1
|
Hinton M, Thliveris JA, Hatch GM, Dakshinamurti S. Nitric oxide augments signaling for contraction in hypoxic pulmonary arterial smooth muscle—Implications for hypoxic pulmonary hypertension. Front Physiol 2023; 14:1144574. [PMID: 37064915 PMCID: PMC10090299 DOI: 10.3389/fphys.2023.1144574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Hypoxic persistent pulmonary hypertension in the newborn (PPHN) is usually treated with oxygen and inhaled nitric oxide (NO), both pulmonary arterial relaxants. But treatment failure with NO occurs in 25% of cases. We previously demonstrated that 72 h exposure to hypoxia, modeling PPHN, sensitized pulmonary artery smooth muscle cells (PASMC) to the contractile agonist thromboxane and inhibited relaxant adenylyl cyclase (AC) activity.Methods: In this study, we examined the effects of sodium nitroprusside (SNP), as NO donor, on the thromboxane-mediated contraction and NO-independent relaxation pathways and on reactive oxygen species (ROS) accumulation in PASMC. In addition, we examined the effect of the peroxynitrite scavenger 5,10,15,20-Tetrakis (4-sulfonatophenyl)porphyrinato Iron (III) (FeTPPS) on these processes.Results: Exposure of PASMC to 72 h hypoxia increased total intracellular ROS compared to normoxic control cells and this was mitigated by treatment of cells with either SNP or FeTPPS. Total protein nitrosylation was increased in hypoxic PASMC compared to controls. Both normoxic and hypoxic cells treated with SNP exhibited increased total protein nitrosylation and intracellular nitrite; this was reduced by treatment with FeTPPS. While cell viability and mitochondrial number were unchanged by hypoxia, mitochondrial activity was decreased compared to controls; addition of FeTPPS did not alter this. Basal and maximal mitochondrial metabolism and ATP turnover were reduced in hypoxic PASMC compared to controls. Hypoxic PASMC had higher basal Ca2+, and a heightened peak Ca2+ response to thromboxane challenge compared to controls. Addition of SNP further elevated the peak Ca2+ response, while addition of FeTPPS brought peak Ca2+ response down to control levels. AC mediated relaxation was impaired in hypoxic PASMC compared to controls but was normalized following treatment with FeTPPS. Addition of SNP inhibited adenylyl cyclase activity in both normoxic and hypoxic PASMC. Moreover, addition of the Ca2+ chelator BAPTA improved AC activity, but the effect was minimal.Discussion: We conclude that NO independently augments contraction and inhibits relaxation pathways in hypoxic PASMC, in part by a mechanism involving nitrogen radical formation and protein nitrosylation. These observations may partially explain impaired effectiveness of NO when treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Martha Hinton
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - James A. Thliveris
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Grant M. Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics, Section of Neonatology, Health Sciences Centre, Winnipeg, MB, Canada
- *Correspondence: Shyamala Dakshinamurti,
| |
Collapse
|
2
|
Yu Q, Wu C, Chen Y, Li B, Wang R, Huang R, Li X, Gu D, Wang X, Duan X, Li S, Liu Y, Wu W, Hennenberg M, Zeng G. Inhibition of LIM kinase reduces contraction and proliferation in bladder smooth muscle. Acta Pharm Sin B 2021; 11:1914-1930. [PMID: 34386328 PMCID: PMC8343115 DOI: 10.1016/j.apsb.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
Overactive bladder (OAB) is the most bothersome symptom in lower urinary tract symptoms (LUTS). Current pharmacologic treatment aims to inhibit detrusor contraction; however, shows unsatisfied efficacy and high discontinuation rate. LIM kinases (LIMKs) promote smooth muscle contraction in the prostate; however, their function in the bladder smooth muscle remains unclear. Here, we studied effects of the LIMK inhibitors on bladder smooth muscle contraction and proliferation both in vitro and in vivo experiments. Bladder expressions of LIMKs are elevated in OAB rat detrusor tissues. Two LIMK inhibitors, SR7826 and LIMKi3, inhibit contraction of human detrusor strip, and cause actin filament breakdown, as well as cell proliferation reduction in cultured human bladder smooth muscle cells (HBSMCs), paralleled by reduced cofilin phosphorylation. Silencing of LIMK1 and LIMK2 in HBSMCs resulted in breakdown of actin filaments and decreased cell proliferation. Treatment with SR7826 or LIMKi3 decreased micturition frequency and bladder detrusor hypertrophy in rats with bladder outlet obstruction. Our study suggests that LIMKs may promote contraction and proliferation in the bladder smooth muscle, which could be inhibited by small molecule LIMK inhibitors. LIMK inhibitors could be a potential therapeutic strategy for OAB- related LUTS.
