1
|
Matamoros-Volante A, Treviño CL. Capacitation-associated alkalization in human sperm is differentially controlled at the subcellular level. J Cell Sci 2020; 133:jcs238816. [PMID: 31932506 DOI: 10.1242/jcs.238816] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Capacitation in mammalian sperm involves the accurate balance of intracellular pH (pHi), but the mechanisms controlling this process are not fully understood, particularly regarding the spatiotemporal regulation of the proteins involved in pHi modulation. Here, we employed an image-based flow cytometry technique combined with pharmacological approaches to study pHi dynamics at the subcellular level during capacitation. We found that, upon capacitation induction, sperm cells undergo intracellular alkalization in the head and principal piece regions. The observed localized pHi increases require the initial uptake of HCO3-, which is mediated by several proteins acting consistently with their subcellular localization. Hv1 proton channel (also known as HVCN1) and cAMP-activated protein kinase (protein kinase A, PKA) antagonists impair alkalization mainly in the principal piece. Na+/HCO3- cotransporter (NBC) and cystic fibrosis transmembrane regulator (CFTR) antagonists impair alkalization only mildly, predominantly in the head. Motility measurements indicate that inhibition of alkalization in the principal piece prevents the development of hyperactivated motility. Altogether, our findings shed light on the complex control mechanisms of pHi and underscore their importance during human sperm capacitation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Arturo Matamoros-Volante
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, México
| |
Collapse
|
2
|
Lelièvre SA, Kwok T, Chittiboyina S. Architecture in 3D cell culture: An essential feature for in vitro toxicology. Toxicol In Vitro 2017; 45:287-295. [PMID: 28366709 DOI: 10.1016/j.tiv.2017.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
Three-dimensional cell culture has the potential to revolutionize toxicology studies by allowing human-based reproduction of essential elements of organs. Beyond the study of toxicants on the most susceptible organs such as liver, kidney, skin, lung, gastrointestinal tract, testis, heart and brain, carcinogenesis research will also greatly benefit from 3D cell culture models representing any normal tissue. No tissue function can be suitably reproduced without the appropriate tissue architecture whether mimicking acini, ducts or tubes, sheets of cells or more complex cellular organizations like hepatic cords. In this review, we illustrate the fundamental characteristics of polarity that is an essential architectural feature of organs for which different 3D cell culture models are available for toxicology studies in vitro. The value of tissue polarity for the development of more accurate carcinogenesis studies is also exemplified, and the concept of using extracellular gradients of gaseous or chemical substances produced with microfluidics in 3D cell culture is discussed. Indeed such gradients-on-a-chip might bring unprecedented information to better determine permissible exposure levels. Finally, the impact of tissue architecture, established via cell-matrix interactions, on the cell nucleus is emphasized in light of the importance in toxicology of morphological and epigenetic alterations of this organelle.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Purdue University, Department of Basic Medical Sciences, 625 Harrison Street, West Lafayette, IN 47907, USA; 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S University Street, West Lafayette, IN 47907, USA.
| | - Tim Kwok
- 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Shirisha Chittiboyina
- Purdue University, Department of Basic Medical Sciences, 625 Harrison Street, West Lafayette, IN 47907, USA; 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Abstract
Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely, the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance approximately 10(3) times smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn(2+) (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B-lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H(+) for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Abstract
The activity of most cellular processes is sensitive to pH. Cells therefore tightly control cytosol pH within narrow bounds. Measurement of cytosolic pH is of interest in studying many processes, including pH regulatory transport proteins. Key approaches that have been used to determine intracellular pH include pH-sensitive microelectrodes, nuclear magnetic resonance, and pH-sensitive fluorescent proteins. Here we review these approaches while providing details on the use of pH-sensitive fluorescent dyes to measure cytosolic pH.
Collapse
|
5
|
Caples SM, Rasmussen DL, Lee WY, Wolfert MZ, Hubmayr RD. Impact of buffering hypercapnic acidosis on cell wounding in ventilator-injured rat lungs. Am J Physiol Lung Cell Mol Physiol 2008; 296:L140-4. [PMID: 18996901 DOI: 10.1152/ajplung.90339.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We measured the effects of raising perfusate pH on ventilator-induced cell wounding and repair in ex vivo mechanically ventilated hypercapnic rat lungs. Lungs were randomized to one of three perfusate groups: 1) unbuffered hypercapnic acidosis, 2) bicarbonate-buffered hypercapnia, or 3) tris-hydroxymethyl aminomethane (THAM)-buffered hypercapnia. The membrane-impermeant label propidium iodide was added to the perfusate either during or after injurious ventilation providing a means to subsequently identify transiently wounded and permanently wounded cells in optical sections of subpleural alveoli. Normalizing perfusate pH in hypercapnic preparations attenuated ventilator-induced cell injury, particularly in THAM-buffered preparations. This was observed despite greater amounts of edema and impaired lung mechanics compared with other treatment groups. Protective effects of buffering of hypercapnic acidosis on injury and repair were subsequently confirmed in a cell scratch model. We conclude that buffering of hypercapnic acidosis attenuates plasma cell injury induced by mechanical hyperinflation.
