1
|
Nie S, Huang P, Niu H, Ding F, Gong L, Zou C, Xiang H, Guo C, Xiang Y, Cao Y, Lu H, Yang G. Vitamin D deficiency enhances platelet activation and thrombosis by regulating VDR/Akt pathway based on platelet proteomics. Eur J Pharmacol 2025:177684. [PMID: 40315949 DOI: 10.1016/j.ejphar.2025.177684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
SCOPE Vitamin D deficiency (VDD) is a worldwide pandemic. Pleiotropic effects of vitamin D beyond calcium homeostasis have been shown. However, the direct impact of VDD on platelet reactivity and thrombus formation, as well as the underlying mechanisms, remain vague. METHODS AND RESULTS 427 acute coronary syndrome patients undergoing percutaneous coronary intervention were enrolled in the study. The platelet proteome was analyzed using a four-dimensional data-independent assessment. Platelet function and FeCl3-induced carotid artery thrombosis were investigated in the VDD rats. Lower vitamin D quartiles (<16.45 ng/mL) were independently associated with high on-treatment platelet reactivity (adjusted OR 4.21 [95%CI 1.74-10.15, P=0.001]). Differential proteins were related to platelet activation, PI3K-Akt pathway, and Vitamin D receptor (VDR). Platelet function was enhanced in diet-induced VDD rats. VDD accelerated FeCl3-induced carotid artery thrombosis and shortened tail bleeding time. Mechanism studies revealed that VDD may exert its destructive effect by inactivating the VDR and augmenting p-Akt expression. CONCLUSION VDD was independently related to high on-treatment platelet reactivity among acute coronary syndrome patients undergoing percutaneous coronary intervention. VDD enhanced platelet function and thrombosis by activating the VDR/Akt signaling pathway. Vitamin D replacement therapy could partly reverse these changes, making it a theoretical basis for the prevention of VDD-related thrombotic disease.
Collapse
Affiliation(s)
- Shanshan Nie
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Huan Niu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Fangfang Ding
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liying Gong
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chan Zou
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Chengxian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yuxia Xiang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yu Cao
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Hongwei Lu
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
2
|
Adão R, Barreira B, Paternoster E, Morales-Cano D, Olivencia MA, Quintana-Villamandos B, Rodríguez-Chiaradía DA, Cogolludo A, Perez-Vizcaino F. Vitamin D as an add-on therapy to phosphodiesterase-5 inhibitor in experimental pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2025; 328:L253-L259. [PMID: 39786829 DOI: 10.1152/ajplung.00319.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Severe vitamin D (vitD) deficiency is a very common condition in patients with pulmonary arterial hypertension (PAH), and it is a predictor of poor prognosis. There is emerging evidence suggesting a connection between the insufficient response to phosphodiesterase-5 inhibitors (PDE5i) and vitD deficiency in patients with PAH. In the present translational study, vitD deficiency was induced in Wistar rats by exposure to vitD-free diet for 5 wk and followed by Su5416 administration and hypoxia (10%) for 3 wk, a standard experimental model of PAH. Then, rats were randomized to either 1) the PDE5i tadalafil and continuing vitD-free diet or 2) tadalafil plus a single dose of vitD and standard diet for 4 wk. VitD supplementation improved exercise capacity and right ventricular function and decreased systolic right ventricular pressure, right atrial hypertrophy, right ventricular hypertrophy, and pulmonary arterial remodeling. VitD improved the ex vivo endothelium-dependent response to acetylcholine, indicating an improvement in NO bioavailability, which also resulted in an acute ex vivo response to sildenafil. Thus, the restoration of vitD, by rescuing endothelial function and PDE5i effectiveness, significantly improved the histological, hemodynamic, and functional features of rats with PAH. VitD may be especially beneficial for PDE5i-treated patients with PAH.NEW & NOTEWORTHY Severe vitamin D deficiency is very prevalent in patients with pulmonary arterial hypertension. We show that addition of vitamin D to the standard PDE5 inhibitor tadalafil increases its therapeutic efficacy in pulmonary hypertensive rats that were deficient in vitamin D.