Collapse
Key Words
- 4E-BP1, 4E-binding protein 1
- ADF, actin depolymerizing factors
- BOO, bladder outlet obstruction
- BPH, benign prostatic hyperplasia
- Bladder smooth muscle contraction
- CCK-8, Cell Counting Kit-8
- Cofilin phosphorylation
- Ct, number of cycles
- DMSO, dimethyl sulfoxide
- EdU, 5-ethynyl-2′-deoxyuridine
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- H&E, hematoxylin and eosin
- HBSMCs, human bladder smooth muscle cells
- HRP, horseradish peroxidase
- LIMK
- LIMKs, LIM kinases
- LUTS, lower urinary tract symptoms
- Lower urinary tract symptoms (LUTS)
- MLC, myosin light chain
- MW, molecular weight
- MYPT1, myosin-binding subunit
- OAB, overactive bladder
- Overactive bladder (OAB)
- PCNA, proliferating cell nuclear antigen
- RT-qPCR, reverse transcription and quantitative polymerase chain reaction
- STK16, serine/threonine kinase 16
- TESK1, testicular protein kinase 1
- TXA2, thromboxane A2
- WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Qingfeng Yu
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Chengjie Wu
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yeda Chen
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Bingsheng Li
- Department of Urology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Ru Huang
- Department of Urology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Xuechun Li
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Xiaolong Wang
- Department of Urology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Xiaolu Duan
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Shujue Li
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yang Liu
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Wenqi Wu
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
- Corresponding author. Tel.: +86 20 34294165.
| |
Collapse
|
3
|
Morales-Quinones M, Ramirez-Perez FI, Foote CA, Ghiarone T, Ferreira-Santos L, Bloksgaard M, Spencer N, Kimchi ET, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling. Hypertension 2020; 76:393-403. [PMID: 32594801 DOI: 10.1161/hypertensionaha.120.15203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased arterial stiffness and vascular remodeling precede and are consequences of hypertension. They also contribute to the development and progression of life-threatening cardiovascular diseases. Yet, there are currently no agents specifically aimed at preventing or treating arterial stiffening and remodeling. Previous research indicates that vascular smooth muscle actin polymerization participates in the initial stages of arterial stiffening and remodeling and that LIMK (LIM kinase) promotes F-actin formation and stabilization via cofilin phosphorylation and consequent inactivation. Herein, we hypothesize that LIMK inhibition is able to prevent vasoconstriction- and hypertension-associated arterial stiffening and inward remodeling. We found that small visceral arteries isolated from hypertensive subjects are stiffer and have greater cofilin phosphorylation than those from nonhypertensives. We also show that LIMK inhibition prevents arterial stiffening and inward remodeling in isolated human small visceral arteries exposed to prolonged vasoconstriction. Using cultured vascular smooth muscle cells, we determined that LIMK inhibition prevents vasoconstrictor agonists from increasing cofilin phosphorylation, F-actin volume, and cell cortex stiffness. We further show that localized LIMK inhibition prevents arteriolar inward remodeling in hypertensive mice. This indicates that hypertension is associated with increased vascular smooth muscle cofilin phosphorylation, cytoskeletal stress fiber formation, and heightened arterial stiffness. Our data further suggest that pharmacological inhibition of LIMK prevents vasoconstriction-induced arterial stiffening, in part, via reductions in vascular smooth muscle F-actin content and cellular stiffness. Accordingly, LIMK inhibition should represent a promising therapeutic means to stop the progression of arterial stiffening and remodeling in hypertension.
Collapse
Affiliation(s)
- Mariana Morales-Quinones
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Francisco I Ramirez-Perez
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Christopher A Foote
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Thaysa Ghiarone
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Larissa Ferreira-Santos
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Instituto do Coração (InCor), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Brazil (L.F.-S.)
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Odense (M.B.)
| | | | - Eric T Kimchi
- Department of Surgery (E.T.K.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Camila Manrique-Acevedo
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism (C.M.-A.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Jaume Padilla
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, MO
| | - Luis A Martinez-Lemus
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia, MO
| |
Collapse
|
4
|
Wang M, Zhuang D, Mei M, Ma H, Li Z, He F, Cheng G, Lin G, Zhou W. Frequent mutation of hypoxia-related genes in persistent pulmonary hypertension of the newborn. Respir Res 2020; 21:53. [PMID: 32054482 PMCID: PMC7020588 DOI: 10.1186/s12931-020-1314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Aims Persistent pulmonary hypertension of the newborn (PPHN) is characterized by sustained high levels of pulmonary vascular resistance after birth with etiology unclear; Arterial blood oxygen saturation of Tibetan newborns at high latitudes is higher than that of Han newborns at low latitudes, suggesting that genetic adaptation may allow sufficient oxygen to confer Tibetan populations with resistance to pulmonary hypertension; We have previously identified genetic factors related to PPHN through candidate gene sequencing; In this study, we first performed whole exome sequencing in PPHN patients to screen for genetic-related factors. Methods and results In this two-phase genetic study, we first sequenced the whole exome of 20 Tibetan PPHN patients and compared it with the published genome sequences of 50 healthy high-altitude Tibetanshypoxia-related genes, a total of 166 PPHN-related variants were found, of which 49% were from 43 hypoxia-related genes; considering many studies have shown that the differences in the genetic background between Tibet and Han are characterized by hypoxia-related genetic polymorphisms, so it is necessary to further verify whether the association between hypoxia-related variants and PPHN is independent of high-altitude life. During the validation phase, 237 hypoxia-related genes were sequenced in another 80 Han PPHN patients living in low altitude areas, including genes at the discovery stage and known hypoxia tolerance, of which 413 variants from 127 of these genes were shown to be significantly associated with PPHN.hypoxia-related genes. Conclusions Our results indicates that the association of hypoxia-related genes with PPHN does not depend on high-altitude life, at the same time, 21 rare mutations associated with PPHN were also found, including three rare variants of the tubulin tyrosine ligase-like family member 3 gene (TTLL3:p.E317K, TTLL3:p.P777S) and the integrin subunit alpha M gene (ITGAM:p.E1071D). These novel findings provide important information on the genetic basis of PPHN.
