1
|
Luo L, Li T, Zeng Z, Li H, He X, Chen Y. CSE reduces OTUD4 triggering lung epithelial cell apoptosis via PAI-1 degradation. Cell Death Dis 2023; 14:614. [PMID: 37726265 PMCID: PMC10509146 DOI: 10.1038/s41419-023-06131-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Ovarian tumor family deubiquitinase 4 (OTUD4), a member of the OTU deubiquitinating enzyme, is implicated to decrease in cancer to regulate cell apoptosis. However, the role of OTUD4 in cigarette smoke induced epithelial cell apoptosis and its mechanism have not been elucidated. In this study, we showed that OTUD4 protein reduced in CSE treated mice and airway epithelial cells. OTUD4 silence aggravated cell apoptosis and emphysematous change in the lung tissue of cigarette smoke extract (CSE) treated mice. Additionally, restoration of OTUD4 in the lung of mice alleviated CSE induced apoptosis and emphysematous morphology change. The effect of OTUD4 on cell apoptosis was also confirmed in vitro. Through protein profile screening, we identified that OTUD4 may interact with plasminogen activator inhibitor 1(PAI-1). We further confirmed that OTUD4 interacted with PAI-1 for de-ubiquitination and inhibiting CSE induced PAI-1 degradation. Furthermore, the protective role of OTUD4 in airway epithelial cells apoptosis was blocked by PAI-1 deactivation. Taken together, our data suggest that OTUD4 regulates cigarette smoke (CS)-triggered airway epithelial cell apoptosis via modulating PAI-1 degradation. Targeting OUTD4/PAI-1 signaling might potentially provide a therapeutic target against the lung cell apoptosis in cigarette smoke (CS)-induced emphysema.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Tiao Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Xue He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, China.
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China.
| |
Collapse
|
2
|
Patel U, Smalley JP, Hodgkinson JT. PROTAC chemical probes for histone deacetylase enzymes. RSC Chem Biol 2023; 4:623-634. [PMID: 37654508 PMCID: PMC10467623 DOI: 10.1039/d3cb00105a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Over the past three decades, we have witnessed the progression of small molecule chemical probes designed to inhibit the catalytic active site of histone deacetylase (HDAC) enzymes into FDA approved drugs. However, it is only in the past five years we have witnessed the emergence of proteolysis targeting chimeras (PROTACs) capable of promoting the proteasome mediated degradation of HDACs. This is a field still in its infancy, however given the current progress of PROTACs in clinical trials and the fact that FDA approved HDAC drugs are already in the clinic, there is significant potential in developing PROTACs to target HDACs as therapeutics. Beyond therapeutics, PROTACs also serve important applications as chemical probes to interrogate fundamental biology related to HDACs via their unique degradation mode of action. In this review, we highlight some of the key findings to date in the discovery of PROTACs targeting HDACs by HDAC class and HDAC isoenzyme, current gaps in PROTACs to target HDACs and future outlooks.
Collapse
Affiliation(s)
- Urvashi Patel
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| | - Joshua P Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| | - James T Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| |
Collapse
|
3
|
Ke X, Hu H, Peng Q, Ying H, Chu X. USP33 promotes nonalcoholic fatty acid disease-associated fibrosis in gerbils via the c-myc signaling. Biochem Biophys Res Commun 2023; 669:68-76. [PMID: 37267862 DOI: 10.1016/j.bbrc.2023.05.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Nonalcoholic fatty acid disease (NAFLD) is a common complication of obesity associated with liver fibrosis. The underlying molecular mechanisms involved in the progression from normal to fibrosis remain unclear. Liver tissues from the liver fibrosis model identified the USP33 gene as a key gene in NAFLD-associated fibrosis. USP33 knockdown inhibited hepatic stellate cell activation and glycolysis in gerbils with NAFLD-associated fibrosis. Conversely, overexpression of USP33 caused a contrast function on hepatic stellate cell activation and glycolysis activation, which was inhibited by c-Myc inhibitor 10058-F4. The copy number of short-chain fatty acids-producing bacterium Alistipes sp. AL-1, Mucispirillum schaedleri, Helicobacter hepaticus in the feces, and the total bile acid level in serum were higher in gerbils with NAFLD-associated fibrosis. Bile acid promoted USP33 expression and inhibiting its receptor reversed hepatic stellate cell activation in gerbils with NAFLD-associated fibrosis. These results suggest that the expression of USP33, an important deubiquitinating enzyme, is increased in NAFLD fibrosis. These data also point to hepatic stellate cells as a key cell type that may respond to liver fibrosis via USP33-induced cell activation and glycolysis.
