1
|
Ford ML, Reza MI, Ruwanpathirana A, Sathish V, Britt RD. Integrative Roles of Pro-Inflammatory Cytokines on Airway Smooth Muscle Structure and Function in Asthma. Immunol Rev 2025; 330:e70007. [PMID: 39991781 PMCID: PMC11848829 DOI: 10.1111/imr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Asthma has become more appreciated for its heterogeneity with studies identifying type 2 and non-type 2 phenotypes/endotypes that ultimately lead to airflow obstruction, airway hyperresponsiveness, and remodeling. The pro-inflammatory environment in asthma influences airway smooth muscle (ASM) structure and function. ASM has a vast repertoire of inflammatory receptors that, upon activation, contribute to prominent features in asthma, notably immune cell recruitment and activation, hypercontractility, proliferation, migration, and extracellular matrix protein deposition. These pro-inflammatory responses in ASM can be mediated by both type 2 (e.g., IL-4, IL-13, and TSLP) and non-type 2 (e.g., TNFα, IFNγ, IL-17A, and TGFβ) cytokines, highlighting roles for ASM in type 2 and non-type 2 asthma phenotypes/endotypes. In recent years, there has been considerable advances in understanding how pro-inflammatory cytokines promote ASM dysfunction and impair responsiveness to asthma therapy, corticosteroids and long-acting β2-adrenergic receptor agonists (LABAs). Transcriptomic analyses on human ASM cells and tissues have expanded our knowledge in this area but have also raised new questions regarding ASM and its role in asthma. In this review, we discuss how pro-inflammatory cytokines, corticosteroids, and LABAs affect ASM structure and function, with particular focus on changes in gene expression and transcriptional programs in type 2 and non-type 2 asthma.
Collapse
Affiliation(s)
- Maria L. Ford
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Biomedical Sciences Graduate Program, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mohammad Irshad Reza
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Anushka Ruwanpathirana
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Biomedical Sciences Graduate Program, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Venkatachalem Sathish
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Rodney D. Britt
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
2
|
Zyrianova T, Zou K, Lopez B, Liao A, Gu C, Olcese R, Schwingshackl A. Activation of Endothelial Large Conductance Potassium Channels Protects against TNF-α-Induced Inflammation. Int J Mol Sci 2023; 24:4087. [PMID: 36835507 PMCID: PMC9961193 DOI: 10.3390/ijms24044087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Elevated TNF-α levels in serum and broncho-alveolar lavage fluid of acute lung injury patients correlate with mortality rates. We hypothesized that pharmacological plasma membrane potential (Em) hyperpolarization protects against TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells through inhibition of inflammatory Ca2+-dependent MAPK pathways. Since the role of Ca2+ influx in TNF-α-mediated inflammation remains poorly understood, we explored the role of L-type voltage-gated Ca2+ (CaV) channels in TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells. The CaV channel blocker, Nifedipine, decreased both CCL-2 and IL-6 secretion, suggesting that a fraction of CaV channels is open at the significantly depolarized resting Em of human microvascular pulmonary endothelial cells (-6 ± 1.9 mV), as shown by whole-cell patch-clamp measurements. To further explore the role of CaV channels in cytokine secretion, we demonstrated that the beneficial effects of Nifedipine could also be achieved by Em hyperpolarization via the pharmacological activation of large conductance K+ (BK) channels with NS1619, which elicited a similar decrease in CCL-2 but not IL-6 secretion. Using functional gene enrichment analysis tools, we predicted and validated that known Ca2+-dependent kinases, JNK-1/2 and p38, are the most likely pathways to mediate the decrease in CCL-2 secretion.
