1
|
Oommen S, Yamada S, Cantero Peral S, Campbell KA, Bruinsma ES, Terzic A, Nelson TJ. Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload. Stem Cell Res Ther 2015; 6:50. [PMID: 25890300 PMCID: PMC4416353 DOI: 10.1186/s13287-015-0044-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/17/2014] [Accepted: 03/05/2015] [Indexed: 02/03/2023] Open
Abstract
Introduction Stem cell therapy has emerged as potential therapeutic strategy for damaged heart muscles. Umbilical cord blood (UCB) cells are the most prevalent stem cell source available, yet have not been fully tested in cardiac regeneration. Herein, studies were performed to evaluate the cardiovascular safety and beneficial effect of mononuclear cells (MNCs) isolated from human umbilical cord blood upon intramyocardial delivery in a murine model of right ventricle (RV) heart failure due to pressure overload. Methods UCB-derived MNCs were delivered into the myocardium of a diseased RV cardiac model. Pulmonary artery banding (PAB) was used to produce pressure overload in athymic nude mice that were then injected intramyocardially with UCB-MNCs (0.4 × 10^6 cells/heart). Cardiac functions were then monitored by telemetry, echocardiography, magnetic resonance imaging (MRI) and pathologic analysis of heart samples to determine the ability for cell-based repair. Results The cardio-toxicity studies provided evidence that UCB cell transplantation has a safe therapeutic window between 0.4 to 0.8 million cells/heart without altering QT or ST-segments or the morphology of electrocardiograph waves. The PAB cohort demonstrated significant changes in RV chamber dilation and functional defects consistent with severe pressure overload. Using cardiac MRI analysis, UCB-MNC transplantation in the setting of PAB demonstrated an improvement in RV structure and function in this surgical mouse model. The RV volume load in PAB-only mice was 24.09 ± 3.9 compared to 11.05 ± 2.09 in the cell group (mm3, P-value <0.005). The analysis of pathogenic gene expression (BNP, ANP, Acta1, Myh7) in the cell-transplanted group showed a significant reversal with respect to the diseased PAB mice with a robust increase in cardiac progenitor gene expression such as GATA4, Kdr, Mef2c and Nkx2.5. Histological analysis indicated significant fibrosis in the RV in response to PAB that was reduced following UCB-MNC’s transplantation along with concomitant increased Ki-67 expression and CD31 positive vessels as a marker of angiogenesis within the myocardium. Conclusions These findings indicate that human UCB-derived MNCs promote an adaptive regenerative response in the right ventricle upon intramyocardial transplantation in the setting of chronic pressure overload heart failure.
Collapse
Affiliation(s)
- Saji Oommen
- General Internal Medicine and Transplant Center, Mayo Clinic, Rochester, MN, USA. .,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| | - Satsuki Yamada
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Susana Cantero Peral
- General Internal Medicine and Transplant Center, Mayo Clinic, Rochester, MN, USA. .,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,Autonomous University of Barcelona, Program of Doctorate of Internal Medicine, Barcelona, Spain.
| | - Katherine A Campbell
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| | - Elizabeth S Bruinsma
- General Internal Medicine and Transplant Center, Mayo Clinic, Rochester, MN, USA.
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA. .,Department of Medical Genetics, Mayo Clinic, Rochester, MN, USA.
| | - Timothy J Nelson
- General Internal Medicine and Transplant Center, Mayo Clinic, Rochester, MN, USA. .,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,Department of Medicine, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Allemann Y, Stuber T, de Marchi SF, Rexhaj E, Sartori C, Scherrer U, Rimoldi SF. Pulmonary artery pressure and cardiac function in children and adolescents after rapid ascent to 3,450 m. Am J Physiol Heart Circ Physiol 2012; 302:H2646-53. [PMID: 22523248 DOI: 10.1152/ajpheart.00053.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.
