed that 43% of cells exhibited increased myofilament Ca2+ sensitivity in the presence of genistein. These findings demonstrate novel cardiac actions of genistein on the SR Ca2+ load, Na+/Ca2+ exchanger, and myofilament Ca2+ sensitivity, which result in an overall increase in myocyte contractility and consequently the gain of ECC.
Collapse
Affiliation(s)
- Reginald Liew
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Dovehouse St., London SW3 6LY, UK.
| | | | | |
Collapse
|
9
|
Keef KD, Hume JR, Zhong J. Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V)1.2a,b) by protein kinases. Am J Physiol Cell Physiol 2001; 281:C1743-56. [PMID: 11698232 DOI: 10.1152/ajpcell.2001.281.6.c1743] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High voltage-activated Ca(2+) channels of the Ca(V)1.2 class (L-type) are crucial for excitation-contraction coupling in both cardiac and smooth muscle. These channels are regulated by a variety of second messenger pathways that ultimately serve to modulate the level of contractile force in the tissue. The specific focus of this review is on the most recent advances in our understanding of how cardiac Ca(V)1.2a and smooth muscle Ca(V)1.2b channels are regulated by different kinases, including cGMP-dependent protein kinase, cAMP-dependent protein kinase, and protein kinase C. This review also discusses recent evidence regarding the regulation of these channels by protein tyrosine kinase, calmodulin-dependent kinase, purified G protein subunits, and identification of possible amino acid residues of the channel responsible for kinase regulation.
Collapse
Affiliation(s)
- K D Keef
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.
| | | | | |
Collapse
|
10
|
Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 2001; 281:H1835-62. [PMID: 11668044 DOI: 10.1152/ajpheart.2001.281.5.h1835] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.
Collapse
Affiliation(s)
- M J Davis
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Boixel C, Dinanian S, Lang-Lazdunski L, Mercadier JJ, Hatem SN. Characterization of effects of endothelin-1 on the L-type Ca2+ current in human atrial myocytes. Am J Physiol Heart Circ Physiol 2001; 281:H764-73. [PMID: 11454581 DOI: 10.1152/ajpheart.2001.281.2.h764] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of endothelin-1 (ET-1) on the L-type Ca2+ current (I(Ca)) were examined in whole cell patch-clamped human atrial myocytes. Depending on the initial current density, ET-1 (10 nM) increased the amplitude of I(Ca) by 99 +/- 7% or decreased it by 33 +/- 2%. The stimulatory effect predominated on current of low density (2.3 +/- 0.2 pA/pF), whereas I(Ca) of higher density (5.8 +/- 0.3 pA/pF) was inhibited by ET-1. After I(Ca) stimulation by 1 microM isoproterenol, ET-1 always inhibited the current by 32 +/- 7% (P < 0.05), an effect that was suppressed by pretreating myocytes with pertussis toxin. Atrial natriuretic peptide (ANP) inhibited I(Ca) (41 +/- 3%) by reducing intracellular cAMP concentration. In ANP-treated myocytes, the stimulatory effect of ET-1 on I(Ca) predominated (52 +/- 7%). The inhibitory effect of ET-1 on I(Ca) was blocked by the ET(A) antagonist BQ-123, whereas the stimulatory effect was suppressed by the ET(B) agonist BQ-788. We conclude that ET-1 has opposite effects on I(Ca) depending on the baseline amplitude of current, and both subtype ET receptors are implicated in the signal transduction pathways.
Collapse
Affiliation(s)
- C Boixel
- Institut National de la Santé et de la Recherche Médicale U460, Faculté de Médecine Xavier Bichat, 75018 Paris, France
| | | | | | | | | |
Collapse
|
12
|
Aiello EA, Cingolani HE. Angiotensin II stimulates cardiac L-type Ca(2+) current by a Ca(2+)- and protein kinase C-dependent mechanism. Am J Physiol Heart Circ Physiol 2001; 280:H1528-36. [PMID: 11247763 DOI: 10.1152/ajpheart.2001.280.4.h1528] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) evokes positive inotropic responses in various species. However, the effects of this peptide on L-type Ca(2+) currents (I(Ca)) are still controversial. We report in this study that the effects of ANG II on I(Ca) differ depending on the mode of patch-clamp technique used, standard whole cell (WC) or perforated patch (PP). No significant effects of ANG II (0.5 microM) were observed when WC in cells dialyzed with high EGTA was used. However, when the intracellular milieu was preserved using PP, ANG II induced a significant 77 +/- 6% increase in I(Ca) (-2.2 +/- 0.3 in control and -3.9 +/- 0.6 pA/pF in ANG II, n = 8, P < 0.05). When WC was used in cells dialyzed with low Ca(2+) buffer capacity (EGTA 0.1 mM), ANG II was able to induce an increase in I(Ca) (-3.5 +/- 0.3 in control vs. -4.8 +/- 0.4 pA/pF in ANG II, n = 13, P < 0.05). This increase was prevented when the cells were also dialyzed with the protein kinase C (PKC) inhibitor chelerythrine (50 microM) or calphostin C (1 microM). The above results allow us to conclude that strong intracellular Ca(2+) buffering prevents the physiological actions of ANG II on cardiac I(Ca), which are also dependent on activation of PKC.
