1
|
Seo JH, Koh J, Cho HJ, Kim H, Lee Y, Kim SJ, Yoon PW, Kim W, Bae SJ, Kim H, Yoo HJ, Lee SH. Sphingolipid metabolites as potential circulating biomarkers for sarcopenia in men. J Cachexia Sarcopenia Muscle 2024; 15:2476-2486. [PMID: 39229927 PMCID: PMC11634516 DOI: 10.1002/jcsm.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related progressive loss of muscle mass and function. Sarcopenia is a multifactorial disorder, including metabolic disturbance; therefore, metabolites may be used as circulating biomarkers for sarcopenia. We aimed to investigate potential biomarkers of sarcopenia using metabolomics. METHODS After non-targeted metabolome profiling of plasma from mice of an aging mouse model of sarcopenia, sphingolipid metabolites and muscle cells from the animal model were evaluated using targeted metabolome profiling. The associations between sphingolipid metabolites identified from mouse and cell studies and sarcopenia status were assessed in men in an age-matched discovery (72 cases and 72 controls) and validation (36 cases and 128 controls) cohort; women with sarcopenia (36 cases and 36 controls) were also included as a discovery cohort. RESULTS Both non-targeted and targeted metabolome profiling in the experimental studies showed an association between sphingolipid metabolites, including ceramides (CERs) and sphingomyelins (SMs), and sarcopenia. Plasma SM (16:0), CER (24:1), and SM (24:1) levels in men with sarcopenia were significantly higher in the discovery cohort than in the controls (all P < 0.05). There were no significant differences in plasma sphingolipid levels for women with or without sarcopenia. In men in the discovery cohort, an area under the receiver-operating characteristic curve (AUROC) of SM (16:0) for low muscle strength and low muscle mass was 0.600 (95% confidence interval [CI]: 0.501-0.699) and 0.647 (95% CI: 0.557-0.737). The AUROC (95% CI) of CER (24:1) and SM (24:1) for low muscle mass in men was 0.669 (95% CI: 0.581-0.757) and 0.670 (95% CI: 0.582-0.759), respectively. Using a regression equation combining CER (24:1) and SM (16:0) levels, a sphingolipid (SphL) score was calculated; an AUROC of the SphL score for sarcopenia was 0.712 (95% CI: 0.626-0.798). The addition of the SphL score to HGS significantly improved the AUC from 0.646 (95% CI: 0.575-0.717; HGS only) to 0.751 (95% CI: 0.671-0.831, P = 0.002; HGS + SphL) in the discovery cohort. The predictive ability of the SphL score for sarcopenia was confirmed in the validation cohort (AUROC = 0.695, 95% CI: 0.591-0.799). CONCLUSIONS SM (16:0), reflecting low muscle strength, and CER (24:1) and SM (16:0), reflecting low muscle mass, are potential circulating biomarkers for sarcopenia in men. Further research on sphingolipid metabolites is required to confirm these results and provide additional insights into the metabolomic changes relevant to the pathogenesis and diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Health Service Medical CenterVeterans Medical Research InstituteSeoulSouth Korea
| | - Jung‐Min Koh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Han Jin Cho
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Hanjun Kim
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Young‐Sun Lee
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Pil Whan Yoon
- Department of Orthopedic SurgerySeoul Now HospitalAnyangSouth Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sung Jin Bae
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hong‐Kyu Kim
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung Hun Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
2
|
Wang Y, Wu J, Zhang H, Yang X, Gu R, Liu Y, Wu R. Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39106211 DOI: 10.1080/10408398.2024.2387763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Milk fat globule membrane (MFGM) is a three-layer membrane-like structure encasing natural milk fat globules (MFGs). MFGM holds promise as a nutritional supplement because of the numerous physiological functions of its constituent protein. This review summarizes and compares the differences in MFGM protein composition across various species, including bovines, goats, camels, mares, and donkeys, and different lactation periods, such as colostrum and mature milk, as assessed by techniques such as proteomics and mass spectrometry. We also discuss the health benefits of MFGM proteins throughout life. MFGM proteins promote intestinal development, neurodevelopment, and glucose and lipid metabolism by upregulating tight junction protein expression, brain function-related genes, and glucose and fatty acid biosynthesis processes. We focus on the mechanisms underlying these beneficial effects of MFGM proteins. MFGM proteins activate key substances in in signaling pathways, such as the phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, and myosin light chain kinase signaling pathways. Overall, the consumption of MFGM proteins plays an essential role in conferring health benefits, some of which are important throughout the mammalian life cycle.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| | - Xujin Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, P.R. China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| |
Collapse
|
3
|
Milk Fat Globule Membrane Relieves Fatigue via Regulation of Oxidative Stress and Gut Microbiota in BALB/c Mice. Antioxidants (Basel) 2023; 12:antiox12030712. [PMID: 36978962 PMCID: PMC10045747 DOI: 10.3390/antiox12030712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Milk fat globule membranes (MFGMs) are complex structures that incorporate bioactive proteins and lipids to assist in infant development. However, the antifatigue and antioxidant potentials of MFGM have not been investigated. In this study, repeated force swimming measured fatigue in male BALB/c mice fed MFGM and saline for 18 weeks. The MFGM supplementation increased the time to exhaustion by 42.7% at 6 weeks and 30.6% at 14 weeks (p < 0.05). Fatigue and injury-related biomarkers, including blood glucose, lactic acid, and lactate dehydrogenase, were ameliorated after free swimming (p < 0.05). The activity of antioxidant enzymes in blood serum increased at 18 weeks, while malondialdehyde (MDA) content decreased by 45.0% after the MFGM supplementation (p < 0.05). The Pearson correlation analysis showed a high correlation between fatigue-related indices and antioxidant levels. The increased protein expression of hepatic Nrf2 reduced the protein expression of Caspase-3 in the gastrocnemius muscle (p < 0.05). Moreover, the MFGM supplementation increased the relative abundance of Bacteroides, Butyricimonas, and Anaerostipes. Our results demonstrate that MFGM may maintain redox homeostasis to relieve fatigue, suggesting the potential application of MFGM as an antifatigue and antioxidant dietary supplement.
Collapse
|
4
|
Sultan S, Hauser J, Oliveira M, Rytz A, Preitner N, Schneider N. Effects of Post-natal Dietary Milk Fat Globule Membrane Polar Lipid Supplementation on Motor Skills, Anxiety, and Long-Term Memory in Adulthood. Front Nutr 2021; 8:737731. [PMID: 34869518 PMCID: PMC8637295 DOI: 10.3389/fnut.2021.737731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Early life nutrition critically impacts post-natal brain maturation and cognitive development. Post-natal dietary deficits in specific nutrients, such as lipids, minerals or vitamins are associated with brain maturation and cognitive impairments. Specifically, polar lipids (PL), such as sphingolipids and phospholipids, are important cellular membrane building blocks and are critical for brain connectivity due to their role in neurite outgrowth, synaptic formation, and myelination. In this preclinical study, we assessed the effects of a chronic supplementation with a source of PL extracted from an alpha-lactalbumin enriched whey protein containing 10% lipids from early life (post-natal day (PND) 7) to adulthood (PND 72) on adult motor skills, anxiety, and long-term memory. The motor skills were assessed using open field and rotarod test. Anxiety was assessed using elevated plus maze (EPM). Long-term object and spatial memory were assessed using novel object recognition (NOR) and Morris water maze (MWM). Our results suggest that chronic PL supplementation improved measures of spatial long-term memory accuracy and cognitive flexibility in the MWM in adulthood, with no change in general mobility, anxiety and exploratory behavior. Our results indicate memory specific functional benefits of long-term dietary PL during post-natal brain development.