Collapse
Affiliation(s)
- Tatiana Zyrianova
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathlyn Zou
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin Lopez
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andy Liao
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Charles Gu
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Riccardo Olcese
- Departments of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Departments of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andreas Schwingshackl
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23168966. [PMID: 36012240 PMCID: PMC9408965 DOI: 10.3390/ijms23168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Although most patients with asthma symptoms are well controlled by inhaled glucocorticoids (GCs), a subgroup of patients suffering from severe asthma respond poorly to GC therapy. Such GC insensitivity (GCI) represents a profound challenge in managing patients with asthma. Even though GCI in patients with severe asthma has been investigated by several groups using immune cells (peripheral blood mononuclear cells and alveolar macrophages), uncertainty exists regarding the underlying molecular mechanisms in non-immune cells, such as airway smooth cells (ASM) cells. In asthma, ASM cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here summarize the current understanding of the actions/signaling of GCs in asthma, and specifically, GC receptor (GR) “site-specific phosphorylation” and its role in regulating GC actions. We also review some common pitfalls associated with studies investigating GCI and the inflammatory mediators linked to asthma severity. Finally, we discuss and contrast potential molecular mechanisms underlying the impairment of GC actions in immune cells versus non-immune cells such as ASM cells.
Collapse
|
4
|
Manli W, Hua Q. Effect of miR-506-3p on Proliferation and Apoptosis of Airway Smooth Muscle Cells in Asthmatic Mice by Regulating CCL2 Gene Expression and Mediating TLR4/NF-κB Signaling Pathway Activation. Mol Biotechnol 2021; 63:410-423. [PMID: 33638773 DOI: 10.1007/s12033-021-00309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
We aimed to investigate the effect of miR-506-3p on the proliferation and apoptosis of airway smooth muscle cells (ASMCS) in asthmatic mice by regulating the activation of TLR4/NF-κB signaling pathway through targeted regulation of C-C Motif Chemokine Ligand 2 (CCL2) expression. Twenty-four BALB/c mice of specific pathogen-free grade were selected to establish asthmatic mouse model, which were randomly divided into normal control group and asthma model group (n = 12 for each group). HE and IHC staining, bioinformatics and dual luciferase reporter assay, RT-PCR MTT, flow cytometry and Western blot were used in this research. HE staining showed airway epithelium thickening, submucosal inflammatory cell infiltration and airway smooth muscle thickening, and the positive expression rate of CCL2 was significantly increased in asthma model group (all P < 0.05). CCL2 was the target gene of miR-506-3p. Moreover, the expression of miR-506-3p in asthma model group was significantly decreased, the mRNA and protein expression levels of CCL2, TLR4, NF-κB (p65) and Bcl-2 were significantly increased, while those of Bax were decreased (all P < 0.05). In miR-506-3p mimic group or siRNA-CCL2 group, the expression of CCL2, TLR4, NF-κB (p65) and Bcl-2 decreased obviously, while that of Bax increased, cell proliferation decreased, G1 phase prolonged, G2 & S phases shortened, and apoptosis rate increased significantly (all P < 0.05), whereas the opposite trends were found in miR-506-3p inhibitor group (all P < 0.05). However, there was no statistical difference in the above-mentioned indexes in miR-506-3p inhibitor + siRNA-CCL2 group (all P > 0.05). Overexpression of miR-506-3p can inhibit ASMCS proliferation and promote apoptosis via inhibiting CCL2 expression and suppressing the activation of TLR4/NF-κB signaling pathway. Inhibited expression of miR-506-3p can reverse the positive role of CCL2 gene silencing. Our study is the first to prove the beneficial role of miR-506-3p-CCL2-TLR4/NF-κB regulatory axis in the development of asthma.
Collapse
Affiliation(s)
- Wang Manli
- Department 1 of Respiratory and Critical Care Medicine, Nanyang First People's Hospital, No. 12, Renmin Road, Nanyang City, 473000, Hubei, People's Republic of China.
| | - Qiao Hua
- Department 1 of Respiratory and Critical Care Medicine, Nanyang First People's Hospital, No. 12, Renmin Road, Nanyang City, 473000, Hubei, People's Republic of China
| |
Collapse
|
5
|
Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol Ther 2020; 213:107589. [PMID: 32473159 PMCID: PMC7434707 DOI: 10.1016/j.pharmthera.2020.107589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases such as asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, long-term and/or systemic use of GCs can potentially induce adverse effects. Strikingly, some recent experimental evidence suggests that GCs may even exacerbate some disease outcomes. In asthma, airway smooth muscle (ASM) cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction, but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here will review the beneficial effects of GCs on ASM cells, emphasizing the differential nature of GC effects on pro-inflammatory genes and on other features associated with asthma pathogenesis. We will also summarize evidence describing how GCs can potentially promote pro-inflammatory and remodeling features in asthma with a specific focus on ASM cells. Finally, some of the possible solutions to overcome these unanticipated effects of GCs will be discussed.