Collapse
Affiliation(s)
- Rui Adão
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Miguel A Olivencia
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Begoña Quintana-Villamandos
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Diego A Rodríguez-Chiaradía
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Pulmonology Department, IMIM-Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
3
|
Li H, Li X, Sun Y, Zhi Z, Song L, Li M, Feng Y, Zhang Z, Liu Y, Chen Y, Zhao F, Zhu T. The Role of Ion Channels in Pulmonary Hypertension: A Review. Pulm Circ 2025; 15:e70050. [PMID: 39958971 PMCID: PMC11830494 DOI: 10.1002/pul2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/16/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
Pulmonary hypertension (PH) constitutes a critical challenge in cardiopulmonary medicine with a pathogenesis that is multifaceted and intricate. Ion channels, crucial determinants of cellular electrochemical gradient modulation, have emerged as significant participants in the pathophysiological progression of PH. These channels, abundant on the membranes of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs), pivotally navigate the nuanced interplay of cell proliferation, migration, and endothelial function, each vital to the pulmonary vascular remodeling (PVR) hallmark of PH. Our review delves into the mechanistic insights of potassium, calcium, magnesium, zinc, and chloride ion channels in relation to their involvement in PH. It not only emphasizes the notable advances and discoveries that cast these ion channels as underlying factors in the etiology and exacerbation of PH but also highlights their potential as innovative therapeutic targets.
Collapse
Affiliation(s)
- Han‐Fei Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Xin‐Yao Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yu‐Qing Sun
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Ze‐Ying Zhi
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Liao‐Fan Song
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Meng Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yi‐Ming Feng
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Zhi‐Hao Zhang
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yan‐Feng Liu
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yu‐Jing Chen
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Fan‐Rong Zhao
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Tian‐Tian Zhu
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
- Department of PharmacyThe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| |
Collapse
|
4
|
Callejo M, Morales-Cano D, Olivencia MA, Mondejar-Parreño G, Barreira B, Tura-Ceide O, Martínez VG, Serrano-Navarro A, Moreno L, Morrell N, Perros F, Vicente A, Cogolludo A, Perez-Vizcaino F. Vitamin D receptor and its antiproliferative effect in human pulmonary arterial hypertension. Sci Rep 2024; 14:27445. [PMID: 39523384 PMCID: PMC11551162 DOI: 10.1038/s41598-024-78380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Vitamin D (vitD) deficiency is frequently observed in patients with pulmonary arterial hypertension (PAH) and, in these patients, low levels of vitD correlate with worse prognosis. The aim of this study was to examine the expression and the antiproliferative role of vitD receptor (VDR) and its signalling pathway in the human pulmonary vasculature. VDR presence and expression was analyzed in lungs, pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) from controls and PAH-patients. VDR expression and VDR-target genes were examined in PASMC treated with calcitriol. The antiproliferative effect of 48 h-calcitriol was studied in PASMC by MTT and BrdU assays. VDR is expressed in PASMC. It is downregulated in lungs and in PASMC, but not in PAEC, from PAH-patients compared to non-hypertensive controls. Calcitriol strongly upregulated VDR expression in PASMC and the VDR target genes KCNK3 (encoding TASK1), BIRC5 (encoding survivin) and BMP4. Calcitriol produced an antiproliferative effect which was diminished by silencing or by pharmacological inhibition of survivin or BMPR2, but not of TASK1. In conclusion, the expression of VDR is low in PAH-patients and can be rescued by calcitriol. VDR exerts an antiproliferative effect in PASMC by modulating survivin and the BMP signalling pathway.