Collapse
Affiliation(s)
- Sébastien Sultan
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Manuel Oliveira
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Andreas Rytz
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nicolas Preitner
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| |
Collapse
|
5
|
Sugita S, Tamura K, Yano M, Minegishi Y, Ota N. The Impact of Milk Fat Globule Membrane with Exercise on Age-Related Degeneration of Neuromuscular Junctions. Nutrients 2021; 13:nu13072310. [PMID: 34371820 PMCID: PMC8308682 DOI: 10.3390/nu13072310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Morphological changes in neuromuscular junctions (NMJs), which are synapses formed between α-motor neurons and skeletal muscle fibers, are considered to be important in age-related motor dysfunction. We have previously shown that the intake of dietary milk fat globule membrane (MFGM) combined with exercise attenuates age-related NMJ alterations in the early phase of aging. However, it is unclear whether the effect of MFGM with exercise on age-related NMJ alterations persists into old age, and whether intervention from old age is still effective when age-related changes in NMJs have already occurred. In this study, 6- or 18-month-old mice were treated with a 1% MFGM diet and daily running wheel exercise until 23 or 24 months of age, respectively. MFGM treatment with exercise was effective in suppressing the progression of age-related NMJ alterations in old age, and even after age-related changes in NMJs had already occurred. Moreover, the effect of MFGM intake with exercise was not restricted to NMJs but extended to the structure and function of peripheral nerves. This study demonstrates that MFGM intake with exercise may be a novel approach for improving motor function in the elderly by suppressing age-related NMJ alterations.
Collapse
|
6
|
Abd El‐Salam MH, El‐Shibiny S. Milk fat globule membrane: An overview with particular emphasis on its nutritional and health benefits. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Safinaz El‐Shibiny
- Dairy Department National Research Centre El‐Behous St Dokki Cairo Egypt
| |
Collapse
|
7
|
Daly RM, Gianoudis J, De Ross B, O'Connell SL, Kruger M, Schollum L, Gunn C. Effects of a multinutrient-fortified milk drink combined with exercise on functional performance, muscle strength, body composition, inflammation, and oxidative stress in middle-aged women: a 4-month, double-blind, placebo-controlled, randomized trial. Am J Clin Nutr 2020; 112:427-446. [PMID: 32469393 DOI: 10.1093/ajcn/nqaa126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Multinutrient protein-enriched supplements are promoted to augment the effects of exercise on muscle mass and strength, but their effectiveness in middle-aged women, or whether there are any additional benefits to physical function, remains uncertain. OBJECTIVES We aimed to evaluate whether a multinutrient-fortified milk drink (MFMD) could enhance the effects of exercise on functional muscle power (stair climbing) in middle-aged women. Secondary aims were to evaluate the intervention effects on physical function, muscle strength, lean mass (LM), fat mass (FM), bone mineral content (BMC), muscle cross-sectional area (CSA), muscle density, balance, flexibility, aerobic fitness, inflammation, oxidative stress, bone and cartilage turnover, blood pressure, and blood lipids. METHODS In this 4-mo, double-blind, placebo-controlled, randomized trial, 244 women (45-65 y) participated in a multimodal resistance-type exercise program 3 d/wk, with random allocation to a twice-daily MFMD containing added protein, vitamin D, calcium, milk fat