Collapse
Affiliation(s)
- Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Patricia Ramos-Ramirez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | | | - Klaudia Kaczmarek
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Omar Tliba
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
6
|
Hvidtfeldt M, Sverrild A, Backer V, Porsbjerg C. Airway hyperresponsiveness to mannitol improves in both type 2 high and type 2 low asthma after specialist management. J Asthma 2020; 58:1221-1228. [PMID: 32519918 DOI: 10.1080/02770903.2020.1780255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Type 2 low (T2-low) asthma is reported to respond less to anti-inflammatory treatment compared with Type 2 high (T2-high) asthma. Airway hyperresponsiveness (AHR) to mannitol, a marker of airway mast cell activation, may be indicative of response to treatment in patients with T2-low disease. We investigated whether AHR to mannitol improves in patients with T2-low asthma after specialist management. METHODS Patients with asthma or suspected asthma, referred to our specialist outpatient clinic, were enrolled consecutively and assessed with FeNO, asthma control, blood eosinophils, mannitol and methacholine tests and induced sputum. T2-low asthma was defined in patients with FeNO < 25ppb and sputum eosinophils < 3% and blood eosinophils < 300µl-1 at inclusion. Patients with asthma and AHR to mannitol (PD15 ≤ 635 mg) were followed and reassessed after 12 months of specialist management. RESULTS Thirty-two patients (Females: 56%, age: 22 years (15-59)) were followed. Fourteen (44%) with T2-high and 18 (56%) with T2-low asthma. Baseline AHR to mannitol was comparable: Gmean PD15: 150 mg (95% CI 61-368) and 214 mg (95% CI 106-432) for T2-high and T2-low asthma respectively (P = 0.51). Both groups improved equally: Gmean PD15: 488 mg (95% CI 311-767) and 507 mg (95% CI 345-746); corresponding to a doubling-dose of: 3.00 (95% CI 1.58-5.74, P = 0.003) and 2.28 (95% CI 1.47-3.53, P = 0.001) respectively. There were no concomitant improvements in AHR to methacholine. CONCLUSION Patients with asthma and AHR to mannitol improve similarly in responsiveness to mannitol after 12 months of specialist management regardless of Type 2 inflammatory biomarker levels. Mechanisms driving AHR in T2-low asthma need to be further elucidated.
Collapse
Affiliation(s)
| | - Asger Sverrild
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Vibeke Backer
- Center for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
7
|
Chiba Y, Danno S, Suto R, Suto W, Yamane Y, Hanazaki M, Katayama H, Sakai H. Intranasal administration of recombinant progranulin inhibits bronchial smooth muscle hyperresponsiveness in mouse allergic asthma. Am J Physiol Lung Cell Mol Physiol 2017; 314:L215-L223. [PMID: 28982738 DOI: 10.1152/ajplung.00575.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progranulin (PGRN) is a growth factor with multiple biological functions and has been suggested as an endogenous inhibitor of Tumor necrosis factor-α (TNF-α)-mediated signaling. TNF-α is believed to be one of the important mediators of the pathogenesis of asthma, including airway hyperresponsiveness (AHR). In the present study, effects of recombinant PGRN on TNF-α-mediated signaling and antigen-induced hypercontractility were examined in bronchial smooth muscles (BSMs) both in vitro and in vivo. Cultured human BSM cells (hBSMCs) and male BALB/c mice were used. The mice were sensitized and repeatedly challenged with ovalbumin antigen. Animals also received intranasal administrations of recombinant PGRN into the airways 1 h before each antigen inhalation. In hBSMCs, PGRN inhibited both the degradation of IκB-α (an index of NF-κB activation) and the upregulation of RhoA (a contractile machinery-associated protein that contributes to the BSM hyperresponsiveness) induced by TNF-α, indicating that PGRN has an ability to inhibit TNF-α-mediated signaling also in the BSM cells. In BSMs of the repeatedly antigen-challenged mice, an augmented contractile responsiveness to acetylcholine with an upregulation of RhoA was observed: both the events were ameliorated by pretreatments with PGRN intranasally. Interestingly, a significant decrease in PGRN expression was found in the airways of the repeatedly antigen-challenged mice rather than those of control animals. In conclusion, exogenously applied PGRN into the airways ameliorated the antigen-induced BSM hyperresponsiveness, probably by blocking TNF-α-mediated response. Increasing PGRN levels might be a promising therapeutic for AHR in allergic asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University , Tokyo , Japan.,Department of Biology, Hoshi University , Tokyo , Japan