Collapse
Affiliation(s)
- Xianfu Ke
- Hangzhou Medical College, Zhejiang, China.
| | - Huiying Hu
- Hangzhou Medical College, Zhejiang, China.
| | | | | | | |
Collapse
|
4
|
Zou S, Li X, Huang Y, Zhang B, Tang H, Xue Y, Zheng Y. Properties and biotechnological applications of microbial deacetylase. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12613-1. [PMID: 37326683 DOI: 10.1007/s00253-023-12613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Deacetylases, a class of enzymes that can catalyze the hydrolysis of acetylated substrates to remove the acetyl group, used in producing various products with high qualities, are one of the most influential industrial enzymes. These enzymes are highly specific, non-toxic, sustainable, and eco-friendly biocatalysts. Deacetylases and deacetylated compounds have been widely applicated in pharmaceuticals, medicine, food, and the environment. This review synthetically summarizes deacetylases' sources, characterizations, classifications, and applications. Moreover, the typical structural characteristics of deacetylases from different microbial sources are summarized. We also reviewed the deacetylase-catalyzed reactions for producing various deacetylated compounds, such as chitosan-oligosaccharide (COS), mycothiol, 7-aminocephalosporanic acid (7-ACA), glucosamines, amino acids, and polyamines. It is aimed to expound on the advantages and challenges of deacetylases in industrial applications. Moreover, it also serves perspectives on obtaining promising and innovative biocatalysts for enzymatic deacetylation. KEYPOINTS: • The fundamental properties of microbial deacetylases of various microorganisms are presented. • The biochemical characterizations, structures, and catalyzation mechanisms of microbial deacetylases are summarized. • The applications of microbial deacetylases in food, pharmaceutical, medicine, and the environment were discussed.
Collapse
Affiliation(s)
- Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yinfeng Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bing Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
5
|
Lv H, Liu X, Zhou H. USP25 UPREGULATION BOOSTS GSDMD -MEDIATED PYROPTOSIS OF ACINAR CELLS IN ACUTE PANCREATITIS. Shock 2022; 58:408-416. [PMID: 36155610 DOI: 10.1097/shk.0000000000001992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Acute pancreatitis (AP) is an inflammation-associated disorder in the digestive system. Ubiquitin-specific peptidase 25 ( USP25 ) can modulate inflammation in diseases. This study expounded on the role of USP25 in pyroptosis of acinar cells in AP. Acinar cells were treated with lipopolysaccharide (LPS) and caerulein (CRE) to induce AP. Afterward, the expression patterns of USP25 , microRNA (miR)-10a-5p, and Krüppel-like factor 4 ( KLF4 ) in acinar cells were examined. Then, acinar cell viability and levels of NLR family pyrin-domain containing 3 (NLRP3), cleaved caspase-1, cleaved N -terminal gasdermin D ( GSDMD - N ), interleukin (IL)-1β, and IL-18 were determined. We observed that USP25 was highly expressed in AP models, and silencing USP25 increased cell viability and inhibited pyroptosis of AP acinar cells. The bindings of USP25 to KLF4 and miR-10a-5p to KLF4 and the GSDMD 3'UTR sequence were validated. We found that USP25 binding to KLF4 inhibited ubiquitination degradation of KLF4 , KLF4 transcriptionally decreased miR-10a-5p expression, and miR-10a-5p targeted GSDMD expression. Finally, rescue experiments proved that KLF4 overexpression or miR-10a-5p suppression enhanced pyroptosis of AP acinar cells. Overall, USP25 stabilized KLF4 expression through deubiquitination, limited miR-10a-5p expression, and increased GSDMD expression, finally promoting pyroptosis of acinar cells in AP.