Collapse
Affiliation(s)
- Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, National Health Commision (NHC) Key Laboratory of Neonatal Diseases, Division of Neonatology, National Center for Children's Health, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Deyi Zhuang
- Xiamen Key Laboratory of Neonatal Diseases, Neonatal Medical Center, Xiamen Children's Hospital, Children's Hospital of Fudan University (Xiamen Branch), Xiamen, 361006, Fujian, China
| | - Mei Mei
- Division of Pulmonology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Haiyan Ma
- Zhuhai Maternal and Children's Hospital, Zhuhai, 519001, Guangdong, China
| | - Zixiu Li
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | | | - Guoqiang Cheng
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 200436, China
| | - Guang Lin
- Zhuhai Maternal and Children's Hospital, Zhuhai, 519001, Guangdong, China.
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, National Health Commision (NHC) Key Laboratory of Neonatal Diseases, Division of Neonatology, National Center for Children's Health, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
5
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
6
|
Hinton M, Sikarwar AS, Dakshinamurti S. Preparation of Pulmonary Artery Myocytes and Rings to Study Vasoactive GPCRs. Methods Mol Biol 2019; 1947:389-401. [PMID: 30969430 DOI: 10.1007/978-1-4939-9121-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
G protein-coupled receptors (GPCR) are crucial transducers of extracellular signals into changes in vascular tone. Vasoactive GPCR stimulation in the pulmonary circuit may be elicited by agonists released in acute tissue hypoxia or inflammation, as well as chronic disease. Acute responses involve activation of smooth muscle contraction or relaxation machinery causing changes in actomyosin interaction, thereby altering lumen diameter. Chronic responses may typically include activation of proliferation or fibrosis. Using pulmonary artery myocytes and pulmonary artery rings, we describe a general strategy for quantification of vasoconstrictor or vasodilator GPCR responses, and for comparison of signaling pathways in cultured cells and in contracted vessels using immunohistochemistry of contracting vessels.
Collapse
Affiliation(s)
- Martha Hinton
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anurag Singh Sikarwar
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Department of Physiology, University of Manitoba, Winnipeg, MB, Canada.
- Departments of Pediatrics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Leinhos L, Peters J, Krull S, Helbig L, Vogler M, Levay M, van Belle GJ, Ridley AJ, Lutz S, Katschinski DM, Zieseniss A. Hypoxia suppresses myofibroblast differentiation by changing RhoA activity. J Cell Sci 2019; 132:jcs223230. [PMID: 30659117 DOI: 10.1242/jcs.223230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Fibroblasts show a high range of phenotypic plasticity, including transdifferentiation into myofibroblasts. Myofibroblasts are responsible for generation of the contraction forces that are important for wound healing and scar formation. Overactive myofibroblasts, by contrast, are involved in abnormal scarring. Cell stretching and extracellular signals such as transforming growth factor β can induce the myofibroblastic program, whereas microenvironmental conditions such as reduced tissue oxygenation have an inhibitory effect. We investigated the effects of hypoxia on myofibroblastic properties and linked this to RhoA activity. Hypoxia reversed the myofibroblastic phenotype of primary fibroblasts. This was accompanied by decreased αSMA (ACTA2) expression, alterations in cell contractility, actin reorganization and RhoA activity. We identified a hypoxia-inducible induction of ARHGAP29, which is critically involved in myocardin-related transcription factor-A (MRTF-A) signaling, the differentiation state of myofibroblasts and modulates RhoA activity. This novel link between hypoxia and MRTF-A signaling is likely to be important for ischemia-induced tissue remodeling and the fibrotic response.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lisa Leinhos
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Johannes Peters
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Sabine Krull
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Lena Helbig
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Melanie Vogler
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Magdolna Levay
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Gijsbert J van Belle
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Anne J Ridley
- Randall Centre of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
8
|
Sikarwar AS, Hinton M, Santhosh KT, Dhanaraj P, Talabis M, Chelikani P, Dakshinamurti S. Hypoxia inhibits adenylyl cyclase catalytic activity in a porcine model of persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 2018; 315:L933-L944. [PMID: 30234376 DOI: 10.1152/ajplung.00130.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) features hypoxemia, pulmonary vasoconstriction, and impaired cardiac inotropy. We previously reported low basal and stimulated cAMP in hypoxic pulmonary artery smooth muscle cells (PASMCs). We now examine pulmonary arterial adenylyl cyclase (AC) activity and regulation in hypoxic PPHN. PPHN was induced in newborn swine by normobaric hypoxia (fraction of inspired oxygen 0.10) for 72 h and compared with age-matched normoxic controls. We studied relaxation of pulmonary arterial (PA) rings to AC activator forskolin and cGMP activator sodium nitroprusside (SNP) by isometric myography, ATP content, phosphodiesterase activity, AC content, isoform expression, and catalytic activity in presence or absence of Gαs-coupled receptor agonists, forskolin, or transnitrosylating agents in human and neonatal porcine PASMCs and HEK293T stably expressing AC isoform 6, after 72 h hypoxia (10% O2) or normoxia (21% O2). Relaxation to forskolin and SNP were equally impaired in PPHN PA. AC-specific activity decreased in hypoxia. PASMC from PPHN swine had reduced AC activity despite exposure to normoxia in culture; transient hypoxia in vitro further decreased AC activity. Prostacyclin receptor ligand affinity decreased, but its association with Gαs increased in hypoxia. Total AC content was unchanged by hypoxia, but AC6 increased in hypoxic cells and PPHN pulmonary arteries. Impairment of AC6 activity in hypoxia was associated with nitrosylation. PPHN PA relaxation is impaired because of loss of AC activity. Hypoxic AC is inhibited because of S-nitrosylation; inhibition persists after removal from hypoxia. Downregulation of AC-mediated relaxation in hypoxic PA has implications for utility of Gαs-coupled receptor agonists in PPHN treatment.