| | - Shunta Danno
- Department of Biology, Hoshi University , Tokyo , Japan
| | - Rena Suto
- Department of Biology, Hoshi University , Tokyo , Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University , Tokyo , Japan
| | - Yamato Yamane
- Department of Physiology and Molecular Sciences, Hoshi University , Tokyo , Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, Kawasaki Medical School , Kurashiki , Japan
| | - Hiroshi Katayama
- Department of Anesthesiology and Intensive Care Medicine, Kawasaki Medical School , Kurashiki , Japan
| | - Hiroyasu Sakai
- Department of Analytical Pathophysiology, School of Pharmacy, Hoshi University , Tokyo , Japan
| |
Collapse
|
8
|
Sasse SK, Altonsy MO, Kadiyala V, Cao G, Panettieri RA, Gerber AN. Glucocorticoid and TNF signaling converge at A20 (TNFAIP3) to repress airway smooth muscle cytokine expression. Am J Physiol Lung Cell Mol Physiol 2016; 311:L421-32. [PMID: 27371733 DOI: 10.1152/ajplung.00179.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/29/2016] [Indexed: 12/29/2022] Open
Abstract
Airway smooth muscle is a major target tissue for glucocorticoid (GC)-based asthma therapies, however, molecular mechanisms through which the GC receptor (GR) exerts therapeutic effects in this key airway cell type have not been fully elucidated. We previously identified the nuclear factor-κB (NF-κB) inhibitor, A20 (TNFAIP3), as a mediator of cytokine repression by glucocorticoids (GCs) in airway epithelial cells and defined cooperative regulation of anti-inflammatory genes by GR and NF-κB as a key mechanistic underpinning of airway epithelial GR function. Here, we expand on these findings to determine whether a similar mechanism is operational in human airway smooth muscle (HASM). Using HASM cells derived from normal and fatal asthma samples as an in vitro model, we demonstrate that GCs spare or augment TNF-mediated induction of A20 (TNFAIP3), TNIP1, and NFKBIA, all implicated in negative feedback control of NF-κB-driven inflammatory processes. We applied chromatin immunoprecipitation and reporter analysis to show that GR and NF-κB directly regulate A20 expression in HASM through cooperative induction of an intronic enhancer. Using overexpression, we show for the first time that A20 and its interacting partner, TNIP1, repress TNF signaling in HASM cells. Moreover, we applied small interfering RNA-based gene knockdown to demonstrate that A20 is required for maximal cytokine repression by GCs in HASM. Taken together, our data suggest that inductive regulation of A20 by GR and NF-κB contributes to cytokine repression in HASM.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado
| | | | - Vineela Kadiyala
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine & Science, Rutgers University, New Brunswick, New Jersey; and
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine & Science, Rutgers University, New Brunswick, New Jersey; and
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
9
|
Hall SC, Fischer KD, Agrawal DK. The impact of vitamin D on asthmatic human airway smooth muscle. Expert Rev Respir Med 2015; 10:127-35. [PMID: 26634624 DOI: 10.1586/17476348.2016.1128326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma.
Collapse
Affiliation(s)
- Sannette C Hall
- a Department of Biomedical Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Kimberly D Fischer
- b Department of Medical Microbiology and Immunology , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Department of Biomedical Science , Creighton University School of Medicine , Omaha , NE , USA.,b Department of Medical Microbiology and Immunology , Creighton University School of Medicine , Omaha , NE , USA.,c Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
10
|
Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5843672. [PMID: 26783416 PMCID: PMC4691473 DOI: 10.1155/2016/5843672] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 02/07/2023]
Abstract
Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin, implying that ROS/MAPK signaling contributes to the relief of airway inflammation. Our findings indicate for the first time that morin alleviates airway inflammation in chronic asthma, which probably occurs via the oxidative stress-responsive MAPK pathway, highlighting a novel profile of morin as a potent agent for asthma management.