Collapse
Affiliation(s)
- Yves Allemann
- Department of Cardiology, Inselspital, University Hospital, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
3
|
Thoracic epidural anaesthesia disrupts the protective mechanism of homeometric autoregulation during right ventricular pressure overload by cardiac sympathetic blockade: a randomised controlled animal study. Eur J Anaesthesiol 2011; 28:535-43. [DOI: 10.1097/eja.0b013e328346adf3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Yerebakan C, Klopsch C, Niefeldt S, Zeisig V, Vollmar B, Liebold A, Sandica E, Steinhoff G. Acute and chronic response of the right ventricle to surgically induced pressure and volume overload – an analysis of pressure–volume relations☆. Interact Cardiovasc Thorac Surg 2010; 10:519-25. [DOI: 10.1510/icvts.2009.221234] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
5
|
Missant C, Claus P, Rex S, Wouters P. Differential effects of lumbar and thoracic epidural anaesthesia on the haemodynamic response to acute right ventricular pressure overload. Br J Anaesth 2010; 104:143-9. [DOI: 10.1093/bja/aep354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Noponen T, Nordh A, Berg A, Ley D, Hansson SR, Pesonen E, Fellman V. Circulatory effects of inhaled iloprost in the newborn preterm lamb. Pediatr Res 2009; 66:416-22. [PMID: 19581832 DOI: 10.1203/pdr.0b013e3181b3b2a4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inhaled NO (iNO) has an established role in the treatment of pulmonary hypertension (PH) in the newborn. However, costs and potential toxicity associated with iNO have generated interest in alternative inhaled selective pulmonary vasodilators such as iloprost. In a preterm lamb model of respiratory distress syndrome, we studied effects of increasing doses of iloprost followed by iNO on right ventricular pressure (RVP) and circulation including cerebral oxygenation. Fetal sheep were randomized to three doses (0.2-4 mg/kg) of iloprost (n = 9) or saline (n = 10), administered as 15-min inhalations with 15-min intervals after a 60-min postnatal stabilization. No differences were found in RVP, arterial PO2, or cardiac index according to treatment. The cerebral oxygenation, measured with near-infrared spectroscopy, deteriorated in control lambs, but not in iloprost lambs. Iloprost treatment followed by iNO resulted in a larger decrease (p = 0.007) in RVP than saline treatment followed by iNO. In conclusion, iloprost stabilized cerebral oxygenation and when followed by iNO had a larger effect on RVP than iNO alone. Although species differences may be relevant, these results suggest that iloprost should be studied in newborn infants for the treatment of PH.
Collapse
Affiliation(s)
- Tommi Noponen
- Department of Pediatrics, Lund University, Lund 22185, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
Matias C, Isla LPD, Vasconcelos M, Almería C, Rodrigo JL, Serra V, Zamorano J. Speckle-tracking-derived strain and strain-rate analysis: a technique for the evaluation of early alterations in right ventricle systolic function in patients with systemic sclerosis and normal pulmonary artery pressure. J Cardiovasc Med (Hagerstown) 2009; 10:129-34. [DOI: 10.2459/jcm.0b013e32831af028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Rex S, Missant C, Segers P, Rossaint R, Wouters PF. Epoprostenol treatment of acute pulmonary hypertension is associated with a paradoxical decrease in right ventricular contractility. Intensive Care Med 2007; 34:179-89. [PMID: 17710383 DOI: 10.1007/s00134-007-0831-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Prostacyclins have been suggested to exert positive inotropic effects which would render them particularly suitable for the treatment of right ventricular (RV) dysfunction due to acute pulmonary hypertension (PHT). Data on this subject are controversial, however, and vary with the experimental conditions. We studied the inotropic effects of epoprostenol at clinically recommended doses in an experimental model of acute PHT. DESIGN AND SETTING Prospective laboratory investigation in a university hospital laboratory. SUBJECTS Six pigs (36 +/- 7kg). INTERVENTIONS Pigs were instrumented with biventricular conductance catheters, a pulmonary artery (PA) flow probe, and a high-fidelity pulmonary pressure catheter. Incremental doses of epoprostenol (10, 15, 20, 30, 40ng kg(-1) min(-1)) were administered in undiseased animals and after induction of acute hypoxia-induced PHT. MEASUREMENTS AND RESULTS In acute PHT epoprostenol markedly reduced RV afterload (slopes of pressure-flow relationship in the PA from 7.0 +/- 0.6 to 4.2 +/- 0.7mmHg minl(-1)). This was associated with a paradoxical and dose-dependent decrease in RV contractility (slope of preload-recruitable stroke-work relationship from 3.0 +/- 0.4 to 1.6 +/- 0.2 mW s ml(-1); slope of endsystolic pressure-volume relationship from 1.5 +/- 0.3 to 0.7 +/- 0.3mmHg ml(-1)). Left ventricular contractility was reduced only at the highest dose. In undiseased animals epoprostenol did not affect vascular tone and produced a mild biventricular decrease in contractility. CONCLUSIONS Epoprostenol has no positive inotropic effects in vivo. In contrast, epoprostenol-induced pulmonary vasodilation in animals with acute PHT was associated with a paradoxical decrease in RV contractility. This effect is probably caused indirectly by the close coupling of RV contractility to RV afterload. However, data from normal animals suggest that mechanisms unrelated to vasodilation are also involved in the observed negative inotropic response to epoprostenol.