Collapse
Affiliation(s)
- A S Sikarwar
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba , Winnipeg , Canada.,Department of Physiology, University of Manitoba , Winnipeg , Canada.,Department of Oral Biology, University of Manitoba , Winnipeg , Canada
| | - M Hinton
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba , Winnipeg , Canada
| | - K T Santhosh
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba , Winnipeg , Canada
| | - P Dhanaraj
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba , Winnipeg , Canada.,Department of Oral Biology, University of Manitoba , Winnipeg , Canada
| | - M Talabis
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba , Winnipeg , Canada
| | - P Chelikani
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba , Winnipeg , Canada.,Department of Oral Biology, University of Manitoba , Winnipeg , Canada
| | - S Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba , Winnipeg , Canada.,Department of Physiology, University of Manitoba , Winnipeg , Canada.,Department of Pediatrics, University of Manitoba , Winnipeg , Canada
| |
Collapse
|
9
|
Application of laser scanning cytometry in vascular smooth muscle remodeling. Hypertens Res 2018; 41:869-885. [PMID: 30214031 DOI: 10.1038/s41440-018-0077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Pulmonary artery hyperplasia is the result of proliferation of the pulmonary arterial smooth muscles (PASM). Hypoxia-induced PASM proliferation in the fetus and the newborn is the primary cause of persistent pulmonary hypertension of the newborn (PPHN). This study was performed to characterize the utility of the Laser Scanning Cytometry (LSC) method in elucidating arterial cytoskeletal remodeling in an in vitro model of PPHN. The aim was to demonstrate the following: (a) LSC is a valid method for the analysis of nuclear and cytosolic fluorescence and (b) the cumulative effects of mechanical stretch together with hypoxia promote reactive oxygen species (ROS) formation. The molecular events in response to hypoxia and the mechanical overload of the pulmonary circuit were demonstrated in vitro by subjecting hypoxic cultured primary PASM or human airway smooth muscles (hASM) to repetitive stretch-relaxation cycles at rates comparable to dynamic stretch in vivo. The altered cytoskeleton in the form of filamentous to globular actin (F:G actin) ratio was imaged and quantified at the cellular level by LSC as an endpoint. LSC can remove the nuclear G-actin fluorescence from the total G-actin fluorescence. Pulsatile stretch was found to significantly increase the total endogenous ROS and superoxide anion release in normoxic and hypoxic conditions in primary PASM fibers. The effect of stretch was predominant in increasing superoxide anion release, only under hypoxic conditions. These findings, obtained by LSC in vitro are amenable to validation in any in vivo model of interest. The in vitro model is clinically relevant to human pulmonary vascular remodeling.
Collapse
|
10
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Aaronson PI. Actin polymerization contributes to ROS- and Rho-dependent Ca 2+ sensitization in pulmonary arteries from chronic hypoxic rats. Am J Physiol Heart Circ Physiol 2018; 315:H314-H317. [DOI: 10.1152/ajpheart.00135.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Philip I. Aaronson
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
12
|
Musharaf I, Hinton M, Yi M, Dakshinamurti S. Hypoxic challenge of hyperoxic pulmonary artery myocytes increases oxidative stress due to impaired mitochondrial superoxide dismutase activity. Pulm Pharmacol Ther 2018; 48:195-202. [DOI: 10.1016/j.pupt.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/14/2023]
|
13
|
Weise-Cross L, Sands MA, Sheak JR, Broughton BRS, Snow JB, Gonzalez Bosc LV, Jernigan NL, Walker BR, Resta TC. Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia. Am J Physiol Heart Circ Physiol 2018; 314:H1011-H1021. [PMID: 29373038 DOI: 10.1152/ajpheart.00664.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic hypoxia (CH) augments basal and endothelin-1 (ET-1)-induced pulmonary vasoconstrictor reactivity through reactive oxygen species (ROS) generation and RhoA/Rho kinase (ROCK)-dependent myofilament Ca2+ sensitization. Because ROCK promotes actin polymerization and the actin cytoskeleton regulates smooth muscle tension, we hypothesized that actin polymerization is required for enhanced basal and ET-1-dependent vasoconstriction after CH. To test this hypothesis, both end points were monitored in pressurized, endothelium-disrupted pulmonary arteries (fourth-fifth order) from control and CH (4 wk at 0.5 atm) rats. The actin polymerization inhibitors cytochalasin and latrunculin attenuated both basal and ET-1-induced vasoconstriction only in CH vessels. To test whether CH directly alters the arterial actin profile, we measured filamentous actin (F-actin)-to-globular actin (G-actin) ratios by fluorescent labeling of F-actin and G-actin in fixed pulmonary arteries and actin sedimentation assays using homogenized pulmonary artery lysates. We observed no difference in actin polymerization between groups under baseline conditions, but ET-1 enhanced actin polymerization in pulmonary arteries from CH rats. This response was blunted by the ROS scavenger tiron, the ROCK inhibitor fasudil, and the mDia (RhoA effector) inhibitor small-molecule inhibitor of formin homology domain 2. Immunoblot analysis revealed an effect of CH to increase both phosphorylated (inactive) and total levels of the actin disassembly factor cofilin but not phosphorylated cofilin-to-total cofilin ratios. We conclude that actin polymerization contributes to increased basal pulmonary arterial constriction and ET-1-induced vasoconstrictor reactivity after CH in a ROS- and ROCK-dependent manner. Our results further suggest that enhanced ET-1-mediated actin polymerization after CH is dependent on mDia but independent of changes in the phosphorylated cofilin-to-total cofilin ratio. NEW & NOTEWORTHY This research is the first to demonstrate a role for actin polymerization in chronic hypoxia-induced basal pulmonary arterial constriction and enhanced agonist-induced vasoconstrictor activity. These results suggest that a reactive oxygen species-Rho kinase-actin polymerization signaling pathway mediates this response and may provide a mechanistic basis for the vasoconstrictor component of pulmonary hypertension.