Collapse
|
11
|
Bodnar RJ. Chemokine Regulation of Angiogenesis During Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:641-650. [PMID: 26543678 DOI: 10.1089/wound.2014.0594] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds. Recent Advances: Classically, chronic wounds are treated with debridement to remove inhibitory molecules to reestablish angiogenesis and normal wound healing. The addition of platelet-derived growth factor (PDGF, becaplermin) has shown some promise as an adjunctive therapy, but better therapies are still needed. Current treatment strategies include investigating the outcome of augmenting cytokines locally to reduce the inflammatory response and promote angiogenesis. Critical Issues: The failure of wounds to form a new vasculature results in the inability of the wound to fully heal, and thus may develop into a chronic ulcer if left untreated. Inhibition of neovascularization commonly results from an overactive inflammatory response that includes an excessive chemokine response. Therefore, understanding how the chemokine response regulates neoangiogenesis will enhance our ability to develop new treatment strategies to improve neovascularization and wound healing. Future Directions: The ability to regulate the chemokine environment in chronic wounds may enhance the development of the neovasculature to reduce invasive treatments and enhance wound healing. Either inhibiting chemokines that promote a chronic inflammatory response or increasing the levels of proangiogenic chemokines may enhance angiogenesis in chronic wounds.
Collapse
Affiliation(s)
- Richard J. Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Sun YH, Ge LT, Jiang JX, Shen HJ, Jia YL, Dong XW, Sun Y, Xie QM. Formoterol synergy with des-ciclesonide inhibits IL-4 expression in IgE/antigen-induced mast cells by inhibiting JNK activation. Eur J Pharmacol 2015; 761:161-7. [PMID: 26003274 DOI: 10.1016/j.ejphar.2015.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Inhaled corticosteroid (ICS) therapy in combination with long-acting β-adrenergic agonists (LABA) is the most important treatment for allergic asthma, although the mechanism still remains unclear. However, mast cells play a central role in the pathogenesis of asthma. In this study, we explored the sole or synergetic effects of des-ciclesonide (ICS) and formoterol (LABA) on the cytokines IL-4 and IL-13 and on histamine release from mast cells (RBL-2H3 cells). We found that des-ciclesonide (0.1, 1 and 10nM) and formoterol (0.1, 1 and 10μM) alone attenuated DNP-BSA-induced IL-4 and IL-13 production, respectively, in a concentration-dependent manner in DNP-IgE-sensitized mast cells. Des-ciclesonide (0.2nM) and formoterol (1μM) alone also reduced histamine production. However, the combination of des-ciclesonide (0.2nM) and formoterol (1μM) had a synergistic inhibition effect on IL-4 mRNA expression and protein production but not IL-13 and histamine release. The JNK inhibitor SP600125 (10μM) inhibited antigen-induced mRNA expression and protein production of IL-4. Des-ciclesonide and formoterol alone inhibited the activation of JNK in a concentration-dependent manner, and the combination of des-ciclesonide (0.2nM) and formoterol (1μM) exhibited greater inhibition effect compared with des-ciclesonide (0.2nM) or formoterol (1μM) alone. Taken together, these synergistic effects on mast cells might provide the rationale for the development of the most recent ICS/LABA combination approved for asthma therapy.