Collapse
MESH Headings
- Humans
- Receptors, Calcitriol/metabolism
- Receptors, Calcitriol/genetics
- Cell Proliferation/drug effects
- Calcitriol/pharmacology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Survivin/metabolism
- Survivin/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Female
- Male
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/genetics
- Potassium Channels, Tandem Pore Domain/metabolism
- Potassium Channels, Tandem Pore Domain/genetics
- Signal Transduction/drug effects
- Bone Morphogenetic Protein 4/metabolism
- Bone Morphogenetic Protein 4/genetics
- Middle Aged
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Lung/metabolism
- Lung/pathology
- Adult
- Cells, Cultured
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/pathology
- Nerve Tissue Proteins
Collapse
Affiliation(s)
- Maria Callejo
- Department of Pharmacology and Toxicology, Facultad de Medicina, School of Medicine, Universidad Complutense de Madrid, Pza Ramón y Cajal s/n., 28040, Madrid, Spain
- CIBER Enfermedades Respiratorias (CibeRes), Madrid, Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, Facultad de Medicina, School of Medicine, Universidad Complutense de Madrid, Pza Ramón y Cajal s/n., 28040, Madrid, Spain
- CIBER Enfermedades Respiratorias (CibeRes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Miguel A Olivencia
- Department of Pharmacology and Toxicology, Facultad de Medicina, School of Medicine, Universidad Complutense de Madrid, Pza Ramón y Cajal s/n., 28040, Madrid, Spain
- CIBER Enfermedades Respiratorias (CibeRes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Gema Mondejar-Parreño
- Department of Medicine, Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford, USA
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, Facultad de Medicina, School of Medicine, Universidad Complutense de Madrid, Pza Ramón y Cajal s/n., 28040, Madrid, Spain
- CIBER Enfermedades Respiratorias (CibeRes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Olga Tura-Ceide
- CIBER Enfermedades Respiratorias (CibeRes), Madrid, Spain
- Department of Pulmonary Medicine, Servei de Pneumologia, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
- Translational Research Group on Cardiovascular Respiratory Diseases (CAREs), Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190, Salt, Spain
| | - Victor G Martínez
- Biomedical Research Institute I + 12, University Hospital, 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Laura Moreno
- Department of Pharmacology and Toxicology, Facultad de Medicina, School of Medicine, Universidad Complutense de Madrid, Pza Ramón y Cajal s/n., 28040, Madrid, Spain
- CIBER Enfermedades Respiratorias (CibeRes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Nick Morrell
- Department of Medicine, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Frédéric Perros
- Laboratoire CarMeN, INSERM U.1060, INRAe U.1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Angeles Vicente
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, Facultad de Medicina, School of Medicine, Universidad Complutense de Madrid, Pza Ramón y Cajal s/n., 28040, Madrid, Spain
- CIBER Enfermedades Respiratorias (CibeRes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, Facultad de Medicina, School of Medicine, Universidad Complutense de Madrid, Pza Ramón y Cajal s/n., 28040, Madrid, Spain.
- CIBER Enfermedades Respiratorias (CibeRes), Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.
| |
Collapse
|
5
|
Olszewska AM, Zmijewski MA. Genomic and non-genomic action of vitamin D on ion channels - Targeting mitochondria. Mitochondrion 2024; 77:101891. [PMID: 38692383 DOI: 10.1016/j.mito.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.
Collapse
Affiliation(s)
- A M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland
| | - M A Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| |
Collapse
|
6
|
Perez-Vizcaino F, Barberá JA, Rodríguez Chiaradía DA. Vitamin D and Pulmonary Arterial Hypertension. Arch Bronconeumol 2024; 60:131-132. [PMID: 38008680 DOI: 10.1016/j.arbres.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Affiliation(s)
- Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Spain.
| | - Joan Albert Barberá
- CIBER Enfermedades Respiratorias (Ciberes), Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Diego A Rodríguez Chiaradía
- CIBER Enfermedades Respiratorias (Ciberes), Spain; Pulmonology Department, IMIM-Hospital del Mar, Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| |
Collapse
|
7
|
Chao C, Wang M, Mei K, Ma C, Qian Y, Zhang X. An inverse causal relationship between serum 25-hydroxyvitamin D levels and pulmonary hypertension: A two-sample Mendelian randomization study. Pulm Circ 2024; 14:e12350. [PMID: 38456156 PMCID: PMC10918714 DOI: 10.1002/pul2.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Observational studies have confirmed that 25-hydroxyvitamin D (25(OH)D) is associated with pulmonary hypertension (PH), but the causal association between each other is unclear. Therefore, Mendelian randomization (MR) method was performed to validate the causal association between PH and serum 25(OH)D levels. The summary data for 25(OH)D and PH were from the National Human Genome Research Institute-European Bioinformatics Institute. Catalog of human genome-wide association studies and FinnGen biobank consortium. MR analysis was utilized to explore the potential causal association between PH and 25(OH)D. To evaluate this association, inverse variance weighting was considered as the primary method. Cochran's Q test, MR-Egger intercept test, and "leave-one-out" sensitivity analyses were utilized to control the pleiotropy and heterogeneity in the study. Two-sample MR analysis revealed an inverse causal relationship between 25(OH)D and PH (odds ratio: 0.376, 95% confidence interval: 0.162-0.876, p = 2.334 × 10-2). There was no significant heterogeneity and pleiotropy. The present study confirmed the inverse causal relationship between 25(OH)D and PH. This pathway may provide another treatment pathway in PH. Further studies to elucidate this pathway is indicated.