Collapse
Affiliation(s)
- Hui Lv
- Department of Gastroenterology, The Central Hospital of Zhoukou, Zhoukou, China
| | | | | |
Collapse
|
6
|
Chen H, Xie C, Chen Q, Zhuang S. HDAC11, an emerging therapeutic target for metabolic disorders. Front Endocrinol (Lausanne) 2022; 13:989305. [PMID: 36339432 PMCID: PMC9631211 DOI: 10.3389/fendo.2022.989305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylase 11 (HDAC11) is the only member of the class IV HDAC, and the latest member identified. It is highly expressed in brain, heart, kidney and some other organs, and located in mitochondria, cytoplasm and nuclei, depending on the tissue and cell types. Although studies in HDAC11 total knockout mice suggest its dispensable features for tissue development and life, it participates in diverse pathophysiological processes, such as DNA replication, tumor growth, immune regulation, oxidant stress injury and neurological function of cocaine. Recent studies have shown that HDAC11 is also critically involved in the pathogenesis of some metabolic diseases, including obesity, diabetes and complications of diabetes. In this review, we summarize the recent progress on the role and mechanism of HDAC11 in the regulation of metabolic disorders, with the focus on its regulation on adipogenesis, lipid metabolism, metabolic inflammation, glucose tolerance, immune responses and energy consumption. We also discuss the property and selectivity of HDAC11 inhibitors and their applications in a variety of in vitro and in vivo models of metabolic disorders. Given that pharmacological and genetic inhibition of HDAC11 exerts a beneficial effect on various metabolic disorders, HDAC11 may be a potential therapeutic target to treat chronic metabolic diseases.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunguang Xie
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Wu H, Yin X, Zhao X, Wu Z, Xiao Y, Di Q, Sun P, Tang H, Quan J, Chen W. HDAC11 negatively regulates antifungal immunity by inhibiting Nos2 expression via binding with transcriptional repressor STAT3. Redox Biol 2022; 56:102461. [PMID: 36087429 PMCID: PMC9465110 DOI: 10.1016/j.redox.2022.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaofan Yin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
8
|
Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo X. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol 2022; 931:175216. [PMID: 35988787 DOI: 10.1016/j.ejphar.2022.175216] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022]
Abstract
Deregulation of protein post-translational modifications is intensively involved in the etiology of diseases, including degenerative diseases, inflammatory injuries, and cancers. Acetylation is one of the most common post-translational modifications of proteins, and the acetylation levels are controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs). HATs loosen the chromatin structure by neutralizing the positive charge of lysine residues of histones; whereas HDACs deacetylate certain histones, thus inhibiting gene transcription. Compared with HATs, HDACs have been more intensively studied, particularly regarding their clinical significance. HDACs extensively participate in the regulation of proliferation, migration, angiogenesis, immune escape, and therapeutic resistance of cancer cells, thus emerging as critical targets for clinical cancer therapy. Compared to HATs, inhibitors of HDAC have been clinically used for cancer treatment. Here, we enumerate and integratethe mechanisms of HDAC family members in tumorigenesis and cancer progression, and address the new and exciting therapeutic implications of single or combined HDAC inhibitor (HDACi) treatment.
Collapse
Affiliation(s)
- Rihan Hai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Deyi Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Feifei Zheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Weiqin Wang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xing Han
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
9
|
Gan C, Wang Y, Zhao Q, Kong M, Chen J, Zhang W, Tan L, Tian M. USP25 inhibits DNA damage by stabilizing BARD1 protein in a house dust mite‐induced asthmatic model
in vitro
and
in vivo. Cell Biol Int 2022; 46:922-932. [PMID: 35143098 DOI: 10.1002/cbin.11775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Cong Gan
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Ye Wang
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Qian Zhao
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Mi Kong
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Jinnan Chen
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Wanying Zhang
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Lingxiao Tan
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Man Tian
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| |
Collapse
|
10
|
Mastalerz M, Dick E, Chakraborty AA, Hennen E, Schamberger AC, Schröppel A, Lindner M, Hatz R, Behr J, Hilgendorff A, Schmid O, Staab-Weijnitz CA. Validation of in vitro models for smoke exposure of primary human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 322:L129-L148. [PMID: 34668416 DOI: 10.1152/ajplung.00091.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RATIONALE The bronchial epithelium is constantly challenged by inhalative insults including cigarette smoke (CS), a key risk factor for lung disease. In vitro exposure of bronchial epithelial cells using CS extract (CSE) is a widespread alternative to whole CS (wCS) exposure. However, CSE exposure protocols vary considerably between studies, precluding direct comparison of applied doses. Moreover, they are rarely validated in terms of physiological response in vivo and the relevance of the findings is often unclear. METHODS We tested six different exposure settings in primary human bronchial epithelial cells (phBECs), including five CSE protocols in comparison with wCS exposure. We quantified cell-delivered dose and directly compared all exposures using expression analysis of 10 well-established smoke-induced genes in bronchial epithelial cells. CSE exposure of phBECs was varied in terms of differentiation state, exposure route, duration of exposure, and dose. Gene expression was assessed by quantitative Real-Time PCR (qPCR) and Western Blot analysis. Cell type-specific expression of smoke-induced genes was analyzed by immunofluorescent analysis. RESULTS Three surprisingly dissimilar exposure types, namely chronic CSE treatment of differentiating phBECs, acute CSE treatment of submerged basal phBECs, and wCS exposure of differentiated phBECs performed best, resulting in significant upregulation of seven (chronic CSE) and six (acute wCS, acute submerged CSE exposure) out of 10 genes. Acute apical or basolateral exposure of differentiated phBECs with CSE was much less effective despite similar doses used. CONCLUSIONS Our findings provide guidance for the design of human in vitro CS exposure models in experimental and translational lung research.