Collapse
Affiliation(s)
- Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Michelle A Sands
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Brad R S Broughton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Jessica B Snow
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
14
|
Johar D. Cytoskeletal remodeling and regulation of cell fate in the hypertensive neonatal pulmonary artery in response to stress. J Cell Physiol 2017; 233:2146-2161. [DOI: 10.1002/jcp.25950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Dina Johar
- Department of Physiology and Pathophysiology; Rady College of Medicine; Max Rady Faculty of Health Sciences; University of Manitoba; Winnipeg Manitoba Canada
| |
Collapse
|
15
|
Jernigan NL, Resta TC, Gonzalez Bosc LV. Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:83-103. [PMID: 29047083 DOI: 10.1007/978-3-319-63245-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Normally, the pulmonary circulation is maintained in a low-pressure, low-resistance state with little resting tone. Pulmonary arteries are thin-walled and rely heavily on pulmonary arterial distension and recruitment for reducing pulmonary vascular resistance when cardiac output is elevated. Under pathophysiological conditions, however, active vasoconstriction and vascular remodeling lead to enhanced pulmonary vascular resistance and subsequent pulmonary hypertension (PH). Chronic hypoxia is a critical pathological factor associated with the development of PH resulting from airway obstruction (COPD, sleep apnea), diffusion impairment (interstitial lung disease), developmental lung abnormalities, or high altitude exposure (World Health Organization [WHO]; Group III). The rise in pulmonary vascular resistance increases right heart afterload causing right ventricular hypertrophy that can ultimately lead to right heart failure in patients with chronic lung disease. PH is typically characterized by diminished paracrine release of vasodilators, antimitogenic factors, and antithrombotic factors (e.g., nitric oxide and protacyclin) and enhanced production of vasoconstrictors and mitogenic factors (e.g., reactive oxygen species and endothelin-1) from the endothelium and lung parenchyma. In addition, phenotypic changes to pulmonary arterial smooth muscle cells (PASMC), including alterations in Ca2+ homeostasis, Ca2+ sensitivity, and activation of transcription factors are thought to play prominent roles in the development of both vasoconstrictor and arterial remodeling components of hypoxia-associated PH. These changes in PASMC function are briefly reviewed in Sect. 1 and the influence of altered reactive oxygen species homeostasis on PASMC function discussed in Sects. 2-4.
Collapse
Affiliation(s)
- Nikki L Jernigan
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Thomas C Resta
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Laura V Gonzalez Bosc
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
16
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Hoenderdos K, Lodge KM, Hirst RA, Chen C, Palazzo SGC, Emerenciana A, Summers C, Angyal A, Porter L, Juss JK, O'Callaghan C, Chilvers ER, Condliffe AM. Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax 2016; 71:1030-1038. [PMID: 27581620 PMCID: PMC5099189 DOI: 10.1136/thoraxjnl-2015-207604] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/04/2016] [Indexed: 01/06/2023]
Abstract
Background The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. Methods and results Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. Conclusion Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion.