globule membrane (phospholipids and other bioactives), and other micronutrients (Ex + MFMD, n = 123) or an energy-matched placebo (Ex + placebo, n = 121). RESULTS A total of 216 women (89%) completed the study. After 4 mo, both groups experienced similar 3.6%-4.3% improvements in the primary outcomes of fast-pace 5- and 10-step stair ascent power. In contrast, Ex + MFMD experienced greater improvements in 5-step regular-pace stair descent time [net difference (95% CI): -0.09 s (-0.18, 0.00 s), P = 0.045], countermovement jump height [0.5 cm (0.04, 1.0 cm), P = 0.038], total body LM [0.3 kg (0.04, 0.60 kg), P = 0.020], FM [-0.6 kg (-1.0, -0.2 kg), P = 0.004], BMC [0.4% (0.1%, 0.6%), P = 0.020], muscle CSA [thigh: 1.8% (0.6%, 2.9%), P = 0.003; lower leg: 0.9% (0.3%, 1.6%), P = 0.005], balance eyes closed [3.3 s (1.1, 5.4 s), P = 0.005], 2-min step performance [8 steps (3, 12 steps), P = 0.003], and sit-and-reach flexibility [1.4 cm (0.6, 2.2 cm), P = 0.026]. MFMD did not enhance the effects of exercise on any measures of muscle strength, gait speed, dynamic balance, reaction time, or blood lipids, and there was no effect of either intervention on blood pressure, markers of inflammation, or cartilage turnover. Ex + placebo had a greater improvement in the oxidative stress marker protein carbonyls (P < 0.01). CONCLUSIONS In middle-aged women, daily consumption of an MFMD did not enhance the effects of a multimodal exercise program on the primary outcome of stair climbing ascent power, but did elicit greater improvements in multiple secondary outcomes including various other measures of functional performance, LM, muscle size, FM, balance, aerobic capacity, flexibility, and bone metabolism.This trial was registered at www.anzctr.org.au as ACTRN12617000383369.
Collapse
Affiliation(s)
- Robin M Daly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Jenny Gianoudis
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Belinda De Ross
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Stella L O'Connell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Marlena Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | - Linda Schollum
- Fonterra Co-operative Group Ltd, Palmerston, North New Zealand
| | - Caroline Gunn
- Fonterra Co-operative Group Ltd, Palmerston, North New Zealand
| |
Collapse
|
8
|
Yano M, Haramizu S, Ota N, Minegishi Y, Shimotoyodome A. Continuous Supplementation of Milk Fat Globule Membrane with Habitual Exercise from a Young Age Improves Motor Coordination and Skeletal Muscle Function in Aged Mice. J Nutr Sci Vitaminol (Tokyo) 2020; 65:405-413. [PMID: 31666477 DOI: 10.3177/jnsv.65.405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since the decline of physical performance gradually progresses with aging, continuous exercise with nutritional supplementation from a young age is a feasible and effective way to maintain a comfortable life until late old age. We examined the effects of continuous milk fat globule membrane (MFGM) supplementation combined with voluntary running exercise (VR) for prevention of aging-associated declines in physical performance in naturally aging mice. The MFGM with VR group showed a significantly attenuated age-related decline in motor coordination and suppression of the loss of muscle mass and strength. Compared with the control group, the MFGM with VR group showed significantly higher mRNA and protein expression for docking protein 7, which maintains neuromuscular junction (NMJ) integrity, in the quadriceps muscles. These results suggest that dietary MFGM and VR attenuate natural aging-related decline in motor coordination and muscle function by regulating NMJ integrity.