Collapse
Affiliation(s)
- Sean M Caples
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
The history of research on voltage-gated proton channels is recounted, from their proposed existence in dinoflagellates by Hastings in 1972 and their demonstration in snail neurons by Thomas and Meech in 1982 to the discovery in 2006 (after a decade of controversy) of genes that unequivocally code for proton channels. Voltage-gated proton channels are perfectly selective for protons, conduct deuterons half as well, and the conductance is strongly temperature dependent. These properties are consistent with a conduction mechanism involving hydrogen-bonded-chain transfer, in which the selectivity filter is a titratable amino acid residue. Channel opening is regulated stringently by pH such that only outward current is normally activated. Main functions of proton channels include acid extrusion from cells and charge compensation for the electrogenic activity of the phagocyte NADPH oxidase. Genetic approaches hold the promise of rapid progress in the near future.
Collapse
Affiliation(s)
- T E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, Illinois 60612, USA.
| |
Collapse
|
7
|
Seeman JI, Carchman RA. The possible role of ammonia toxicity on the exposure, deposition, retention, and the bioavailability of nicotine during smoking. Food Chem Toxicol 2008; 46:1863-81. [PMID: 18450355 DOI: 10.1016/j.fct.2008.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 02/18/2008] [Accepted: 02/20/2008] [Indexed: 11/26/2022]
Abstract
A complete and rigorous review is presented of the possible effect(s) of ammonia on the exposure, deposition and retention of nicotine during smoking and the bioavailability of nicotine to the smoker. There are no toxicological data in humans regarding ammonia exposure within the context of tobacco smoke. Extrapolation from occupational exposure of ammonia to smoking in humans suggests minimal, non-toxicological effects, if any. No direct study has examined the effect of the ammonia on the total rate or amount of nicotine reaching the arterial bloodstream or brains of smokers. Machine-smoking methods have been reported which accurately quantify >99% of the nicotine in mainstream (MS) smoke for a wide variety of commercial and test cigarettes, including a series of experimental cigarettes having a range in MS smoke ammonia yields using the US Federal Trade Commission (FTC) protocol. However, the actual exposure of nicotine to smokers depends on their own smoking behavior. The nicotine ring system is relatively thermally stable. Protonated nicotine forms nicotine which evaporates before the nicotine ring system decomposes. The experimental data indicate that neither nicotine transfer from tobacco to MS smoke nor nicotine bioavailability to the smoker increases with an increase in any of the following properties: tobacco soluble ammonia, MS smoke ammonia, "tobacco pH" or "smoke pH" at levels found in commercial cigarettes. Gas phase nicotine deposits primarily in the mouth and upper respiratory tract. To the extent that ammonia increases the deposition of nicotine in the buccal cavity and upper respiratory tract during smoking, the total rate and amount of nicotine into the arterial bloodstream and to the central nervous system will decrease. Charged nicotine analogues are actively transported in a number of tissues. This active transport system appears to be insensitive to pH and the form of nicotine in the biological milieu, suggesting that protonated nicotine may be a substrate for active transport. Neither "smoke pH" of commercial cigarettes nor "smoke pHeff" nor the fraction of non-protonated nicotine in tobacco smoke particulate matter are useful, practical smoke parameters for providing understanding or predictability of nicotine bioavailability to smokers. Greater than 95% of both ammonia and nicotine are in the gas phase of environmental tobacco, and both are likely to deposit in the buccal cavity and upper respiratory tract following exposure.
Collapse
Affiliation(s)
- Jeffrey I Seeman
- SaddlePoint Frontiers, 12001 Bollingbrook Place, Richmond, VA 23236-3218, United States.
