1
|
Mafla L, So RJ, Collins SL, Chan-Li Y, Lina I, Motz KM, Hillel AT. An Ovine Model Yields Histology and Gene Expression Changes Consistent with Laryngotracheal Stenosis. Laryngoscope 2024; 134:4239-4245. [PMID: 38738796 PMCID: PMC11489032 DOI: 10.1002/lary.31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Animal models for laryngotracheal stenosis (LTS) are critical to understand underlying mechanisms and study new therapies. Current animal models for LTS are limited by small airway sizes compared to human. The objective of this study was to develop and validate a novel, large animal ovine model for LTS. METHODS Sheep underwent either bleomycin-coated polypropylene brush injury to the subglottis (n = 6) or airway stent placement (n = 2) via suspension microlaryngoscopy. Laryngotracheal complexes were harvested 4 weeks following injury or stent placement. For the airway injury group, biopsies (n = 3 at each site) were collected of tracheal scar and distal normal regions, and analyzed for fibrotic gene expression. Lamina propria (LP) thickness was compared between injured and normal areas of trachea. RESULTS No mortality occurred in sheep undergoing airway injury or stent placement. There was no migration of tracheal stents. After protocol optimization, LP thickness was significantly increased in injured trachea (Sheep #3: 529.0 vs. 850.8 um; Sheep #4: 933.0 vs. 1693.2 um; Sheep #5: 743.7 vs. 1378.4 um; Sheep #6: 305.7 vs. 2257.6 um). A significant 62-fold, 20-fold, 16-fold, 16-fold, and 9-fold change of COL1, COL3, COL5, FN1, and TGFB1 was observed in injured scar specimen relative to unaffected airway, respectively. CONCLUSION An ovine LTS model produces histologic and transcriptional changes consistent with fibrosis seen in human LTS. Airway stent placement in this model is safe and feasible. This large airway model is a reliable and reproducible method to assess the efficacy of novel LTS therapies prior to clinical translation. LEVEL OF EVIDENCE N/A Laryngoscope, 134:4239-4245, 2024.
Collapse
Affiliation(s)
- Laura Mafla
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Raymond J So
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Samuel L Collins
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Yee Chan-Li
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Ioan Lina
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Kevin M Motz
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Alexander T Hillel
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| |
Collapse
|
2
|
Donoghue LJ, Markovetz MR, Morrison CB, Chen G, McFadden KM, Sadritabrizi T, Gutay MI, Kato T, Rogers TD, Snead JY, Livraghi-Butrico A, Button B, Ehre C, Grubb BR, Hill DB, Kelada SNP. BPIFB1 loss alters airway mucus properties and diminishes mucociliary clearance. Am J Physiol Lung Cell Mol Physiol 2023; 325:L765-L775. [PMID: 37847709 PMCID: PMC11068428 DOI: 10.1152/ajplung.00390.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
Airway mucociliary clearance (MCC) is required for host defense and is often diminished in chronic lung diseases. Effective clearance depends upon coordinated actions of the airway epithelium and a mobile mucus layer. Dysregulation of the primary secreted airway mucin proteins, MUC5B and MUC5AC, is associated with a reduction in the rate of MCC; however, how other secreted proteins impact the integrity of the mucus layer and MCC remains unclear. We previously identified the gene Bpifb1/Lplunc1 as a regulator of airway MUC5B protein levels using genetic approaches. Here, we show that BPIFB1 is required for effective MCC in vivo using Bpifb1 knockout (KO) mice. Reduced MCC in Bpifb1 KO mice occurred in the absence of defects in epithelial ion transport or reduced ciliary beat frequency. Loss of BPIFB1 in vivo and in vitro altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC. Finally, we detected colocalization of BPIFB1 and MUC5B in secretory granules in mice and the protein mesh of secreted mucus in human airway epithelia cultures. Collectively, our findings demonstrate that BPIFB1 is an important component of the mucociliary apparatus in mice and a key component of the mucus protein network.NEW & NOTEWORTHY BPIFB1, also known as LPLUNC1, was found to regulate mucociliary clearance (MCC), a key aspect of host defense in the airway. Loss of this protein was also associated with altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC.