Collapse
Affiliation(s)
- Michiko Yano
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| | - Satoshi Haramizu
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| | - Noriyasu Ota
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| | - Yoshihiko Minegishi
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| | - Akira Shimotoyodome
- Biological Science Research, Health Science, Kao Corporation Tochigi Research Center
| |
Collapse
|
9
|
Li T, Gong H, Yuan Q, Du M, Ren F, Mao X. Supplementation of polar lipids-enriched milk fat globule membrane in high-fat diet-fed rats during pregnancy and lactation promotes brown/beige adipocyte development and prevents obesity in male offspring. FASEB J 2020; 34:4619-4634. [PMID: 32020679 DOI: 10.1096/fj.201901867rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Promoting brown adipose tissue (BAT) function or browning of white adipose tissue (WAT) provides a defense against obesity. The aim of the study was to investigate whether maternal polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to high-fat diet (HFD) rats during pregnancy and lactation could promote brown/beige adipogenesis and protect against HFD-induced adiposity in offspring. Female SD rats were fed a HFD for 8 weeks to induce obesity and, then, fed a HFD during pregnancy and lactation with or without MFGM-PL. Male offspring were weaned at postnatal Day 21 and then fed a HFD for 9 weeks. MFGM-PL treatment to HFD dams decreased the body weight gain and WAT mass as well as lowered the serum levels of insulin and triglycerides in male offspring at weaning. MFGM-PL+HFD offspring showed promoted thermogenic function in BAT and inguinal WAT through the upregulation of UCP1 and other thermogenic genes. In adulthood, maternal MFGM-PL supplementation reduced adiposity and increased oxygen consumption, respiratory exchange ratio, and heat production in male offspring. The enhancement of energy expenditure was correlated with elevated BAT activity and inguinal WAT thermogenic program. In conclusion, maternal MFGM-PL treatment activated thermogenesis in offspring, which exerted long-term beneficial effects against HFD-induced obesity in later life.
Collapse
Affiliation(s)
- Tiange Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Han Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Qichen Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Cordeiro AV, Silva VRR, Pauli JR, da Silva ASR, Cintra DE, Moura LP, Ropelle ER. The role of sphingosine-1-phosphate in skeletal muscle: Physiology, mechanisms, and clinical perspectives. J Cell Physiol 2018; 234:10047-10059. [PMID: 30523638 DOI: 10.1002/jcp.27870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Sphingolipids were discovered more than a century ago and were simply considered as a class of cell membrane lipids for a long time. However, after the discovery of several intracellular functions and their role in the control of many physiological and pathophysiological conditions, these molecules have gained much attention. For instance, the sphingosine-1-phosphate (S1P) is a circulating bioactive sphingolipid capable of triggering strong intracellular reactions through the family of S1P receptors (S1PRs) spread in several cell types and tissues. Recently, the role of S1P in the control of skeletal muscle metabolism, atrophy, regeneration, and metabolic disorders has been widely investigated. In this review, we summarized the knowledge of S1P and its effects in skeletal muscle metabolism, highlighting the role of S1P/S1PRs axis in skeletal muscle regeneration, fatigue, ceramide accumulation, and insulin resistance. Finally, we discussed the physical exercise role in S1P/S1PRs signaling in skeletal muscle cells, and how this nonpharmacological strategy may be prospective for future investigations due to its ability to increase S1P levels.
Collapse
Affiliation(s)
- André V Cordeiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vagner R R Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Leandro P Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Effects of dietary supplementation with milk fat globule membrane on the physical performance of community-dwelling Japanese adults: a randomised, double-blind, placebo-controlled trial. J Nutr Sci 2018; 7:e18. [PMID: 29721316 PMCID: PMC5921044 DOI: 10.1017/jns.2018.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/08/2018] [Accepted: 03/05/2018] [Indexed: 01/04/2023] Open
Abstract
We conducted a randomised, double-blind, placebo-controlled trial to elucidate the effects of dietary milk fat globule membrane (MFGM) on the physical performance of community-dwelling Japanese adults. For this 24-week study, 115 middle-aged subjects (range 50–70 years old) were invited, of whom 113 (seventy-two women, forty-one men) completed the trial. Participants were then divided into either the placebo control or MFGM group. Measurements of physical performance (without undertaking any mandatory exercise) examining muscle strength, agility and balance were tested every 6 weeks until 24 weeks. Analyses were performed using the intention-to-treat method for all participants. Although the effects of MFGM on muscle strength and agility were not significant, we noted that the parameter for balance (such as the ability to stand on one leg with eyes closed for longer durations) increased in the MFGM group (mean 10·1 (95 % CI 8·25, 12·4) s) compared with the placebo (mean 7·53 (95 % CI 6·11, 9·30) s) (P = 0·046). Similarly, application of the mixed-effect model for repeated measures under unstructured covariance also revealed that the effect of MFGM was significant when compared with the placebo (10·2 (95 % CI 8·33, 12·4) v. 7·61 (95 % CI 6·17, 9·30) s) (P = 0·045). In conclusion, we demonstrated that MFGM had an effect on the physical performance of community-dwelling Japanese adults despite mandatory exercise. However, studies using larger cohorts of individuals from different demographic backgrounds are required to further elucidate the mechanisms underlying these effects and to extend the application of MFGM.