Collapse
Affiliation(s)
- Yan-hong Sun
- Zhejiang Respiratory Drugs Research Laboratory of CFDA, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Ling-tian Ge
- Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou City, Jiangsu Province 225001, China
| | - Jun-xia Jiang
- Zhejiang Respiratory Drugs Research Laboratory of CFDA, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Hui-juan Shen
- Zhejiang Respiratory Drugs Research Laboratory of CFDA, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Yong-liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of CFDA, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Xin-wei Dong
- Zhejiang Respiratory Drugs Research Laboratory of CFDA, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Yun Sun
- Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou City, Jiangsu Province 225001, China
| | - Qiang-min Xie
- Zhejiang Respiratory Drugs Research Laboratory of CFDA, Medical College of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Wang A, Wang Z, Cao Y, Cheng S, Chen H, Bunjhoo H, Xie J, Wang C, Xu Y, Xiong W. CCL2/CCR2-dependent recruitment of Th17 cells but not Tc17 cells to the lung in a murine asthma model. Int Arch Allergy Immunol 2015; 166:52-62. [PMID: 25765592 DOI: 10.1159/000371764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interleukin (IL)-17 has been implicated in the pathogenesis of asthma and the progression of airway inflammation. Here, we used a model of allergic asthma and found that the frequencies of IL-17-secreting T helper (Th)17 and CD8 (Tc)17 cells were both significantly increased, as was the expression of the CC chemokine receptor (CCR2) on the surface of these cells. CC chemokine ligand 2 (CCL2) has been shown to mediate the activation and recruitment of inflammatory cells in asthma, which are also skewed after ovalbumin (OVA) challenge. However, the role of CCL2 on Th17 cells and Tc17 cells in asthma has not been illuminated. METHODS Mice that were sensitized and challenged with OVA received anti-CCL2 antibody (Ab; 5 μg/day intratracheally) or CCR2 antagonist (RS504393, 2 mg/kg/day intraperitoneally) prior to the challenge. Some mice received an isotype control Ab or vehicle alone. We then assessed the effects of allergic asthma and anti-CCL2 Ab or CCR2 antagonist treatment on the levels of IL-17 and CCL2, the Th17 and Tc17 cell frequencies and lung tissue inflammation. RESULTS We demonstrated that CCL2 and IL-17 levels and the frequency of Th17 and Tc17 cells in lung tissues and bronchoalveolar lavage fluid increased in the asthma group compared with the normal control mice. Blocking the CCL2/CCR2 axis greatly reduced the Th17 but not the Tc17 cell frequency, and revealed a suppressive effect on airway inflammation. CONCLUSION These findings indicate a role for the CCL2/CCR2 axis in mediating Th17 but not Tc17 cell migration during acute allergic airway inflammation.
Collapse
Affiliation(s)
- Aili Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital and Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schreiber A, Luft FC, Kettritz R. Phagocyte NADPH oxidase restrains the inflammasome in ANCA-induced GN. J Am Soc Nephrol 2014; 26:411-24. [PMID: 25012177 DOI: 10.1681/asn.2013111177] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ANCA-activated phagocytes cause vasculitis and necrotizing crescentic GN (NCGN). ANCA-induced phagocyte NADPH oxidase (Phox) may contribute by generating tissue-damaging reactive oxygen species. We tested an alternative hypothesis, in which Phox restrains inflammation by downregulating caspase-1, thereby reducing IL-1β generation and limiting NCGN. In an antimyeloperoxidase (anti-MPO) antibody-mediated disease model, mice transplanted with either gp91(phox)-deficient or p47(phox)-deficient bone marrow showed accelerated disease with increased crescents, necrosis, glomerular monocytes, and renal IL-1β levels compared with mice transplanted with wild-type bone marrow. IL-1β receptor blockade abrogated aggravated NCGN in gp91(phox)-deficient mice. In vitro, challenge with anti-MPO antibody strongly enhanced caspase-1 activity and IL-1β generation in gp91(phox)-deficient and p47(phox)-deficient monocytes compared with wild-type monocytes. This enhanced IL-1β generation was abrogated when caspase-1 was blocked. ANCA-induced superoxide and IL-1β generation were inversely related in human monocytes. Furthermore, transplantation of gp91(phox)/caspase-1 double-deficient bone marrow rescued the accelerated NCGN phenotype in gp91(phox) bone marrow-deficient mice. These results suggest that Phox-generated reactive oxygen species downregulate caspase-1, thereby keeping the inflammasome in check and limiting ANCA-induced inflammation. IL-1 receptor blockade may provide a promising strategy in NCGN, whereas our data question the benefit of antioxidants.