Collapse
Affiliation(s)
- Steffen Rex
- Section Centre for Experimental Anesthesiology, Emergency and Intensive Care Medicine, Department of Acute Medical Sciences, Katholieke Universiteit Leuven, Minderbroederstraat 19 - bus 7003, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
9
|
Missant C, Rex S, Segers P, Wouters PF. Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction*. Crit Care Med 2007; 35:707-15. [PMID: 17255859 DOI: 10.1097/01.ccm.0000257326.96342.57] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Experimental data suggest that levosimendan has pulmonary vasodilatory properties which, in combination with its positive inotropic effects, would render it particularly attractive for the treatment of right ventricular dysfunction. To test this hypothesis, we developed an experimental model of right ventricular failure and analyzed the effects of levosimendan on ventriculovascular coupling between the right ventricle and pulmonary artery (PA). DESIGN Prospective, randomized, placebo-controlled animal study. SETTING University hospital laboratory. SUBJECTS Fourteen pigs (mean weight 36 +/- 1 kg). INTERVENTIONS Pigs were instrumented with biventricular conductance catheters, a PA and right coronary artery flow probe, and a high-fidelity pulmonary pressure catheter. Right ventricular dysfunction was induced by repetitive episodes of ischemia/reperfusion in the presence of temporary PA constriction. Pigs were randomly assigned to receive levosimendan (120 mg/kg/hr [corrected] for 10 mins followed by continuous infusion of 60 mg/kg/hr [corrected] for 45 mins) or the placebo (control). MEASUREMENTS AND MAIN RESULTS Induction of right ventricular dysfunction resulted in a 42% decrease in contractility (reduction in slope of preload recruitable stroke work [Mw] from 2.5 +/- 0.4 to 1.8 +/- 0.5 mW x sec x mL(-1); p = .02) and a 60% increase in right ventricular afterload (effective pulmonary arterial elastance [PA-Ea] from 0.6 +/- 0.1 to 1.0 +/- 0.3 mm Hg x mL(-1); p < .01). Right ventriculovascular coupling, as assessed by the quotient of right ventricular end-systolic elastance (E(max)) over PA-Ea, decreased from 1.23 +/- 0.38 to 0.64 +/- 0.21 (p = .03). Treatment with levosimendan improved right ventricular contractility (Mw from 1.9 +/- 0.4 to 2.9 +/- 0.5 mW x sec x mL(-1); p < .01), lowered right ventricular afterload (PA-Ea from 1.1 +/- 0.3 to 0.8 +/- 0.3 mm Hg x mL(-1); p = .02), and restored right ventriculovascular coupling to normal values (E(max)/PA-Ea = 1.54 +/- 0.51). Levosimendan also significantly increased coronary blood flow and left ventricular contractility (Mw from 7.2 +/- 3.3 to 9.5 +/- 2.9 mW x sec x mL(-1); p = .01) but did not affect biventricular diastolic function. CONCLUSIONS In an experimental model of acute right ventricular dysfunction, levosimendan improved global hemodynamics and optimized right ventriculovascular coupling via a moderate increase in right ventricular contractility and a mild reduction of right ventricular afterload.