Collapse
Affiliation(s)
- Michal Mastalerz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ashesh Anjankumar Chakraborty
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Hennen
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea C Schamberger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Schröppel
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Rudolf Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität (LMU), Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
11
|
Zhu W, Zheng D, Wang D, Yang L, Zhao C, Huang X. Emerging Roles of Ubiquitin-Specific Protease 25 in Diseases. Front Cell Dev Biol 2021; 9:698751. [PMID: 34249948 PMCID: PMC8262611 DOI: 10.3389/fcell.2021.698751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
The balance of ubiquitination and deubiquitination plays diverse roles in regulating protein stability and cellular homeostasis. Deubiquitinating enzymes catalyze the hydrolysis and removal of ubiquitin chains from target proteins and play critical roles in various disease processes, including cancer, immune responses to viral infections and neurodegeneration. This article aims to summarize roles of the deubiquitinating enzyme ubiquitin-specific protease 25 (USP25) in disease onset and progression. Previous studies have focused on the role of USP25 in antiviral immunity and neurodegenerative diseases. Recently, however, as the structural similarities and differences between USP25 and its homolog USP28 have become clear, mechanisms of action of USP25 in cancer and other diseases have been gradually revealed.
Collapse
Affiliation(s)
- Wenjing Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Núñez-Álvarez Y, Suelves M. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J 2021; 289:2771-2792. [PMID: 33891374 DOI: 10.1111/febs.15895] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The histone deacetylases (HDACs) family of enzymes possess deacylase activity for histone and nonhistone proteins; HDAC11 is the latest discovered HDAC and the only member of class IV. Besides its shared HDAC family catalytical activity, recent studies underline HDAC11 as a multifaceted enzyme with a very efficient long-chain fatty acid deacylase activity, which has open a whole new field of action for this protein. Here, we summarize the importance of HDAC11 in a vast array of cellular pathways, which has been recently highlighted by discoveries about its subcellular localization, biochemical features, and its regulation by microRNAs and long noncoding RNAs, as well as its new targets and interactors. Additionally, we discuss the recent work showing the consequences of HDAC11 dysregulation in brain, skeletal muscle, and adipose tissue, and during regeneration in response to kidney, skeletal muscle, and vascular injuries, underscoring HDAC11 as an emerging hub protein with physiological functions that are much more extensive than previously thought, and with important implications in human diseases.