Collapse
Affiliation(s)
- Ce Chao
- Department of Cardiothoracic SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Min Wang
- Department of Cardiothoracic SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Kun Mei
- Department of Cardiothoracic SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Chao Ma
- Department of Cardiothoracic SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Yongxiang Qian
- Department of Cardiothoracic SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Xiaoying Zhang
- Department of Cardiothoracic SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| |
Collapse
|
8
|
Saint-Martin Willer A, Santos-Gomes J, Adão R, Brás-Silva C, Eyries M, Pérez-Vizcaino F, Capuano V, Montani D, Antigny F. Physiological and pathophysiological roles of the KCNK3 potassium channel in the pulmonary circulation and the heart. J Physiol 2023; 601:3717-3737. [PMID: 37477289 DOI: 10.1113/jp284936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Joana Santos-Gomes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mélanie Eyries
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
9
|
Olivencia MA, Villegas-Esguevillas M, Sancho M, Barreira B, Paternoster E, Adão R, Larriba MJ, Cogolludo A, Perez-Vizcaino F. Vitamin D Receptor Deficiency Upregulates Pulmonary Artery Kv7 Channel Activity. Int J Mol Sci 2023; 24:12350. [PMID: 37569725 PMCID: PMC10418734 DOI: 10.3390/ijms241512350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Recent evidence suggests that vitamin D is involved in the development of pulmonary arterial hypertension (PAH). The aim of this study was to analyze the electrophysiological and contractile properties of pulmonary arteries (PAs) in vitamin D receptor knockout mice (Vdr-/-). PAs were dissected and mounted in a wire myograph. Potassium membrane currents were recorded in freshly isolated PA smooth muscle cells (PASMCs) using the conventional whole-cell configuration of the patch-clamp technique. Potential vitamin D response elements (VDREs) in Kv7 channels coding genes were studied, and their protein expression was analyzed. Vdr-/- mice did not show a pulmonary hypertensive phenotype, as neither right ventricular hypertrophy nor endothelial dysfunction was apparent. However, resistance PA from these mice exhibited increased response to retigabine, a Kv7 activator, compared to controls and heterozygous mice. Furthermore, the current sensitive to XE991, a Kv7 inhibitor, was also higher in PASMCs from knockout mice. A possible VDRE was found in the gene coding for KCNE4, the regulatory subunit of Kv7.4. Accordingly, Vdr-/- mice showed an increased expression of KCNE4 in the lungs, with no changes in Kv7.1 and Kv7.4. These results indicate that the absence of Vdr in mice, as occurred with vitamin D deficient rats, is not sufficient to induce PAH. However, the contribution of Kv7 channel currents to the regulation of PA tone is increased in Vdr-/- mice, resembling animals and humans suffering from PAH.
Collapse
Affiliation(s)
- Miguel A Olivencia
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Marta Villegas-Esguevillas
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Maria Sancho
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Elena Paternoster
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Rui Adão
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Ciber Cáncer (CIBERONC), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| |
Collapse
|
10
|
Villegas-Esguevillas M, Cho S, Vera-Zambrano A, Kwon JW, Barreira B, Telli G, Navarro-Dorado J, Morales-Cano D, de Olaiz B, Moreno L, Greenwood I, Pérez-Vizcaíno F, Kim SJ, Climent B, Cogolludo A. The novel K V7 channel activator URO-K10 exerts enhanced pulmonary vascular effects independent of the KCNE4 regulatory subunit. Biomed Pharmacother 2023; 164:114952. [PMID: 37295249 DOI: 10.1016/j.biopha.2023.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.