Collapse
Affiliation(s)
- Carlo Missant
- Center for Experimental Anesthesiology, Emergency and Intensive Care Medicine, Department of Acute Medical Sciences, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
10
|
Steendijk P. Effect of thoracic epidural anesthesia on right ventricular function and homeometric autoregulation. Crit Care Med 2007; 35:321-2. [PMID: 17197786 DOI: 10.1097/01.ccm.0000251631.45964.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Rex S, Missant C, Segers P, Wouters PF. Thoracic epidural anesthesia impairs the hemodynamic response to acute pulmonary hypertension by deteriorating right ventricular-pulmonary arterial coupling. Crit Care Med 2007; 35:222-9. [PMID: 17095942 DOI: 10.1097/01.ccm.0000250357.35250.a2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Thoracic epidural anesthesia is increasingly used in critically ill patients. This analgesic technique was shown to decrease left ventricular contractility, but effects on right ventricular function have not been reported. A deterioration of right ventricular performance may be clinically relevant for patients with acute pulmonary hypertension, in which right ventricular function is an important determinant of outcome. In the present study, we tested the hypothesis that thoracic epidural anesthesia decreases right ventricular contractility and limits its capacity to tolerate pulmonary hypertension. DESIGN Prospective, placebo-controlled study using an established model of acute pulmonary hypertension. SETTING University hospital laboratory. SUBJECTS A total of 14 pigs (mean weight, 35 +/- 2 kg). INTERVENTIONS After instrumentation with an epidural catheter, biventricular conductance catheters, a pulmonary flow probe, and a high-fidelity pulmonary pressure catheter, seven pigs received thoracic epidural anesthesia and seven pigs served as control. Hemodynamic measurements were performed in baseline conditions and after induction of pulmonary hypertension via hypoxic pulmonary vasoconstriction (Fio2 of 0.15). MEASUREMENTS AND MAIN RESULTS Ventricular contractility was assessed using load- and heart rate-independent variables. Right ventricular afterload was characterized with instantaneous pressure-flow measurements. In baseline conditions, thoracic epidural anesthesia decreased left but not right ventricular contractility. In untreated animals, pulmonary hypertension was associated with an increase in right ventricular contractility and cardiac output. Pretreatment with thoracic epidural anesthesia completely abolished the positive inotropic response to acute pulmonary hypertension. As a result, ventriculo-vascular coupling between the right ventricle and pulmonary-arterial system deteriorated, and cardiac output was significantly lower in animals with thoracic epidural anesthesia than in untreated controls during hypoxia-induced pulmonary hypertension. CONCLUSIONS Thoracic epidural anesthesia inhibits the native positive inotropic response of the right ventricle to increased afterload and deteriorates the hemodynamic effects of acute pulmonary hypertension.
Collapse
Affiliation(s)
- Steffen Rex
- Laboratory for Experimental Anesthesiology, Department of Acute Medical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
12
|
Amà R, Leather HA, Segers P, Vandermeersch E, Wouters PF. Acute pulmonary hypertension causes depression of left ventricular contractility and relaxation. Eur J Anaesthesiol 2007; 23:824-31. [PMID: 16953943 DOI: 10.1017/s0265021506000317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2006] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE The haemodynamic effects of acute pulmonary hypertension can be largely attributed to ventricular interdependence during diastole. However, there is evidence that the two ventricles also interact during systole. The aim of the present study was to examine the effects of acute pulmonary hypertension on both components of left ventricular systole, i.e. contraction and relaxation, using load-independent indices. METHODS Ten pigs were instrumented with biventricular conductance catheters, a pulmonary artery flow probe and a high-fidelity pulmonary pressure catheter. Haemodynamic measurements were performed in baseline conditions and during stable pulmonary vasoconstriction induced by the thromboxane analogue U46619. Contractility was quantified using the end-systolic pressure-volume and preload recruitable stroke work relationships. The tau-end-systolic pressure relationship was used to assess load-dependency of relaxation. RESULTS Acute pulmonary hypertension caused a decrease in the slope of the left ventricular preload recruitable stroke work relationship (from 6.64 +/- 1.7 to 5.19 +/- 1.9, mean +/- SD; P < 0.05), a rightward shift of the end-systolic pressure-volume relationship (P < 0.05), and an increase in the slope of the tau-end-systolic pressure relationship (from -0.15 +/- 0.5 to 0.35 +/- 0.17; P < 0.05). The diastolic chamber stiffness constant of both ventricles increased during pulmonary hypertension (P < 0.05). CONCLUSIONS In the present model, acute pulmonary hypertension impairs left ventricular contractile function and relaxing properties. The present study provides additional evidence that, besides the well-known diastolic ventricular cross talk, systolic ventricular interaction may play a significant role in the haemodynamic consequences of acute pulmonary hypertension.