Collapse
Affiliation(s)
- Kim Hoenderdos
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Robert A Hirst
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Cheng Chen
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Adri Angyal
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Linsey Porter
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jatinder K Juss
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Christopher O'Callaghan
- Department of Respiratory Medicine, Portex Unit, Institute of Child Health, University College London, Cambridge, UK
| | | | - Alison M Condliffe
- Department of Medicine, University of Cambridge, Cambridge, UK Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Postolow F, Fediuk J, Nolette N, Hinton M, Dakshinamurti S. Thromboxane promotes smooth muscle phenotype commitment but not remodeling of hypoxic neonatal pulmonary artery. FIBROGENESIS & TISSUE REPAIR 2015; 8:20. [PMID: 26583045 PMCID: PMC4650498 DOI: 10.1186/s13069-015-0037-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022]
Abstract
Background Persistent pulmonary hypertension of the newborn (PPHN) is characterized by vasoconstriction and pulmonary vascular remodeling. Remodeling is believed to be a response to physical or chemical stimuli including pro-mitotic inflammatory mediators such as thromboxane. Our objective was to examine the effects of hypoxia and thromboxane signaling ex vivo and in vitro on phenotype commitment, cell cycle entry, and proliferation of PPHN and control neonatal pulmonary artery (PA) myocytes in tissue culture. Methods To examine concurrent effects of hypoxia and thromboxane on myocyte growth, serum-fed first-passage newborn porcine PA myocytes were randomized into normoxic (21 % O2) or hypoxic (10 % O2) culture for 3 days, with daily addition of thromboxane mimetic U46619 (10−9 to 10−5 M) or diluent. Cell survival was detected by MTT assay. To determine the effect of chronic thromboxane exposure (versus whole serum) on activation of arterial remodeling, PPHN was induced in newborn piglets by a 3-day hypoxic exposure (FiO2 0.10); controls were 3 day-old normoxic and day 0 piglets. Third-generation PA were segmented and cultured for 3 days in physiologic buffer, Ham’s F-12 media (in the presence or absence of 10 % fetal calf serum), or media with 10−6 M U46619. DNA synthesis was measured by 3H-thymidine uptake, protein synthesis by 3H-leucine uptake, and proliferation by immunostaining for Ki67. Cell cycle entry was studied by laser scanning cytometry of nuclei in arterial tunica media after propidium iodide staining. Phenotype commitment was determined by immunostaining tunica media for myosin heavy chain and desmin, quantified by laser scanning cytometry. Results Contractile and synthetic myocyte subpopulations had differing responses to thromboxane challenge. U46619 decreased proliferation of synthetic and contractile myocytes. PPHN arteries exhibited decreased protein synthesis under all culture conditions. Serum-supplemented PA treated with U46619 had decreased G1/G0 phase myocytes and an increase in S and G2/M. When serum-deprived, PPHN PA incubated with U46619 showed arrested cell cycle entry (increased G0/G1, decreased S and G2/M) and increased abundance of contractile phenotype markers. Conclusions We conclude that thromboxane does not initiate phenotypic dedifferentiation and proliferative activation in PPHN PA. Exposure to thromboxane triggers cell cycle exit and myocyte commitment to contractile phenotype.
Collapse
Affiliation(s)
- Fabiana Postolow
- Department of Pediatrics, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada
| | - Jena Fediuk
- Department of Physiology, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada
| | - Nora Nolette
- Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada
| | - Martha Hinton
- Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada
| | - Shyamala Dakshinamurti
- Department of Pediatrics, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Department of Physiology, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Section of Neonatology, WS012 Women's Hospital, 735 Notre Dame Ave, Winnipeg, MB R3E 0L8 Canada
| |
Collapse
|
19
|
Fediuk J, Sikarwar A, Lizotte P, Hinton M, Nolette N, Dakshinamurti S. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization. Pulm Pharmacol Ther 2015; 30:1-10. [DOI: 10.1016/j.pupt.2014.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/05/2014] [Accepted: 10/03/2014] [Indexed: 01/07/2023]
|
20
|
Bauer J, Ripperger A, Frantz S, Ergün S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol 2015; 171:3115-31. [PMID: 24646155 DOI: 10.1111/bph.12677] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context.
Collapse
Affiliation(s)
- Jochen Bauer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Fediuk J, Dakshinamurti S. A role for actin polymerization in persistent pulmonary hypertension of the newborn. Can J Physiol Pharmacol 2015; 93:185-94. [PMID: 25695400 DOI: 10.1139/cjpp-2014-0413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is defined as the failure of normal pulmonary vascular relaxation at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial myocytes, resulting in elevation of smooth muscle α-actin and γ-actin content in elastic and resistance pulmonary arteries in PPHN compared with age-matched controls. This review examines the original histological characterization of PPHN with attention to cytoskeletal structural remodeling and actin isoform abundance, reviews the existing evidence for understanding the biophysical and biochemical forces at play during neonatal circulatory transition, and specifically addresses the role of the cortical actin architecture, primarily identified as γ-actin, in the transduction of mechanical force in the hypoxic PPHN pulmonary circuit.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada., Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
22
|
Fediuk J, Sikarwar AS, Nolette N, Dakshinamurti S. Thromboxane-induced actin polymerization in hypoxic neonatal pulmonary arterial myocytes involves Cdc42 signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L877-87. [DOI: 10.1152/ajplung.00036.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hypoxic pulmonary arterial (PA) myocytes, challenge with thromboxane mimetic U46619 induces marked actin polymerization and contraction, phenotypic features of persistent pulmonary hypertension of the newborn (PPHN). Rho GTPases regulate the actin cytoskeleton. We previously reported that U46619-induced actin polymerization in hypoxic PA myocytes occurs independently of the RhoA pathway and hypothesized involvement of the Cdc42 pathway. PA myocytes grown in normoxia or hypoxia for 72 h were stimulated with U46619, then analyzed for Rac/Cdc42 activation by affinity precipitation, phosphatidylinositide-3-kinase (PI3K) activity by phospho-Akt, phospho-p21-activated kinase (PAK) by immunoblot, and association of Cdc42 with neuronal Wiskott Aldrich Syndrome protein (N-WASp) by immunoprecipitation. The effect of Rac or PAK inhibition on filamentous actin was quantified by laser-scanning cytometry and by cytoskeletal fractionation; effects of actin-modifying agents were measured by isometric myography. Basal Cdc42 activity increased in hypoxia, whereas Rac activity decreased. U46619 challenge increased Cdc42 and Rac activity in hypoxic cells, independently of PI3K. Hypoxia increased phospho-PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia but increased after U46619 exposure. Hypoxia doubled filamentous-to-globular ratios of α- and γ-actin isoforms. Jasplakinolide stabilized γ-filaments, increasing force; cytochalasin D depolymerized all actin isoforms, decreasing force. Rac and PAK inhibition decreased filamentous actin in tissues although without decrease in force. Rho inhibition decreased myosin phosphorylation and force. Hypoxia induces actin polymerization in PA myocytes, particularly increasing filamentous α- and γ-actin, contributing to U46619-induced contraction. Hypoxic PA myocytes challenged with a thromboxane mimetic polymerize actin via the Cdc42 pathway, reflecting increased Cdc42 association with N-WASp. Mechanisms regulating thromboxane-mediated actin polymerization are potential targets for future PPHN pharmacotherapy.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anurag S. Sikarwar
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nora Nolette
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Upadhyaya JD, Singh N, Sikarwar AS, Chakraborty R, Pydi SP, Bhullar RP, Dakshinamurti S, Chelikani P. Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction. PLoS One 2014; 9:e110373. [PMID: 25340739 PMCID: PMC4207743 DOI: 10.1371/journal.pone.0110373] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/11/2014] [Indexed: 12/14/2022] Open
Abstract
Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways.