Collapse
Affiliation(s)
- Marta Villegas-Esguevillas
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Suhan Cho
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Alba Vera-Zambrano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Jae Won Kwon
- Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Göcken Telli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Jorge Navarro-Dorado
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Daniel Morales-Cano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Beatriz de Olaiz
- Department of Thoracic Surgery, Hospital Universitario de Getafe, Getafe, Spain
| | - Laura Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Iain Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Francisco Pérez-Vizcaíno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | - Angel Cogolludo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| |
Collapse
|
11
|
Morales-Cano D, Izquierdo-García JL, Barreira B, Esquivel-Ruiz S, Callejo M, Pandolfi R, Villa-Valverde P, Rodríguez I, Cogolludo A, Ruiz-Cabello J, Perez-Vizcaino F, Moreno L. Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model. Front Pharmacol 2023; 14:1021535. [PMID: 37063275 PMCID: PMC10090662 DOI: 10.3389/fphar.2023.1021535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit.Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods.Results:In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA.Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.
Collapse
Affiliation(s)
- Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jose Luis Izquierdo-García
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Maria Callejo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Rachele Pandolfi
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Palmira Villa-Valverde
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- ICTS Bioimagen Complutense, Universidad Complutense de Madrid, Madrid, Spain
| | - Ignacio Rodríguez
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Jesus Ruiz-Cabello
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- *Correspondence: Laura Moreno,
| |
Collapse
|
12
|
Zhao S, Huang S, Zhong Q, Han L, Wang Y, Xu F, Ma L, Ding Y, Xia L, Chen X. Study of the Association of Single Nucleotide Polymorphisms in Candidate Genes With Sevoflurane. J Clin Pharmacol 2023; 63:91-104. [PMID: 35943164 DOI: 10.1002/jcph.2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023]
Abstract
The susceptibility of different individuals to anesthetics varies widely, and sevoflurane is no exception. We hypothesized that polymorphisms in genes involved in pharmacokinetics and pharmacodynamics may explain this variation. A total of 151 individuals undergoing otorhinolaryngology surgery were included. The influence of genetic polymorphisms on sevoflurane sensitivity were investigated through SNaPshot technology. Individuals carrying KCNK2 rs6686529 G > C, MTRR rs3733784 TT, rs2307116 GG, or rs1801394 AA polymorphisms had a higher sensitivity to the sedative effect of sevoflurane than those without those polymorphisms. The univariate linear regression analysis indicated that MTRR rs3733784 TT, rs2307116 GG, and rs1801394 AA were potentially significant predictors of higher sensitivity to the sedative effect of sevoflurane. Moreover, CYP2E1 rs3813867 G > C and rs2031920 C > T, GABRG1 rs279858 T > C, KCNK3 rs1275988 CC, GRIN2B rs1806201 GG, MTRR rs2307116 G > A, and rs1801394 A > G were associated with a higher sensitivity to the cardiovascular effect of sevoflurane. Our results suggested that 9 single nucleotide polymorphisms in genes involved in metabolizing enzymes, transport proteins, target proteins of sevoflurane and folate metabolism may help to explain individual differences in the susceptibility to the sedative or cardiovascular effect of sevoflurane.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leiming Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Żmijewski MA. Nongenomic Activities of Vitamin D. Nutrients 2022; 14:nu14235104. [PMID: 36501134 PMCID: PMC9737885 DOI: 10.3390/nu14235104] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation. Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vitamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium-phosphate homeostasis, and this process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate several intracellular processes-including cell cycle, proliferation, or immune responses-through wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its coreceptor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly influences mitochondrial function, including fusion-fission, energy production, mitochondrial membrane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic responses to vitamin D are still not fully understood, in this review, their impact on physiology, pathology, and potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, PL-80211 Gdańsk, Poland
| |
Collapse
|
14
|