Collapse
Affiliation(s)
- R Amà
- Katholieke Universiteit Leuven, Center for Experimental Surgery and Anesthesiology, Department of Anesthesiology, Belgium
| | | | | | | | | |
Collapse
|
13
|
Faber MJ, Dalinghaus M, Lankhuizen IM, Steendijk P, Hop WC, Schoemaker RG, Duncker DJ, Lamers JMJ, Helbing WA. Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol Heart Circ Physiol 2006; 291:H1580-6. [PMID: 16679397 DOI: 10.1152/ajpheart.00286.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many patients with congenital heart disease, the right ventricle (RV) is subjected to abnormal loading conditions. To better understand the state of compensated RV hypertrophy, which could eventually progress to decompensation, we studied the effects of RV pressure overload in rats. In the present study, we report the biventricular adaptation to 6 wk of pulmonary artery banding (PAB). PAB resulted in an RV pressure overload to ∼60% of systemic level and a twofold increase in RV mass ( P < 0.01). Systemic hemodynamic parameters were not altered, and overt signs of heart failure were absent. Load-independent measures of ventricular function (end-systolic pressure-volume relation, preload recruitable stroke work relation, maximum first time derivative of pressure divided by end-diastolic volume), assessed by means of pressure-volume (PV) loops, demonstrated a two- to threefold increase in RV contractility under baseline conditions in PAB rats. RV contractility increased in response to dobutamine stimulation (2.5 μg·kg−1·min−1) both in PAB and sham-operated rats in a similar fashion, indicating preserved RV contractile reserve in PAB rats. Left ventricular (LV) contractility at baseline was unaffected in PAB rats, although LV volume in PAB rats was slightly decreased. LV contractility increased in response to dobutamine (2.5 μg·kg−1·min−1), both in PAB and sham rats, whereas the response to a higher dose of dobutamine (5 μg·kg−1·min−1) was blunted in PAB rats. RV pressure overload (6 wk) in rats resulted in a state of compensated RV hypertrophy with preserved RV contractile reserve, whereas LV contractile state at baseline was not affected. Furthermore, this study demonstrates the feasibility of performing biventricular PV-loop measurements in rats.
Collapse
Affiliation(s)
- Matthijs J Faber
- Erasmus MC, Sophia, Dept. of Pediatrics, Div. of Pediatric Cardiology, Rm. Sp-2429, Dr. Molewaterplein 60, 3015 GJ, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bleeker GB, Steendijk P, Holman ER, Yu CM, Breithardt OA, Kaandorp TAM, Schalij MJ, van der Wall EE, Nihoyannopoulos P, Bax JJ. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart 2006; 92 Suppl 1:i19-26. [PMID: 16543597 PMCID: PMC1860734 DOI: 10.1136/hrt.2005.082503] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- G B Bleeker
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gaynor SL, Maniar HS, Bloch JB, Steendijk P, Moon MR. Right atrial and ventricular adaptation to chronic right ventricular pressure overload. Circulation 2006; 112:I212-8. [PMID: 16159819 DOI: 10.1161/circulationaha.104.517789] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased mortality in patients with chronic pulmonary hypertension has been associated with elevated right atrial (RA) pressure. However, little is known about the effects of chronic right ventricular (RV) pressure overload on RA and RV dynamics or the adaptive response of the right atrium to maintain RV filling. METHODS AND RESULTS In 7 dogs, RA and RV pressure and volume (conductance catheter) were recorded at baseline and after 3 months of progressive pulmonary artery banding. RA and RV elastance (contractility) and diastolic stiffness were calculated, and RA reservoir and conduit function were quantified as RA inflow with the tricuspid valve closed versus open, respectively. With chronic pulmonary artery banding, systolic RV pressure increased from 34+/-7 to 70+/-17 mm Hg (P<0.001), but cardiac output did not change (P>0.78). RV elastance and stiffness both increased (P<0.05), suggesting preserved systolic function but impaired diastolic function. In response, RA contractility improved (elastance increased from 0.28+/-0.12 to 0.44+/-0.13 mm Hg/mL; P<0.04), and the atrium became more distensible, as evidenced by increased reservoir function (49+/-14% versus 72+/-8%) and decreased conduit function (51+/-14% versus 28+/-8%; P<0.002). CONCLUSIONS With chronic RV pressure overload, RV systolic function was preserved, but diastolic function was impaired. To compensate, RA contractility increased, and the atrium became more distensible to maintain filling of the stiffened ventricle. This compensatory response of the right atrium likely plays an important role in preventing clinical failure in chronic pulmonary hypertension.