Collapse
Affiliation(s)
- Lauren J Donoghue
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Cameron B Morrison
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Kathryn M McFadden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Taraneh Sadritabrizi
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Mark I Gutay
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Takafumi Kato
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Troy D Rogers
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jazmin Y Snead
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Barbara R Grubb
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
3
|
Dickey BF, Evans CM. Towards a better mucolytic. Eur Respir J 2023; 61:2300619. [PMID: 37230504 PMCID: PMC11210706 DOI: 10.1183/13993003.00619-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Affiliation(s)
- Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Fakih D, Rodriguez-Piñeiro AM, Trillo-Muyo S, Evans CM, Ermund A, Hansson GC. Normal murine respiratory tract has its mucus concentrated in clouds based on the Muc5b mucin. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1270-L1279. [PMID: 32348677 DOI: 10.1152/ajplung.00485.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The organization of the normal airway mucus system differs in small experimental animals from that in humans and large mammals. To address normal murine airway mucociliary clearance, Alcian blue-stained mucus transport was measured ex vivo on tracheal tissues of naïve C57BL/6, Muc5b-/-, Muc5ac-/-, and EGFP-tagged Muc5b reporter mice. Close to the larynx with a few submucosal glands, the mucus appeared as thick bundles. More distally in the trachea and in large bronchi, Alcian blue-stained mucus was organized in cloud-like formations based on the Muc5b mucin. On tilted tissue, the mucus clouds moved upward toward the larynx with an average velocity of 12 µm/s compared with 20 µm/s for beads not associated with clouds. In Muc5ac-/- mice, Muc5b formed mucus strands attached to the tissue surface, while in Muc5b-/- mice, Muc5ac had a more variable appearance. The normal mouse lung mucus thus appears as discontinuous clouds, clearly different from the stagnant mucus layer in diseased lungs.
Collapse
Affiliation(s)
- Dalia Fakih
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Sergio Trillo-Muyo
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Imura M, Nakashima Y, Kawaguchi R, Terashima M, Yamada S. Verbal Communication of an Orally Intubated Patient in the Intensive Care Unit: A Case Report. Prog Rehabil Med 2019; 4:20190016. [PMID: 32789263 DOI: 10.2490/prm.20190016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/29/2019] [Indexed: 11/09/2022] Open
Abstract
Background Effective interaction with orally intubated patients is important for critical care rehabilitation. An electrolarynx (EL) has reportedly proven useful for facilitating verbal communication during oral intubation. The EL allows patients to express their wishes instantly. Nevertheless, this method is not commonly applied, probably because articulation is often unsatisfactory. Here, we report a case of successful EL-based communication during early mobilization and describe the key factors involved in this success. Case An 82-year-old man, who was intubated and undergoing mechanical ventilation for the treatment of acute respiratory failure caused by severe pneumonia, was referred to the rehabilitation department for early mobilization. The patient tried to speak during the spontaneous awakening trials and breathing trials for weaning off mechanical ventilation. However, he was frustrated by communication difficulties and consequently exhibited negative behavior toward physical therapy. We attempted to use an EL to facilitate communication, but initially the patient failed to achieve intelligible articulation. We eventually established that the intubation tube should be located at the corner of the mouth to minimize the restriction of tongue movement. Intelligible sounds were recognized and successful communication between the patient and staff was subsequently achieved. Discussion The use of an EL is worthy of consideration during early mobilization of orally intubated patients. To achieve successful communication with an EL, both patient selection (Richmond Agitation-Sedation Scale score of 0 or -1) and the proper placement of the intubation tube are necessary to ensure intelligible articulation.
Collapse
Affiliation(s)
- Minori Imura
- Department of Rehabilitation Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yasuyo Nakashima
- Department of Rehabilitation Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Risa Kawaguchi
- Department of Critical Care Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Mariko Terashima
- Department of Critical Care Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Sigeru Yamada
- Department of Rehabilitation Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|