Low serum 25-hydroxyvitamin D (vitamin D) level among children with ventricular septal defect: how big is the risk for pulmonary hypertension? Cardiol Young 2022; 32:1984-1988. [PMID: 35067256 DOI: 10.1017/s1047951122000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Ventricular septal defect is the most common CHD, leading to pulmonary hypertension. Significantly lower 25-hydroxyvitamin D level was reported in children with CHD compared with healthy controls. The current study aimed to investigate the correlation between 25-hydroxyvitamin D level and pulmonary hypertension in children with ventricular septal defect. METHODS A cross-sectional study was conducted on ventricular septal defect paediatric patients from January to June, 2019. Serum 25-hydroxyvitamin D was measured using electrochemiluminescence. Pulmonary hypertension was defined as mean pulmonary artery systolic pressure > 20 mmHg for children >3 months of age at sea level, measured by Doppler echocardiography. RESULTS From forty-four subjects, the majority of the subjects were female (56.8%) with normal nutritional status and perimembranous ventricular septal defect. Bivariate analysis showed that 25-hydroxyvitamin D level was associated with pulmonary hypertension (p < 0.01), type and size of ventricular septal defect (p = 0.02), and heart failure (p < 0.01). Higher 25-hydroxyvitamin D level was correlated with better nutritional status (p = 0.04, r = 0.26), and lower 25-hydroxyvitamin D level was correlated with the occurence of perimembranous ventricular septal defect (p = 0.01, r = -0.39), larger defect size (p < 0.01, r = -0.70), history of pneumonia (p = 0.02, r = -0.31), and heart failure (p < 0.01, r = -0.64). Subjects with 25-hydroxyvitamin D deficiency had prevalence ratio of 24.0 times for pulmonary hypertension. Higher pulmonary artery pressure was correlated to the occurence perimembranous ventricular septal defect (p = 0.01, r = 0.47), larger defect size (p < 0.01, r = 0.78), history of pneumonia (p = 0.01, r = 0.38), and heart failure (p < 0.01, r = 0.75). CONCLUSION Children with ventricular septal defect who had low 25-hydroxyvitamin D level posed a higher risk of having pulmonary hypertension.
Collapse
|
15
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
16
|
Olivencia MA, Esquivel-Ruiz S, Callejo M, Mondéjar-Parreño G, Quintana-Villamandos B, Barreira B, Sacedón R, Cogolludo Á, Perros F, Mendes-Ferreira P, Pérez Vizcaíno F. Cardiac and Pulmonary Vascular Dysfunction in Vitamin D-Deficient Bmpr2-Mutant Rats. Am J Respir Cell Mol Biol 2022; 67:402-405. [PMID: 36047774 DOI: 10.1165/rcmb.2022-0001le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Miguel A Olivencia
- Complutense de Madrid Madrid, Spain.,CIBER Enfermedades Respiratorias Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón Madrid, Spain
| | - Sergio Esquivel-Ruiz
- Complutense de Madrid Madrid, Spain.,CIBER Enfermedades Respiratorias Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón Madrid, Spain
| | - María Callejo
- Complutense de Madrid Madrid, Spain.,CIBER Enfermedades Respiratorias Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón Madrid, Spain
| | | | | | - Bianca Barreira
- Complutense de Madrid Madrid, Spain.,CIBER Enfermedades Respiratorias Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón Madrid, Spain
| | | | - Ángel Cogolludo
- Complutense de Madrid Madrid, Spain.,CIBER Enfermedades Respiratorias Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón Madrid, Spain
| | - Frédéric Perros
- INSERM Le Plessis Robinson, France.,Université Paris-Saclay Le Kremlin-Bicêtre, France
| | - Pedro Mendes-Ferreira
- INSERM UMR_S 999, Université Paris-Saclay Le Kremlin-Bicêtre, France.,UnIC@RISE, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Francisco Pérez Vizcaíno
- Complutense de Madrid Madrid, Spain.,CIBER Enfermedades Respiratorias Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón Madrid, Spain
| |
Collapse
|
17
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Lago-Docampo M, Solarat C, Méndez-Martínez L, Baloira A, Valverde D. Common Variation in EDN1 Regulatory Regions Highlights the Role of PPARγ as a Key Regulator of Endothelin in vitro. Front Cardiovasc Med 2022; 9:823133. [PMID: 35282351 PMCID: PMC8913939 DOI: 10.3389/fcvm.2022.823133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a rare disease caused by the obliteration of the pulmonary arterioles, increasing pulmonary vascular resistance and eventually causing right heart failure. Endothelin-1 (EDN1) is a vasoconstrictor peptide whose levels are indicators of disease progression and its pathway is one of the most common targeted by current treatments. We sequenced the EDN1 untranslated regions of a small subset of patients with PAH, predicted the effect in silico, and used a luciferase assay with the different genotypes to analyze its influence on gene expression. Finally, we used siRNAs against the major transcription factors (TFs) predicted for these regions [peroxisome proliferator-activated receptor γ (PPARγ), Krüppel-Like Factor 4 (KLF4), and vitamin D receptor (VDR)] to assess EDN1 expression in cell culture and validate the binding sites. First, we detected a single nucleotide polymorphism (SNP) in the 5' untranslated region (UTR; rs397751713) and another in the 3'regulatory region (rs2859338) that altered luciferase activity in vitro depending on their genotype. We determined in silico that KLF4/PPARγ could bind to the rs397751713 and VDR to rs2859338. By using siRNAs and luciferase assays, we determined that PPARγ binds differentially to rs397751713. PPARγ and VDR Knock-Down (KD) increased the EDN1 mRNA levels and EDN1 production in porcine aortic endothelial cells (PAECs), while PPARγ and KLF4 KD increased the EDN1 production in HeLa. In conclusion, common variants in EDN1 regulatory regions could alter EDN1 levels. We were able to validate that PPARγ binds in rs397751713 and is a key regulator of EDN1. In addition, KLF4 and VDR regulate EDN1 production in a cell-dependent manner, but VDR does not bind directly to the regions we studied.