Collapse
Affiliation(s)
| | - Nisha Singh
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Anurag S. Sikarwar
- Departments of Pediatrics, Physiology, University of Manitoba, Winnipeg, MB, Canada
| | - Raja Chakraborty
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Sai P. Pydi
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Shyamala Dakshinamurti
- Departments of Pediatrics, Physiology, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
- * E-mail:
| |
Collapse
|
24
|
Santhosh KT, Sikarwar AS, Hinton M, Chelikani P, Dakshinamurti S. Thromboxane receptor hyper-responsiveness in hypoxic pulmonary hypertension requires serine 324. Br J Pharmacol 2014; 171:676-87. [PMID: 24490858 DOI: 10.1111/bph.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 09/21/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysregulation of the thromboxane A₂ (TP) receptor, resulting in agonist hypersensitivity and hyper-responsiveness, contributes to exaggerated vasoconstriction in the hypoxic pulmonary artery in neonatal persistent pulmonary hypertension. We previously reported that hypoxia inhibits TP receptor phosphorylation, causing desensitization. Hence, we examined the role of PKA-accessible serine residues in determining TP receptor affinity, using site-directed mutational analysis. EXPERIMENTAL APPROACH Vasoconstriction to a thromboxane mimetic and phosphorylation of TP receptor serine was examined in pulmonary arteries from neonatal swine with persistent pulmonary hypertension and controls. Effects of hypoxia were determined in porcine and human TP receptors. Human TPα serines at positions 324, 329 and 331 (C-terminal tail) were mutated to alanine and transiently expressed in HEK293T cells. Saturation binding and displacement kinetics of a TP antagonist and agonist were determined in porcine TP, wild-type human TPα and all TP mutants. Agonist-elicited calcium mobilization was determined for each TP mutant, in the presence of a PKA activator or inhibitor, and in hypoxic and normoxic conditions. KEY RESULTS The Ser324A mutant was insensitive to PKA activation and hypoxia, had a high affinity for agonist and increased agonist-induced calcium mobilization. Ser329A was no different from wild-type TP receptors. Ser331A was insensitive to hypoxia and PKA with a decreased agonist-mediated response. CONCLUSIONS AND IMPLICATIONS In hypoxic pulmonary hypertension, loss of site-specific phosphorylation of the TP receptor causes agonist hyper-responsiveness. Ser324 is the primary residue phosphorylated by PKA, which regulates TP receptor-agonist interactions. Ser331 mutation confers loss of TP receptor-agonist interaction, regardless of PKA activity.
Collapse
Affiliation(s)
- K T Santhosh
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
25
|
Jernigan NL, Resta TC. Calcium Homeostasis and Sensitization in Pulmonary Arterial Smooth Muscle. Microcirculation 2014; 21:259-71. [DOI: 10.1111/micc.12096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/25/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Nikki L. Jernigan
- Vascular Physiology Group; Department of Cell Biology and Physiology; University of New Mexico Health Sciences Center; Albuquerque New Mexico USA
| | - Thomas C. Resta
- Vascular Physiology Group; Department of Cell Biology and Physiology; University of New Mexico Health Sciences Center; Albuquerque New Mexico USA
| |
Collapse
|
26
|
Zieseniss A. Hypoxia and the modulation of the actin cytoskeleton - emerging interrelations. HYPOXIA 2014; 2:11-21. [PMID: 27774463 PMCID: PMC5045051 DOI: 10.2147/hp.s53575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent progress in understanding the influence of hypoxia on cell function has revealed new information about the interrelationship between the actin cytoskeleton and hypoxia; nevertheless, details remain cloudy. The dynamic regulation of the actin cytoskeleton during hypoxia is complex, varies in different cells and tissues, and also depends on the mode of hypoxia. Several molecular players and pathways are emerging that contribute to the modulation of the actin cytoskeleton and that affect the large repertoire of actin-binding proteins in hypoxia. This review describes and discusses the accumulated knowledge about actin cytoskeleton dynamics in hypoxia, placing special emphasis on the Rho family of small guanosine triphosphatases (Rho GTPases). Given that RhoA, Rac and Cdc42 are very well characterized, the review is focused on these family members of Rho GTPases. Notably, in several cell types and tissues, hypoxia, presumably via Rho GTPase signaling, induces actin rearrangement and actin stress fiber assembly, which is a prevalent modulation of the actin cytoskeleton in hypoxia.