Collapse
Affiliation(s)
| | - Mònica Suelves
- Germans Trias i Pujol Research Institute, Badalona, Spain
| |
Collapse
|
13
|
Srinivasan K, Sathiyaseelan M, Raj J, Ranganadin P, Subramanian B. Potential health impacts and lung microbiome changes among smoking and smokeless tobacco use : A technical scan. EURASIAN JOURNAL OF PULMONOLOGY 2021. [DOI: 10.4103/ejop.ejop_108_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Cigarette smoke extract induces airway epithelial cell death via repressing PRMT6/AKT signaling. Aging (Albany NY) 2020; 12:24301-24317. [PMID: 33260152 PMCID: PMC7762507 DOI: 10.18632/aging.202210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a severe public health threat world-wide. Cigarette smoke (CS)-induced airway epithelial cell death is a major pathway of pathogenesis in emphysema, a subtype of COPD. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that catalyzes mono- and di-methylation on arginine residues within histone and non-histone proteins to modulate a variety of life processes, such as apoptosis. However, its role in CS-induced lung epithelial death has not been fully elucidated. Here we report that PRMT6 was decreased in mouse lung tissues from a cigarette smoke extract (CSE)-mediated experimental emphysematous model and in CSE treated or cigarette smoke exposed lung epithelial cells. Depletion of PRMT6 increased the protein levels of phosphatase PTEN and PI3K regulatory subunit p85 but decreased a downstream kinase PDK1, resulting in AKT dephosphorylation and thereafter, lung epithelial cell death. Knockout of PRMT6 inhibited epithelial survival and promoted CSE-mediated epithelial cell death, while ectopic expression of PRMT6 protein partially reversed epithelial cell death via PI3K/AKT-mediated cell survival signaling in CSE cellular models. These findings demonstrate that PRMT6 plays a crucial role in CS-induced bronchial epithelial cell death that may be a potential therapeutic target against the airway cell death in CS-induced COPD.
Collapse
|
15
|
Liu SS, Wu F, Jin YM, Chang WQ, Xu TM. HDAC11: a rising star in epigenetics. Biomed Pharmacother 2020; 131:110607. [PMID: 32841898 DOI: 10.1016/j.biopha.2020.110607] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms, such as acetylation, methylation, and succinylation, play pivotal roles in the regulation of multiple normal biological processes, including neuron regulation, hematopoiesis, bone cell maturation, and metabolism. In addition, epigenetic mechanisms are closely associated with the pathological processes of various diseases, such as metabolic diseases, autoimmune diseases and cancers. Epigenetic changes may precede genetic mutation, so research on epigenetic changes and regulation may be important for the early detection and diagnosis of disease. Histone deacetylase11 (HDAC11) is the newest member of the histone deacetylase (HDAC) family and the only class IV histone deacetylase. HDAC11 has different expression levels and biological functions in different systems of the human body and is among the top 1 to 4% of genes overexpressed in cancers, such as breast cancer, hepatocellular carcinoma and renal pelvis urothelial carcinoma. This article analyzes the role and mechanism of HDAC11 in disease, especially in tumorigenesis, in an attempt to provide new ideas for clinical and basic research.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Yue-Mei Jin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Wei-Qin Chang
- Department of Surgery, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, Jilin Province, China.
| | - Tian-Min Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
16
|
Li T, Zou C. The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:E4842. [PMID: 32650621 PMCID: PMC7402294 DOI: 10.3390/ijms21144842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.
Collapse
Affiliation(s)
| | - Chunbin Zou
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
17
|
Li T, Long C, Fanning KV, Zou C. Studying Effects of Cigarette Smoke on Pseudomonas Infection in Lung Epithelial Cells. J Vis Exp 2020. [PMID: 32449738 DOI: 10.3791/61163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cigarette smoking is the major etiological cause for lung emphysema and chronic obstructive pulmonary disease (COPD). Cigarette smoking also promotes susceptibility to bacterial infections in the respiratory system. However, the effects of cigarette smoking on bacterial infections in human lung epithelial cells have yet to be thoroughly studied. Described here is a detailed protocol for the preparation of cigarette smoking extracts (CSE), treatment of human lung epithelial cells with CSE, and bacterial infection and infection determination. CSE was prepared with a conventional method. Lung epithelial cells were treated with 4% CSE for 3 h. CSE-treated cells were, then, infected with Pseudomonas at a multiplicity of infection (MOI) of 10. Bacterial loads of the cells were determined by three different methods. The results showed that CSE increased Pseudomonas load in lung epithelial cells. This protocol, therefore, provides a simple and reproducible approach to study the effect of cigarette smoke on bacterial infections in lung epithelial cells.
Collapse
Affiliation(s)
- Tiao Li
- Acute Lung Injury Center of Excellence, Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine
| | - Chen Long
- Acute Lung Injury Center of Excellence, Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine
| | - Kristen V Fanning
- Acute Lung Injury Center of Excellence, Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine;
| |
Collapse
|
18
|
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|