Collapse
Affiliation(s)
- Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Solarat
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Luis Méndez-Martínez
- Department of Biotechnology and Aquaculture, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Adolfo Baloira
- Pneumology Department, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
19
|
Olszewska AM, Sieradzan AK, Bednarczyk P, Szewczyk A, Żmijewski MA. Mitochondrial potassium channels: A novel calcitriol target. Cell Mol Biol Lett 2022; 27:3. [PMID: 34979905 PMCID: PMC8903690 DOI: 10.1186/s11658-021-00299-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calcitriol (an active metabolite of vitamin D) modulates the expression of hundreds of human genes by activation of the vitamin D nuclear receptor (VDR). However, VDR-mediated transcriptional modulation does not fully explain various phenotypic effects of calcitriol. Recently a fast non-genomic response to vitamin D has been described, and it seems that mitochondria are one of the targets of calcitriol. These non-classical calcitriol targets open up a new area of research with potential clinical applications. The goal of our study was to ascertain whether calcitriol can modulate mitochondrial function through regulation of the potassium channels present in the inner mitochondrial membrane. METHODS The effects of calcitriol on the potassium ion current were measured using the patch-clamp method modified for the inner mitochondrial membrane. Molecular docking experiments were conducted in the Autodock4 program. Additionally, changes in gene expression were investigated by qPCR, and transcription factor binding sites were analyzed in the CiiiDER program. RESULTS For the first time, our results indicate that calcitriol directly affects the activity of the mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa) from the human astrocytoma (U-87 MG) cell line but not the mitochondrial calcium-independent two-pore domain potassium channel (mitoTASK-3) from human keratinocytes (HaCaT). The open probability of the mitoBKCa channel in high calcium conditions decreased after calcitriol treatment and the opposite effect was observed in low calcium conditions. Moreover, using the AutoDock4 program we predicted the binding poses of calcitriol to the calcium-bound BKCa channel and identified amino acids interacting with the calcitriol molecule. Additionally, we found that calcitriol influences the expression of genes encoding potassium channels. Such a dual, genomic and non-genomic action explains the pleiotropic activity of calcitriol. CONCLUSIONS Calcitriol can regulate the mitochondrial large-conductance calcium-regulated potassium channel. Our data open a new chapter in the study of non-genomic responses to vitamin D with potential implications for mitochondrial bioenergetics and cytoprotective mechanisms.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdańsk, 1a Dębinki, 80-211, Gdańsk, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdańsk, 1a Dębinki, 80-211, Gdańsk, Poland.
| |
Collapse
|
20
|
Callejo M, Blanco I, Barberá JA, Perez-Vizcaino F. Vitamin D deficiency, a potential cause for insufficient response to sildenafil in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.01204-2021. [PMID: 34385273 DOI: 10.1183/13993003.01204-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022]
Affiliation(s)
- María Callejo
- Dept of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Isabel Blanco
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Joan Albert Barberá
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Francisco Perez-Vizcaino
- Dept of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain .,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
21
|
Ion channels as convergence points in the pathology of pulmonary arterial hypertension. Biochem Soc Trans 2021; 49:1855-1865. [PMID: 34346486 PMCID: PMC8421048 DOI: 10.1042/bst20210538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system that lacks curative treatments. The main pathological event in PAH is elevated vascular resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascular remodelling. Ion channels are key determinants of vascular smooth muscle tone and homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have been identified so far. However, the contribution of ion channels in other forms of PAH, which account for the majority of PAH patients, has been less well characterised. Here we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic drugs) that impact channel function may contribute to the onset of the disease. We review the molecular mechanisms by which these ‘extrinsic’ factors converge on ion channels and provoke their dysregulation to promote the development of PAH. Ion channels of the pulmonary vasculature are therefore promising therapeutic targets because of the modulation they provide to both vasomotor tone and proliferation of arterial smooth muscle cells.