Collapse
Affiliation(s)
- Sydney L Gaynor
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, MO 63110-1013, USA
| | | | | | | | | |
Collapse
|
16
|
Leather HA, Ama' R, Missant C, Rex S, Rademakers FE, Wouters PF. Longitudinal but not circumferential deformation reflects global contractile function in the right ventricle with open pericardium. Am J Physiol Heart Circ Physiol 2006; 290:H2369-75. [PMID: 16399859 DOI: 10.1152/ajpheart.01211.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clinical evaluation of right ventricular (RV) contractility is problematic because instantaneous RV volumetry is difficult to achieve. Our aim was to test whether global RV contractility can be assessed by using regional indexes in the longitudinal and/or circumferential axis. Six anesthetized adult ewes were instrumented with a RV conductance catheter and four RV free wall sonomicrometry crystals (interrogating the longitudinal and circumferential axes). Global and regional preload recruitable stroke work (PRSW) were measured by using acute vena cava occlusions at baseline, during esmolol and dobutamine infusion, and during stable low-preload and high-afterload conditions. The agreement between regional and global PRSW was assessed with regression and Bland-Altman analysis. Both regional PRSW indexes correlated well with global PRSW in baseline conditions, during inotropic modulation (R(2) = 0.83 and 0.74 for longitudinal and circumferential regional PRSW, respectively), and during preload reduction (R(2) = 0.62 and 0.83, respectively), but only longitudinal regional PRSW correlated with global PRSW in increased afterload conditions (R(2) = 0.59 and 0.13 for longitudinal and circumferential regional PRSW, respectively). We conclude that in the open-chest, open-pericardium animal model, deformation in the longitudinal axis accurately reflects global RV contractile function in baseline conditions and during acute load modulation, whereas circumferential motion is influenced by changes in afterload.
Collapse
Affiliation(s)
- H Alex Leather
- Department of Anesthesiology, University Hospitals, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Perlman CE, Cook KE, Seipelt JR, Mavroudis JC, Backer JCL, Mockros LF. In vivo hemodynamic responses to thoracic artificial lung attachment. ASAIO J 2005; 51:412-25. [PMID: 16156308 DOI: 10.1097/01.mat.0000170095.94988.90] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A thoracic artificial lung (TAL) was attached to the pulmonary circulation in a porcine model. Proximal main pulmonary artery (PA) blood flow, in part or whole, was diverted to the TAL, and TAL outlet blood flow was split between the distal main PA and left atrium (LA). The right ventricle (RV) drove blood flow through the combined TAL/natural lung (NL) pulmonary system. Selective banding placed the TAL in parallel with the NLs, in series with the NLs, or in an intermediary hybrid configuration. Parallel TAL attachment lowered pulmonary system impedance, raised cardiac output (CO), and provided the greatest TAL blood flow rate, but reduced the NL blood flow rate which is important for pulmonary embolic clearance and metabolic blood processing. Hybrid or series TAL attachment raised pulmonary system impedance, lowered CO, increased RV oxygen consumption, and reduced RV oxygen supply. Redesign of the PA anastomoses, TAL inlet graft, and TAL entrance and exit would significantly improve hemodynamics and RV function with TAL attachment. Mean LA pressure increased throughout the experiment, which may indicate damage caused by graft attachment to the LA. Pulmonary resistance-flow rate curves may enable clinical prediction of tolerable TAL attachment configurations.
Collapse
Affiliation(s)
- Carrie E Perlman
- Biomedical Engineering Department, Northwestern University, Evanston, IL, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kuehne T, Gleason BK, Saeed M, Turner D, Weil J, Teitel DF, Higgins CB, Moore P. Combined pulmonary stenosis and insufficiency preserves myocardial contractility in the developing heart of growing swine at midterm follow-up. J Appl Physiol (1985) 2005; 99:1422-7. [PMID: 15976362 DOI: 10.1152/japplphysiol.00324.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to determine the effects of chronic combined pulmonary stenosis and pulmonary insufficiency (PSPI) on right (RV) and left ventricular (LV) function in young, growing swine. Six pigs with combined PSPI were studied, and data were compared with previously published data of animals with isolated pulmonary insufficiency and controls. Indexes of systolic function (stroke volume, ejection fraction, and cardiac functional reserve), myocardial contractility (slope of the end-systolic pressure-volume and change in pressure over time-end-diastolic volume relationship), and diastolic compliance were assessed within 2 days of intervention and 3 mo later. Magnetic resonance imaging was used to quantify pulmonary insufficiency and ventricular volumes. The conductance catheter was used to obtain indexes of the cardiac functional reserve, diastolic compliance, and myocardial contractility from pressure-volume relations acquired at rest and under dobutamine infusion. In the PSPI group, the pulmonary regurgitant fraction was 34.3 ± 5.8%, the pressure gradient across the site of pulmonary stenosis was 20.9 ± 20 mmHg, and the average RV peak systolic pressure was 70% systemic at 12 wk follow-up. Biventricular resting cardiac outputs and cardiac functional reserves were significantly limited ( P < 0.05), LV diastolic compliance significantly decreased ( P < 0.05), but RV myocardial contractility significantly enhanced ( P < 0.05) compared with control animals at 3-mo follow-up. In the young, developing heart, chronic combined PSPI impairs biventricular systolic pump function and diastolic compliance but preserves RV myocardial contractility.