| | | |
Collapse
|
8
|
Charrier L, Driss A, Yan Y, Nduati V, Klapproth JM, Sitaraman SV, Merlin D. hPepT1 mediates bacterial tripeptide fMLP uptake in human monocytes. J Transl Med 2006; 86:490-503. [PMID: 16568107 DOI: 10.1038/labinvest.3700413] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here, we examined hPepT1 expression in the monocytic cell line, KG-1. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that hPepT1 is expressed in KG-1 cells, while cDNA cloning and direct sequencing confirmed the sequence of KG-1 hPepT1 (accession number, AY634368). Immunoblotting of cell lysates from KG-1 cells or macrophages isolated from human peripheral blood revealed a approximately 100 kDa immunoreactive band mainly present in the membrane fraction. Uptake experiments showed that the transport of 20 microM radiolabeled Gly-Sarcosine ([14C]Gly-Sar) in KG-1 cells was Na+, Cl- dependent and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS)-sensitive. In addition, hPepT1 activity was likely to be coupled to a Na+/H+ exchanger, as evidenced by the fact that [14C]Gly-Sar uptake was not affected by the absence of Na+ when cells were incubated at low pH (5.2). Interestingly, hPepT1-mediated transport was reduced in KG-1 cells incubated at low pH as it was also observed in nonpolarized Caco2-BBE cells. This pattern of pH-dependence is due to a disruption of the driving force of hPepT1-mediated transport events. This was supported by our finding that nonpolarized cells, Caco2-BBE cells and KG-1 cells, have an increased permeability to H+ when compared to polarized Caco2-BBE cells. Finally, we showed that hPepT1 is responsible for transporting fMLP into undifferentiated and differentiated (macrophage-like) KG-1 cells. Together, these results show that hPepT1 is expressed in nonpolarized immune cells, such as macrophages, where the transporter functions best at the physiological pH 7.2. Furthermore, we provide evidence for hPepT1-mediated fMLP transport, which might constitute a novel immune cell activation pathway during intestinal inflammation.
Collapse
Affiliation(s)
- Laetitia Charrier
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Ng AW, Bidani A, Heming TA. Innate host defense of the lung: effects of lung-lining fluid pH. Lung 2005; 182:297-317. [PMID: 15742242 DOI: 10.1007/s00408-004-2511-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2004] [Indexed: 10/25/2022]
Abstract
Lung-lining fluid (LLF) is a primary constituent of the pulmonary host defense system. It is distributed continuously throughout the respiratory tract but is heterogeneous regarding its chemistry and physiology between the conducting airways and alveoli. The conducting airways are lined with airway surface liquid (ASL), a mucus gel-aqueous sol complex that interacts functionally with epithelial cilia as the mucociliary escalator. The alveoli are lined with alveolar subphase fluid (AVSF) and pulmonary surfactant. AVSF sterility is maintained in part by the phagocytic activity of resident alveolar macrophages. Normal ASL and AVSF are both more acidic than blood plasma. However, the details of acid-base regulation differ between the two media. Appreciable transepithelial acid-base flux is possible across the airway epithelium, whereas the alveolar epithelium is relatively impermeable to transepithelial acid-base flux. Moreover, one must consider the influence of resident macrophages on AVSF pH. Resident macrophages occupy a sizable fraction of AVSF by volume and are a substantial source of metabolic H+. The buffering capacities of ASL and AVSF probably are largely due to secreted peptides (e.g., ASL mucins and AVSF surfactant proteins). Acid-base exchange between the extracellular hydrophase and intracellular buffering systems of resident macrophages represents an additional buffer pool for AVSF. The pH of ASL and AVSF can be depressed by disease or inflammation. Low pH is predicted to suppress microbe clearance from the airways and alveoli, increase pathogen survival in both regions, and alter mediator release by resident macrophages and recruited leukocytes thereby increasing the propensity for bystander cell injury. Overall, ASL/AVSF pH is expected to be a major determinant of lung host defense responses.
Collapse
Affiliation(s)
- Amelia W Ng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
10
|
Doerr CH, Gajic O, Berrios JC, Caples S, Abdel M, Lymp JF, Hubmayr RD. Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Am J Respir Crit Care Med 2005; 171:1371-7. [PMID: 15695495 PMCID: PMC2718480 DOI: 10.1164/rccm.200309-1223oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 01/21/2005] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to assess the effects of hypercapnic acidosis on lung cell injury and repair by confocal microscopy in a model of ventilator-induced lung injury. Three groups of normocapnic, hypocapnic, and hypercapnic rat lungs were perfused ex vivo, either during or after injurious ventilation, with a solution containing the membrane-impermeant label propidium iodide. In lungs labeled during injurious ventilation, propidium iodide fluorescence identifies all cells with plasma membrane wounds, both permanent and transient, whereas in lungs labeled after injurious ventilation propidium iodide fluorescence identifies only cells with permanent plasma membrane wounds. Hypercapnia minimized the adverse effects of high-volume ventilation on vascular barrier function, whereas hypocapnia had the opposite effect. Despite CO2-dependent differences in lung mechanics and edema the number of injured subpleural cells per alveolus was similar in the three groups (0.48 +/- 0.34 versus 0.51 +/- 0.19 versus 0.43 +/- 0.20 for hypocapnia, normocapnia, and hypercapnia, respectively). However, compared with normocapnia the probability of wound repair was significantly reduced in hypercapnic lungs (63 versus 38%; p < 0.02). This finding was subsequently confirmed in alveolar epithelial cell scratch models. The potential relevance of these observations for lung inflammation and remodeling after mechanical injury is discussed.