Collapse
|
22
|
Restoration of Vitamin D Levels Improves Endothelial Function and Increases TASK-Like K + Currents in Pulmonary Arterial Hypertension Associated with Vitamin D Deficiency. Biomolecules 2021; 11:biom11060795. [PMID: 34073580 PMCID: PMC8227733 DOI: 10.3390/biom11060795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Vitamin D (vitD) deficiency is highly prevalent in patients with pulmonary arterial hypertension (PAH). Moreover, PAH-patients with lower levels of vitD have worse prognosis. We hypothesize that recovering optimal levels of vitD in an animal model of PAH previously depleted of vitD improves the hemodynamics, the endothelial dysfunction and the ionic remodeling. Methods: Male Wistar rats were fed a vitD-free diet for five weeks and then received a single dose of Su5416 (20 mg/Kg) and were exposed to vitD-free diet and chronic hypoxia (10% O2) for three weeks to induce PAH. Following this, vitD deficient rats with PAH were housed in room air and randomly divided into two groups: (a) continued on vitD-free diet or (b) received an oral dose of 100,000 IU/Kg of vitD plus standard diet for three weeks. Hemodynamics, pulmonary vascular remodeling, pulmonary arterial contractility, and K+ currents were analyzed. Results: Recovering optimal levels of vitD improved endothelial function, measured by an increase in the endothelium-dependent vasodilator response to acetylcholine. It also increased the activity of TASK-1 potassium channels. However, vitD supplementation did not reduce pulmonary pressure and did not ameliorate pulmonary vascular remodeling and right ventricle hypertrophy. Conclusions: Altogether, these data suggest that in animals with PAH and severe deficit of vitD, restoring vitD levels to an optimal range partially improves some pathophysiological features of PAH.
Collapse
|
23
|
Mondéjar-Parreño G, Cogolludo A, Perez-Vizcaino F. Potassium (K +) channels in the pulmonary vasculature: Implications in pulmonary hypertension Physiological, pathophysiological and pharmacological regulation. Pharmacol Ther 2021; 225:107835. [PMID: 33744261 DOI: 10.1016/j.pharmthera.2021.107835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
The large K+ channel functional diversity in the pulmonary vasculature results from the multitude of genes expressed encoding K+ channels, alternative RNA splicing, the post-transcriptional modifications, the presence of homomeric or heteromeric assemblies of the pore-forming α-subunits and the existence of accessory β-subunits modulating the functional properties of the channel. K+ channels can also be regulated at multiple levels by different factors controlling channel activity, trafficking, recycling and degradation. The activity of these channels is the primary determinant of membrane potential (Em) in pulmonary artery smooth muscle cells (PASMC), providing an essential regulatory mechanism to dilate or contract pulmonary arteries (PA). K+ channels are also expressed in pulmonary artery endothelial cells (PAEC) where they control resting Em, Ca2+ entry and the production of different vasoactive factors. The activity of K+ channels is also important in regulating the population and phenotype of PASMC in the pulmonary vasculature, since they are involved in cell apoptosis, survival and proliferation. Notably, K+ channels play a major role in the development of pulmonary hypertension (PH). Impaired K+ channel activity in PH results from: 1) loss of function mutations, 2) downregulation of its expression, which involves transcription factors and microRNAs, or 3) decreased channel current as a result of increased vasoactive factors (e.g., hypoxia, 5-HT, endothelin-1 or thromboxane), exposure to drugs with channel-blocking properties, or by a reduction in factors that positively regulate K+ channel activity (e.g., NO and prostacyclin). Restoring K+ channel expression, its intracellular trafficking and the channel activity is an attractive therapeutic strategy in PH.
Collapse
Affiliation(s)
- Gema Mondéjar-Parreño
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain.
| |
Collapse
|