Collapse
Affiliation(s)
- Titus Kuehne
- Department of Pediatrics and Radiology, University of California, San Francisco, 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gaynor SL, Maniar HS, Prasad SM, Steendijk P, Moon MR. Reservoir and conduit function of right atrium: impact on right ventricular filling and cardiac output. Am J Physiol Heart Circ Physiol 2005; 288:H2140-5. [PMID: 15591102 DOI: 10.1152/ajpheart.00566.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the relationship between right atrial (RA) reservoir and conduit function and to determine how hemodynamic changes influence this relationship and its impact on cardiac output. In 11 open-chest sheep, RA reservoir and conduit function were quantified as RA inflow with the tricuspid valve closed versus open, respectively. Conduit function was separated into early (before A wave) and late (after A wave) components. The effects of inotropic stimulation, partial pulmonary artery occlusion, and pericardiotomy were tested. At baseline with the pericardium intact, reservoir function accounted for 0.56 (SD 0.13) of RA inflow, early conduit for 0.29 (SD 0.07), and late conduit (during RA contraction) for 0.16 (SD 0.11). Inotropic stimulation decreased conduit function and increased reservoir function, but these effects did not reach statistical significance. With partial pulmonary artery occlusion, early conduit function fell to 0.20 (SD 0.11) ( P < 0.04), and the conduit-to-reservoir ratio decreased by 41% ( P < 0.03). Similarly, after pericardiotomy, early conduit function fell to 0.14 (SD 0.09) ( P < 0.004), reservoir function increased to 0.72 (SD 0.08) ( P < 0.04), and, consequently, the early conduit-to-reservoir ratio decreased by 63% ( P < 0.006). Cardiac output was inversely related to the conduit-to-reservoir ratio ( r = 0.39, P < 0.001). This study demonstrated that the right atrium adjusts its ability to act more as a reservoir than a conduit in a dynamic manner. The RA conduit-to-reservoir ratio was directly related to the right ventricular pressure-RA pressure gradient at the time of maximum RA volume, with increased ventricular pressures favoring conduit function, but it was inversely related to cardiac output, with an increase in the reservoir contribution favoring improved cardiac output.
Collapse
Affiliation(s)
- Sydney L Gaynor
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1013, USA
| | | | | | | | | |
Collapse
|
20
|
Lambermont B, Kolh P, Ghuysen A, Segers P, Dogné JM, Tchana-Sato V, Morimont P, Benoit P, Gérard P, Masereel B, D'Orio V. Effect of a Novel Thromboxane A2 Inhibitor on Right Ventricular-Arterial Coupling in Endotoxic Shock. Shock 2004; 21:45-51. [PMID: 14676683 DOI: 10.1097/01.shk.0000095935.86703.ca] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the effects of a dual thromboxane (TX)A2 synthase inhibitor and TXA2 receptor antagonist (BM-573) on right ventricular-arterial coupling in a porcine model of endotoxic shock. Thirty minutes before the onset of 0.5 mg/kg endotoxin infusion, six pigs (Endo group) received an infusion with a placebo solution, and six other pigs (Anta group) with BM-573. Right ventricular pressure-volume loops were obtained by the conductance catheter technique. The slope (Ees) of the end-systolic pressure-volume relationship and its volume intercept at 25 mmHg were calculated as measures of right ventricular systolic function. RV afterload was quantified by pulmonary arterial elastance (Ea), and Ees/Ea ratio represented right ventricular-arterial coupling. Mechanical efficiency was defined as the ratio of stroke work and pressure-volume area. In this model of endotoxic shock, BM-573 blunted the early phase of pulmonary hypertension, improved arterial oxygenation, and prevented a decrease in right ventricular myocardial efficiency and right ventricular dilatation. However, the drug could not prevent the loss of homeometric regulation and alterations in right ventricular-arterial coupling. In conclusion, dual TXA2 synthase inhibitor and receptor antagonists such as BM-573 have potential therapeutic applications, improving right ventricular efficiency and arterial oxygenation in endotoxic shock.