Collapse
Affiliation(s)
- E A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | | |
Collapse
|
13
|
Boixel C, Tessier S, Pansard Y, Lang-Lazdunski L, Mercadier JJ, Hatem SN. Tyrosine kinase and protein kinase C regulate L-type Ca(2+) current cooperatively in human atrial myocytes. Am J Physiol Heart Circ Physiol 2000; 278:H670-6. [PMID: 10666101 DOI: 10.1152/ajpheart.2000.278.2.h670] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of tyrosine protein kinases (TK) on the L-type Ca(2+) current (I(Ca)) were examined in whole cell patch-clamped human atrial myocytes. The TK inhibitors genistein (50 microM), lavendustin A (50 microM), and tyrphostin 23 (50 microM) stimulated I(Ca) by 132 +/- 18% (P < 0.001), 116 +/- 18% (P < 0.05), and 60 +/- 6% (P < 0.001), respectively. After I(Ca) stimulation by genistein, external application of isoproterenol (1 microM) caused an additional increase in I(Ca). Dialyzing the cells with a protein kinase A inhibitor suppressed the effect of isoproterenol on I(Ca) but not that of genistein. Inhibition of protein kinase C (PKC) by pretreatment of cells with 100 nM staurosporine or 100 nM calphostin C prevented the effects of genistein on I(Ca). The PKC activator phorbol 12-myristate 13-acetate (PMA), after an initial stimulation (75 +/- 17%, P < 0.05), decreased I(Ca) (-36 +/- 5%, P < 0.001). Once the inhibitory effect of PMA on I(Ca) had stabilized, genistein strongly stimulated the current (323 +/- 25%, P < 0.05). Pretreating myocytes with genistein reduced the inhibitory effect of PMA on I(Ca). We conclude that, in human atrial myocytes, TK inhibit I(Ca) via a mechanism that involves PKC.
Collapse
Affiliation(s)
- C Boixel
- Institut National de la Santé et de la Recherche Médicale, Unité 460, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Shibata S, Ono K, Iijima T. Inhibition by genistein of the hyperpolarization-activated cation current in porcine sino-atrial node cells. Br J Pharmacol 1999; 128:1284-90. [PMID: 10578143 PMCID: PMC1571748 DOI: 10.1038/sj.bjp.0702903] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 The hyperpolarization-activated cation current (If) was recorded in single pacemaker cells of the porcine sino-atrial node, and the effects of genistein, an isoflavone inhibitor of tyrosine-specific protein kinases was investigated by the whole-cell patch clamp technique. 2 Genistein (20-500 microM) decreased If in a dose-dependent manner with an IC50 value of 62.3 microM and a maximum inhibition of 45.3%. 3 The effect on If appeared without altering the half-activation potential (control, -88.3+/-2.8 mV; genistein, -87.0+/-1.8 mV) and the slope factor (control, 8.0+/-0.3 mV; genistein, 8.6+/-0.7 mV) of the steady-state activation curve. No significant voltage-dependency was detected in the fully-activated current-voltage relation measured by the double-pulse protocols. 4 The inactive form of genistein analogue, daidzein (500 microM) or genistin (200 microM), were without effect. If was not affected by another tyrosine kinase inhibitor, tryphostin-47 (100 microM), but tyrphostin-25 (100-200 microM) suppressed If in an irreversible manner. 5 Neither bath nor intracellular application of the tyrosine phosphatase inhibitor, orthovanadate, affected If, and subsequent application of genistein inhibited If significantly. 6 These data indicate that the inhibition of If by genistein is not mediated through tyrosine kinase inhibition but through nonselective block of the If channels.
Collapse
Affiliation(s)
- Shigehiro Shibata
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan
| | - Kyoichi Ono
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan
| | - Toshihiko Iijima
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan
- Author for correspondence:
| |
Collapse
|
15
|
Biphasic, opposing modulation of cloned neuronal alpha1E Ca channels by distinct signaling pathways coupled to M2 muscarinic acetylcholine receptors. J Neurosci 1999. [PMID: 10436038 DOI: 10.1523/jneurosci.19-16-06806.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal alpha1E subunits are thought to form R-type Ca channels. When expressed in human embryonic kidney cells with M2 muscarinic acetylcholine receptors, Ca channels encoded by rabbit alpha1E exhibit striking biphasic modulation. Receptor activation first produces rapid inhibition of current amplitude and activation rate. However, in the continued presence of agonist, alpha1E currents subsequently increase. Kinetic slowing persists during this secondary stimulation phase. After receptor deactivation, kinetic slowing is quickly relieved, and current amplitude over-recovers before returning toward control levels. These features indicate that inhibition and stimulation of alpha1E are separate processes, with stimulation superimposed on inhibition. Pertussis toxin eliminates inhibition without affecting stimulation, demonstrating that inhibition and stimulation involve distinct signaling pathways. Neither inhibition nor stimulation is altered by coexpression of Ca channel beta2a or beta3 subunits. Stimulation is abolished by staurosporine and reduced by intracellular 5'-adenylylimidodiphosphate, suggesting that phosphorylation is required. However, stimulation does not seem to involve cAMP-dependent protein kinase, protein kinase C, cGMP-dependent protein kinase, tyrosine kinases, or phosphoinositide 3-kinases. Stimulation does not require a Ca signal, because it is not specifically altered by varying intracellular Ca buffering or by substituting Ba as the charge carrier. In contrast to those formed by alpha1E, Ca channels formed by alpha1A or alpha1B display only inhibition and no stimulation during prolonged activation of M2 receptors. The dual modulation of alpha1E may confer unique physiological properties on native R-type Ca channels. As one possibility, R-type channels may continue to mediate Ca influx during steady inhibition of N-type and P/Q-type channels by muscarinic or other receptors.
Collapse
|