Collapse
Affiliation(s)
- Adrian Schreiber
- Experimental and Clinical Research Center at the Max-Delbrueck-Centrum Berlin and Campus Virchow Clinic, Medical Faculty of the Charité, Department of Nephrology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center at the Max-Delbrueck-Centrum Berlin and
| | - Ralph Kettritz
- Experimental and Clinical Research Center at the Max-Delbrueck-Centrum Berlin and Campus Virchow Clinic, Medical Faculty of the Charité, Department of Nephrology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| |
Collapse
|
15
|
Newer glucocorticosteroids and corticosteroid resistance reversal in asthma. Pharm Pat Anal 2014; 2:373-85. [PMID: 24237063 DOI: 10.4155/ppa.13.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammation is the hallmark of asthma. Glucocorticosteroids inhibit this inflammation and are the mainstay of therapy in asthma, however, they suffer from their own drawbacks. They possess high potency but their continued use has a negative influence on health. Hence, quest for a steroid with good potency but without the undesirable effects is ongoing. Besides, steroid resistance is a problem in a substantial proportion of severe asthmatics. Deeper insight into the molecular mechanism of this refractoriness has led to the successful trial of certain drugs to overcome this problem. This review attempts to discuss some of the patents related to improved glucocorticoids and those agents that have the potential to restore steroid sensitivity in severe asthmatics.
Collapse
|
16
|
Jiao Q, Li L, Mu Q, Zhang Q. Immunomodulation of nanoparticles in nanomedicine applications. BIOMED RESEARCH INTERNATIONAL 2014; 2014:426028. [PMID: 24949448 PMCID: PMC4052466 DOI: 10.1155/2014/426028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/07/2014] [Indexed: 12/27/2022]
Abstract
Nanoparticles (NPs) have promising applications in medicine. Immune system is an important protective system to defend organisms from non-self matters. NPs interact with the immune system and modulate its function, leading to immunosuppression or immunostimulation. These modulating effects may bring benefits or danger. Compositions, sizes, and surface chemistry, and so forth, affect these immunomodulations. Here we give an overview of the relationship between the physicochemical properties of NPs, which are candidates to be applied in medicine, and their immunomodulation properties.
Collapse
Affiliation(s)
- Qing Jiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Liwen Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qingxin Mu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98125, USA
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
Rüdiger JJ, Gencay M, Yang JQ, Bihl M, Tamm M, Roth M. Fast beneficial systemic anti-inflammatory effects of inhaled budesonide and formoterol on circulating lymphocytes in asthma. Respirology 2014; 18:840-7. [PMID: 23617551 DOI: 10.1111/resp.12104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/19/2012] [Accepted: 01/02/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Inhaled glucocorticoids and long acting β2 -agonists reduce airway inflammation. It is unclear if this effect is based on the local action of the drugs or is due to a systemic effect on circulating peripheral blood lymphocytes. We assessed whether inhaled budesonide and/or formoterol modify the activity of circulating peripheral blood lymphocytes. METHODS Placebo controlled crossover design, including healthy (n = 10) or mild asthmatic males (n = 8). Blood was collected in the morning at 08:00 before drug inhalation, and drugs (placebo, budesonide 400 μg, formoterol 12 μg) were inhaled alone or in combination at 08:30. Four more blood samples were collected after inhalation at 09:00, 09:30, 12:30 and at 09:30 am on the following day. The activity of the glucocorticoid receptor, NFκB and IκB was determined in isolated lymphocytes. Lymphocytes were stimulated with lipopolysaccharide (LPS 10 μg/mL) for 24 h and interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, eotaxin level were determined. Lymphocyte proliferation was induced by phytohaemagglutinin (PHA 10 μg/mL) over 24 h. RESULTS When combined, the drugs synergistically activated the glucocorticoid receptor within 30 min but did not modify NFκB or IκB activity. Inhaled budesonide significantly reduced LPS-induced IL-1β, IL-6, IL-8 and TNF-α secretion, while inhaled formoterol had no such effect; however when combined, the inhibitory effect of budesonide was significantly increased by formoterol. PHA-induced proliferation was reduced by both drugs alone and in combination. CONCLUSIONS Combined budesonide and formoterol may reduce airway inflammation and immune reactivity of circulating lymphocytes through its local and systemic effects.