Collapse
Affiliation(s)
- Clinton H Doerr
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Murphy R, Cherny VV, Morgan D, DeCoursey TE. Voltage-gated proton channels help regulate pHiin rat alveolar epithelium. Am J Physiol Lung Cell Mol Physiol 2005; 288:L398-408. [PMID: 15516489 DOI: 10.1152/ajplung.00299.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated proton channels are expressed highly in rat alveolar epithelial cells. Here we investigated whether these channels contribute to pH regulation. The intracellular pH (pHi) was monitored using BCECF in cultured alveolar epithelial cell monolayers and found to be 7.13 in nominally HCO3−-free solutions [at external pH (pHo) 7.4]. Cells were acid-loaded by the NH4+prepulse technique, and the recovery was observed. Under conditions designed to eliminate the contribution of other transporters that alter pH, addition of 10 μM ZnCl2, a proton channel inhibitor, slowed recovery about twofold. In addition, the pHiminimum was lower, and the time to nadir was increased. Slowing of recovery by ZnCl2was observed at pHo7.4 and pHo8.0 and in normal and high-K+Ringer solutions. The observed rate of Zn2+-sensitive pHirecovery required activation of a small fraction of the available proton conductance. We conclude that proton channels contribute to pHirecovery after an acid load in rat alveolar epithelial cells. Addition of ZnCl2had no effect on pHiin unchallenged cells, consistent with the expectation that proton channels are not open in resting cells. After inhibition of all known pH regulators, slow pHirecovery persisted, suggesting the existence of a yet-undefined acid extrusion mechanism in these cells.
Collapse
Affiliation(s)
- Ricardo Murphy
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
12
|
Effros RM, Olson L, Lin W, Audi S, Hogan G, Shaker R, Hoagland K, Foss B. Resistance of the pulmonary epithelium to movement of buffer ions. Am J Physiol Lung Cell Mol Physiol 2003; 285:L476-83. [PMID: 12851214 DOI: 10.1152/ajplung.00398.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure of the apical surfaces of alveolar monolayers to acidic and alkaline solutions has been reported to have little influence on intracellular pH compared with basolateral challenges (Joseph D, Tirmizi O, Zhang X, Crandall ED, and Lubman RL. Am J Physiol Lung Cell Mol Physiol 282: L675-L683, 2002). We have used fluorescent pH indicators and a trifurcated optical bundle to determine whether the apical surfaces are less permeable to ionized buffers than the membranes that separate the vasculature from the tissues in intact rat lungs. In the first set of experiments, the air spaces were filled with perfusate containing FITC-dextran (mol wt 60000) or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Air space pH fell progressively from 7.4 to 6.61 +/- 0.03 (mean +/- SE, n = 11, air space buffers at 10 mM). Perfusion for 2 min with 2 mM NH4Cl increased air space pH by 0.142 +/- 0.019 unit, without a subsequent acidic overshoot. Infusions of NaHCO3 and sodium acetate reduced pH without a subsequent alkaline overshoot. In the second set of experiments, cellular pH was monitored in air-filled lungs after perfusion with BCECFAM. Injections of NH4Cl caused a biphasic response, with initial alkalinization of the cellular compartment followed by acidification after the NH4Cl was washed from the lungs. Subsequent return of pH to normal was slowed by infusions of 1.0 mM dimethyl amiloride. These studies suggest that lung cells are protected from air space acidification by the impermeability of the apical membranes to buffer ions and that the cells extrude excess H+ through basolateral Na+/H+ exchangers.
Collapse
Affiliation(s)
- R M Effros
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
14
|
Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82:569-600. [PMID: 12087129 DOI: 10.1152/physrev.00003.2002] [Citation(s) in RCA: 499] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of mechanisms that regulate salt and water transport by the alveolar and distal airway epithelium of the lung has generated new insights into the regulation of lung fluid balance under both normal and pathological conditions. There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium and are responsible for the ability of the lung to remove alveolar fluid at the time of birth as well as in the mature lung when pathological conditions lead to the development of pulmonary edema. Currently, the best described molecular transporters are the epithelial sodium channel, the cystic fibrosis transmembrane conductance regulator, Na+-K+-ATPase, and several aquaporin water channels. Both catecholamine-dependent and -independent mechanisms can upregulate isosmolar fluid transport across the distal lung epithelium. Experimental and clinical studies have made it possible to examine the role of these transporters in the resolution of pulmonary edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, California 94143-0624, USA.
| | | | | |
Collapse
|
15
|
Matthay MA. Regulation of ion and fluid transport across the distal pulmonary epithelia: new insights. Am J Physiol Lung Cell Mol Physiol 2002. [DOI: 10.1152/ajplung.00473.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Michael A. Matthay
- American Journal of Physiology-
- Lung Cellular and Molecular Physiology
- April 2002, Volume 282 (26)
| |
Collapse
|