Collapse
Affiliation(s)
- Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University, Göttingen, Germany
| |
Collapse
|
27
|
Li L, Howell K, Sands M, Banahan M, Frohlich S, Rowan SC, Neary R, Ryan D, McLoughlin P. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance. PLoS One 2013; 8:e80637. [PMID: 24349008 PMCID: PMC3857174 DOI: 10.1371/journal.pone.0080637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/05/2013] [Indexed: 01/15/2023] Open
Abstract
Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ) mice). Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ) mice. CREB(αΔ) mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ) and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ). CREB(αΔ) mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.
Collapse
Affiliation(s)
- Lili Li
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland
| | - Katherine Howell
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland
| | - Michelle Sands
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland
| | - Mark Banahan
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland
| | - Stephen Frohlich
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland
- Department of Anaesthesia and Critical Care, St Vincent's University Hospital, Dublin, Ireland
| | - Simon C. Rowan
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland
| | - Roisín Neary
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland
| | - Donal Ryan
- Department of Anaesthesia and Critical Care, St Vincent's University Hospital, Dublin, Ireland
| | - Paul McLoughlin
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, Dublin, Ireland
| |
Collapse
|
28
|
Vindin H, Bischof L, Gunning P, Stehn J. Validation of an algorithm to quantify changes in actin cytoskeletal organization. ACTA ACUST UNITED AC 2013; 19:354-68. [PMID: 24019255 DOI: 10.1177/1087057113503494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The actin cytoskeleton plays an important role in most, if not all, processes necessary for cell survival. Given the fundamental role that the actin cytoskeleton plays in the progression of cancer, it is an ideal target for chemotherapy. Although it is possible to image the actin cytoskeleton in a high-throughput manner, there is currently no validated method to quantify changes in the cytoskeleton in the same capacity, which makes research into its organization and the development of anticytoskeletal drugs difficult. We have validated the use of a linear feature detection algorithm, allowing us to measure changes in actin filament organization. Its ability to quantify changes associated with cytoskeletal disruption will make it a valuable tool in the development of compounds that target the cytoskeleton in cancer. Our results show that this algorithm can quantify cytoskeletal changes in a cell-based system after addition of both well-established and novel anticytoskeletal agents using either fluorescence microscopy or a high-content imaging approach. This novel method gives us the potential to screen compounds in a high-throughput manner for cancer and other diseases in which the cytoskeleton plays a key role.
Collapse
Affiliation(s)
- Howard Vindin
- 1Oncology Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
29
|
Sikarwar AS, Hinton M, Santhosh KT, Chelikani P, Dakshinamurti S. Palmitoylation of Gαq Determines its Association with the Thromboxane Receptor in Hypoxic Pulmonary Hypertension. Am J Respir Cell Mol Biol 2013; 50:135-43. [DOI: 10.1165/rcmb.2013-0085oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Hirenallur-S DK, Detweiler ND, Haworth ST, Leming JT, Gordon JB, Rusch NJ. Furegrelate, a thromboxane synthase inhibitor, blunts the development of pulmonary arterial hypertension in neonatal piglets. Pulm Circ 2012; 2:193-200. [PMID: 22837860 PMCID: PMC3401873 DOI: 10.4103/2045-8932.97605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of pulmonary arterial hypertension (PAH) in pediatric patients has been linked to the production of the arachidonic acid metabolite, thromboxane A2 (TxA2). The present study evaluated the therapeutic effect of furegrelate sodium, a thromboxane synthase inhibitor, on the development of PAH in a neonatal piglet model. Three-day-old piglets were exposed to 21 days of normoxia (N; 21% FIO2) or chronic hypoxia (CH; 10% FIO2). A third group of piglets received the oral TxA2 synthase inhibitor, furegrelate (3 mg/kg, 2 or 3 times daily) at the induction of CH. In vivo hemodynamics confirmed a 2.55-fold increase of the pulmonary vascular resistance index (PVRI) in CH piglets (104±7 WU) compared to N piglets (40±2 WU). The CH piglets treated twice daily with furegrelate failed to show improved PVRI, but furegrelate three times daily lowered the elevated PVRI in CH piglets by 34% to 69±5 WU and ameliorated the development of right ventricular hypertrophy. Microfocal X-ray computed tomography (CT) scanning was used to estimate the diameter-independent distensibility term, α (% change in diameter per Torr). Pulmonary arterial distensibility in isolated lungs of CH piglets (α=1.0±0.1% per Torr) was lower than that of N piglets (α=1.5±0.1% per Torr) indicative of vascular remodeling. Arterial distensibility was partially restored in furegrelate-treated CH piglets (α =1.2±0.1% per Torr) and microscopic evidence showing muscularization of small pulmonary arteries also was less prominent in these animals. Finally, isolated lungs of furegrelate-treated piglets showed lower basal and vasodilator-induced transpulmonary pressures compared to CH animals. These findings suggest that pharmacological inhibition of TxA2 synthase activity by furegrelate blunts the development of hypoxia-induced PAH in an established neonatal piglet model primarily by preserving the structural integrity of the pulmonary vasculature.
Collapse
Affiliation(s)
- Dinesh K Hirenallur-S
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | | | |
Collapse
|
31
|
Liao C, Yang H, Zhang R, Sun H, Zhao B, Gao C, Zhu F, Jiao J. The upregulation of TRPC6 contributes to Ca2+ signaling and actin assembly in human mesangial cells after chronic hypoxia. Biochem Biophys Res Commun 2012; 421:750-6. [DOI: 10.1016/j.bbrc.2012.04.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/14/2012] [Indexed: 10/28/2022]
|