Collapse
Affiliation(s)
- Jochen J Rüdiger
- Internal Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Gerber AN. Glucocorticoids and airway smooth muscle: some answers, more questions. Am J Respir Crit Care Med 2013; 187:1040-1. [PMID: 23675710 DOI: 10.1164/rccm.201303-0530ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
Deng X, Xu M, Yuan C, Yin L, Chen X, Zhou X, Li G, Fu Y, Feghali-Bostwick CA, Pang L. Transcriptional regulation of increased CCL2 expression in pulmonary fibrosis involves nuclear factor-κB and activator protein-1. Int J Biochem Cell Biol 2013; 45:1366-76. [DOI: 10.1016/j.biocel.2013.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
20
|
Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-κB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:767689. [PMID: 23762160 PMCID: PMC3677671 DOI: 10.1155/2013/767689] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/14/2013] [Accepted: 04/25/2013] [Indexed: 01/21/2023]
Abstract
Persistent activation of nuclear factor κB (NF-κB) has been associated with the development of asthma. Galangin, the active pharmacological ingredient from Alpinia galanga, is reported to have a variety of anti-inflammatory properties in vitro via negative regulation of NF-κB. This study aimed to investigate whether galangin can abrogate ovalbumin- (OVA-) induced airway inflammation by negative regulation of NF-κB. BALB/c mice sensitized and challenged with OVA developed airway hyperresponsiveness (AHR) and inflammation. Galangin dose dependently inhibited OVA-induced increases in total cell counts, eosinophil counts, and interleukin-(IL-) 4, IL-5, and IL-13 levels in bronchoalveolar lavage fluid, and reduced serum level of OVA-specific IgE. Galangin also attenuated AHR, reduced eosinophil infiltration and goblet cell hyperplasia, and reduced expression of inducible nitric oxide synthase and vascular cell adhesion protein-1 (VCAM-1) levels in lung tissue. Additionally, galangin blocked inhibitor of κB degradation, phosphorylation of the p65 subunit of NF-κB, and p65 nuclear translocation from lung tissues of OVA-sensitized mice. Similarly, in normal human airway smooth muscle cells, galangin blocked tumor necrosis factor-α induced p65 nuclear translocation and expression of monocyte chemoattractant protein-1, eotaxin, CXCL10, and VCAM-1. These results suggest that galangin can attenuate ovalbumin-induced airway inflammation by inhibiting the NF-κB pathway.
Collapse
|
21
|
Ho CC, Luo YH, Chuang TH, Yang CS, Ling YC, Lin P. Quantum dots induced monocyte chemotactic protein-1 expression via MyD88-dependent Toll-like receptor signaling pathways in macrophages. Toxicology 2013; 308:1-9. [PMID: 23499856 DOI: 10.1016/j.tox.2013.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022]
Abstract
Quantum dots (QDs) are nano-sized semiconductors. Previously, intratracheal instillation of QD705s induces persistent inflammation in mouse lungs. In our present study, QD705-COOH and QD705-PEG activated NF-κB and increased monocyte chemotactic protein-1 (MCP-1) expression in macrophages RAW264.7 via MyD88 dependent Toll-like receptor (TLR) signaling pathways. MyD88 is an adapter protein for most TLRs to activate NF-κB. Silencing expression of MyD88 or p65 with siRNA or co-treatment with a NF-κB inhibitor tremendously abolished QD705s-induced NF-κB activity and MCP-1 expression. The involved TLRs might locate either on the cell surface or inside of cells. Co-treatment with a TLR4 inhibitor completely prevented MCP-1 induction by QD705-PEG. Nevertheless, QD705-COOH readily entered cells, and co-treatment with either inhibitors of endocytosis or intracellular TLRs prevented MCP-1 induction. These findings indicate that, depending on their surface modification, OD705s activate MyD88 dependent-TLRs at the surface or inside of the cells, which is an important mechanism for nanoparticles-induced inflammatory responses. But other MyD88-independent pathways may also involve in these responses.
Collapse
Affiliation(s)
- Chia-Chi Ho
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
22
|
Tsuchiya K, Siddiqui S, Risse PA, Hirota N, Martin JG. The presence of LPS in OVA inhalations affects airway inflammation and AHR but not remodeling in a rodent model of asthma. Am J Physiol Lung Cell Mol Physiol 2012; 303:L54-63. [PMID: 22523281 DOI: 10.1152/ajplung.00208.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.
Collapse
Affiliation(s)
- Kimitake Tsuchiya
- Meakins Christie Laboratories, 3626 St Urbain, Montreal, Québec, Canada, H2X 2P2
| | | | | | | | | |
Collapse
|