1
|
Cho DY, Zhang S, Lazrak A, Skinner D, Thompson HM, Grayson J, Guroji P, Aggarwal S, Bebok Z, Rowe SM, Matalon S, Sorscher EJ, Woodworth BA. LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species. Redox Biol 2021; 43:101998. [PMID: 33971543 PMCID: PMC8129928 DOI: 10.1016/j.redox.2021.101998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl- currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor. Unitary conductance and single-channel amplitude of CFTR were unaffected, but open probability and number of active channels were markedly decreased. LPS increased cytoplasmic and mitochondrial reactive oxygen species resulting in CFTR carbonylation. All effects of exposure were eliminated when reduced glutathione was added in the medium along with LPS. Functional microanatomy parameters, including mucociliary transport, in human sinonasal epithelial cells in vitro were also decreased, but restored with co-incubation with glutathione or TLR-4 inhibitor. In vivo measurements, following application of LPS in the nasal cavities showed significant decreases in transepithelial Cl- secretion as measured by nasal potential difference (NPD) – an effect that was nullified with glutathione and TLR-4 inhibitor. These data provide definitive evidence that LPS-generated reactive intermediates downregulate CFTR function in vitro and in vivo which results in cystic fibrosis-type disease. Findings have implications for therapeutic approaches intent on stimulating Cl- secretion and/or reducing oxidative stress to decrease the sequelae of GNB airway colonization and infection.
Collapse
Affiliation(s)
- Do Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham, AL, USA
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison M Thompson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purushotham Guroji
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zsuzsanna Bebok
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
3
|
Bartoszewski R, Króliczewski J, Piotrowski A, Jasiecka AJ, Bartoszewska S, Vecchio-Pagan B, Fu L, Sobolewska A, Matalon S, Cutting GR, Rowe SM, Collawn JF. Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. Cell Mol Biol Lett 2016; 21:23. [PMID: 28536625 PMCID: PMC5415761 DOI: 10.1186/s11658-016-0025-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
Synonymous or silent mutations are often overlooked in genetic analyses for disease-causing mutations unless they are directly associated with potential splicing defects. More recent studies, however, indicate that some synonymous single polynucleotide polymorphisms (sSNPs) are associated with changes in protein expression, and in some cases, protein folding and function. The impact of codon usage and mRNA structural changes on protein translation rates and how they can affect protein structure and function is just beginning to be appreciated. Examples are given here that demonstrate how synonymous mutations alter the translational kinetics and protein folding and/or function. The mechanism for how this occurs is based on a model in which codon usage modulates the translational rate by introducing pauses caused by nonoptimal or rare codons or by introducing changes in the mRNA structure, and this in turn influences co-translational folding. Two examples of this include the multidrug resistance protein (p-glycoprotein) and the cystic fibrosis transmembrane conductance regulator gene (CFTR). CFTR is also used here as a model to illustrate how synonymous mutations can be examined using in silico predictive methods to identify which sSNPs have the potential to change protein structure. The methodology described here can be used to help identify "non-silent" synonymous mutations in other genes.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Jaroslaw Króliczewski
- Laboratory of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Anna Janaszak Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Briana Vecchio-Pagan
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Lianwu Fu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA.,Gregory Fleming James Cystic Fibrosis Center, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksandra Sobolewska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA.,Gregory Fleming James Cystic Fibrosis Center, University of Alabama at Birmingham, Birmingham, USA
| | - Garry R Cutting
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Steven M Rowe
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA.,Departments of Medicine and Pediatrics, University of Alabama at Birmingham, Birmingham, USA.,Gregory Fleming James Cystic Fibrosis Center, University of Alabama at Birmingham, Birmingham, USA
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA.,Gregory Fleming James Cystic Fibrosis Center, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
4
|
Abstract
CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung.
Collapse
Affiliation(s)
- James F Collawn
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
5
|
Lazrak A, Jurkuvenaite A, Ness EC, Zhang S, Woodworth BA, Muhlebach MS, Stober VP, Lim YP, Garantziotis S, Matalon S. Inter-α-inhibitor blocks epithelial sodium channel activation and decreases nasal potential differences in ΔF508 mice. Am J Respir Cell Mol Biol 2014; 50:953-62. [PMID: 24303840 DOI: 10.1165/rcmb.2013-0215oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Increased activity of lung epithelial sodium channels (ENaCs) contributes to the pathophysiology of cystic fibrosis (CF) by increasing the rate of epithelial lining fluid reabsorption. Inter-α-inhibitor (IαI), a serum protease inhibitor, may decrease ENaC activity by preventing its cleavage by serine proteases. High concentrations of IαI were detected in the bronchoalveolar lavage fluid (BALF) of children with CF and lower airway diseases. IαI decreased amiloride-sensitive (IENaC) but not cAMP-activated Cl(-) currents across confluent monolayers of rat ATII, and mouse nasal epithelial cells grew in primary culture by 45 and 25%, respectively. Changes in IENaC by IαI in ATII cells were accompanied by increased levels of uncleaved (immature) surface α-ENaC. IαI increased airway surface liquid depth overlying murine nasal epithelial cells to the same extent as amiloride, consistent with ENaC inhibition. Incubation of lung slices from C57BL/6, those lacking phenylalanine at position 508 (∆F508), or CF transmembrane conductance regulator knockout mice with IαI for 3 hours decreased the open probability of their ENaC channels by 50%. ∆F508 mice had considerably higher levels the amiloride-sensitive fractions of ENaC nasal potential difference (ENaC-NPD) than wild-type littermates and only background levels of IαI in their BALF. A single intranasal instillation of IαI decreased their ENaC-NPD 24 hours later by 25%. In conclusion, we show that IαI is present in the BALF of children with CF, is an effective inhibitor of ENaC proteolysis, and decreases ENaC activity in lung epithelial cells of ∆F508 mice.
Collapse
|
6
|
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2013; 305:L665-81. [PMID: 24039257 DOI: 10.1152/ajplung.00232.2013] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address novel aspects of resolution and repair of ALI, as well as putative candidates for treatment of ALI, including pharmacological and cellular therapeutic means.
Collapse
Affiliation(s)
- Susanne Herold
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | |
Collapse
|
7
|
Vohwinkel CU, Vadász I. Influenza A matrix protein M2 downregulates CFTR: inhibition of chloride transport by a proton channel of the viral envelope. Am J Physiol Lung Cell Mol Physiol 2013; 304:L813-6. [PMID: 23605001 DOI: 10.1152/ajplung.00091.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|