Collapse
Affiliation(s)
- Bernard Lambermont
- Hemodynamics Research Laboratory (HemoLiege), Liege University, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Maniar HS, Prasad SM, Gaynor SL, Chu CM, Steendijk P, Moon MR. Impact of pericardial restraint on right atrial mechanics during acute right ventricular pressure load. Am J Physiol Heart Circ Physiol 2003; 284:H350-7. [PMID: 12388317 DOI: 10.1152/ajpheart.00444.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optimization of right atrial (RA) mechanics is important for maintaining right ventricular (RV) filling and global cardiac output. However, the impact of pericardial restraint on RA function and the compensatory role of the right atrium to changes in RV afterload remain poorly characterized. In eight open-chest sheep, RA elastance (contractility) and chamber stiffness were measured (RA pressure-volume relations) at baseline and during partial pulmonary artery (PA) occlusion. Data were collected before and after pericardiotomy. With the pericardium intact and partial PA occlusion, RA elastance increased by 28% (P < 0.04), whereas RA stiffness tended to rise (P = 0.08). However, after pericardiotomy, there was a significant fall in both RA elastance (54%, P < 0.04) and stiffness (39%, P < 0.04), and subsequent PA occlusion failed to induce a change in elastance (P > 0.19) or stiffness (P > 0.84). After pericardiotomy, RA elastance and stiffness fell dramatically, and the compensatory response of the right atrium to elevated RV afterload was lost. The ability of the right atrium to respond to changes in RV hemodynamics is highly dependent on pericardial integrity.
Collapse
Affiliation(s)
- Hersh S Maniar
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
22
|
Leeuwenburgh BPJ, Steendijk P, Helbing WA, Baan J. Indexes of diastolic RV function: load dependence and changes after chronic RV pressure overload in lambs. Am J Physiol Heart Circ Physiol 2002; 282:H1350-8. [PMID: 11893571 DOI: 10.1152/ajpheart.00782.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diastolic function is a major determinant of ventricular performance, especially when loading conditions are altered. We evaluated biventricular diastolic function in lambs and studied possible load dependence of diastolic parameters [minimum first derivative of pressure vs. time (dP/dt(min)) and time constant of isovolumic relaxation (tau)] in normal (n = 5) and chronic right ventricular (RV) pressure-overloaded (n = 5) hearts by using an adjustable band on the pulmonary artery (PAB). Pressure-volume relations were measured during preload reduction to obtain the end-diastolic pressure-volume relationship (EDPVR). In normal lambs, absolute dP/dt(min) and tau were lower in the RV than in the left ventricle whereas the chamber stiffness constant (b) was roughly the same. After PAB, RV tau and dP/dt(min) were significantly higher compared with control. The RV EDPVR indicated impaired diastolic function. During acute pressure reduction, both dP/dt(min) and tau showed a relationship with end-systolic pressure. These relationships could explain the increased dP/dt(min) but not the increased tau-value after banding. Therefore, the increased tau after banding reflects intrinsic myocardial changes. We conclude that after chronic RV pressure overload, RV early relaxation is prolonged and diastolic stiffness is increased, both indicative of impaired diastolic function.
Collapse
|
23
|
Leeuwenburgh BP, Helbing WA, Steendijk P, Schoof PH, Baan J. Biventricular systolic function in young lambs subject to chronic systemic right ventricular pressure overload. Am J Physiol Heart Circ Physiol 2001; 281:H2697-704. [PMID: 11709439 DOI: 10.1152/ajpheart.2001.281.6.h2697] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In various clinical situations of congenital heart disease, the right ventricle (RV) is subject to a chronic systemic pressure overload which affects biventricular function and may progress to the development of RV failure. Young lambs (2-3 wk old) underwent adjustable pulmonary artery banding (PAB) at systemic (aortic) level for 8 wk. Biventricular function was determined by using load-independent indexes of global ventricular contractile performance by the end-systolic pressure-volume relationship (ESPVR) using the conductance catheter at baseline and during dobutamine infusion. PAB resulted in a significant fivefold increase in RV end-systolic pressure (12-64 mmHg) and a doubling of the RV-to-left ventricular (LV) wall thickness ratio (P < 0.01). RV global contractile performance increased significantly, as indicated by an increased slope of the ESPVR. Compared with age-matched control lambs, cardiac output decreased from 2.6 to 1.6 l/min (P < 0.05) whereas heart rates were equal. In contrast with RV volume, LV volume decreased significantly after PAB (P < 0.01), whereas the LV-ESPVR slope was unchanged. In the PAB group, the RV, but not the LV, showed a reduced response to dobutamine. We concluded that chronic RV pressure overload for 8 wk results in diminished pump function despite compensatory increased RV global contractile performance.
Collapse
Affiliation(s)
- B P Leeuwenburgh
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|