Collapse
|
12
|
Li H, Xu W, Ma Y, Zhou S, Xiao R. Milk fat globule membrane protein promotes C 2C 12 cell proliferation through the PI3K/Akt signaling pathway. Int J Biol Macromol 2018; 114:1305-1314. [PMID: 29634969 DOI: 10.1016/j.ijbiomac.2018.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/25/2022]
Abstract
Milk fat globule membrane (MFGM) protein is known to have several health benefits, including an anti-sarcopenia effect; however, its mechanism is unclear. The aim of this study was to investigate the potential mechanism of action of the MFGM protein. The MFGM protein was extracted and separated into 4 fractions, and Fraction 2 (57% of total MFGM) demonstrated the greatest effect on C2C12 cell proliferation. Milk fat globule-EGF factor 8 (MFG-E8) accounted for 82.35% of the MFGM protein. The effects of whole Fraction 2 (100μg/mL, 200μg/mL and 300μg/mL) on cell proliferation and morphology were measured. Using qRT-PCR or a Western blot assay, several regulatory factors, e.g., PI3K P85α, p-pI3K p85α (Tyr 508), Akt, p-Akt (Ser 473), mTOR and p-mTOR (Ser 2448), were measured in cells incubated with 200μg/mL of Fraction 2 with or without wortmannin. The results demonstrated that Fraction 2 induced C2C12 cell proliferation in a dose-dependent manner, upregulated the mRNA expression of mTOR and p70S6K, and activated PI3K, Akt, mTOR and P70S6K phosphorylation; however, Fraction 2 inhibited FOXO3a and 4E-BP. The results demonstrate that the MFGM protein, predominantly MFG-E8, promotes cell proliferation through the PI3K/Akt/mTOR signaling pathway. This study elucidated the molecular mechanism of the MFGM protein, primarily MFG-E8, in promoting C2C12 cell proliferation via the PI3K/Akt/mTOR/P70S6K signal pathway.
Collapse
Affiliation(s)
- He Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Weili Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK.
| | - Ran Xiao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| |
Collapse
|
13
|
Rogers TS, Demmer E, Rivera N, Gertz ER, German JB, Smilowitz JT, Zivkovic AM, Van Loan MD. The role of a dairy fraction rich in milk fat globule membrane in the suppression of postprandial inflammatory markers and bone turnover in obese and overweight adults: an exploratory study. Nutr Metab (Lond) 2017; 14:36. [PMID: 28529534 PMCID: PMC5436451 DOI: 10.1186/s12986-017-0189-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Inflammation is associated with increased bone resorption; the role of inflammation in postprandial bone turnover has not been explored. Consumption of milk fat globule membrane (MFGM) reduces inflammation in animal models. This study aimed to measure postprandial changes in bone turnover after intake of high saturated fat test meals, with- and without the anti-inflammatory ingredient MFGM. METHODS Subjects (n = 36 adults) were obese (BMI 30-39.9 kg/m2) or overweight (BMI 25-29.9 kg/m2) with two traits of Metabolic Syndrome. Subjects consumed a different test meal on four occasions at random; blood draws were taken at baseline and 1, 3, and 6 h postprandial. Test meals included whipping cream (WC), WC + MFGM, palm oil (PO) and PO + MFGM. Biomarkers of bone turnover and inflammation were analyzed from all four time points. RESULTS Test meal (treatment) by time interactions were significant for bone resorption marker C-telopeptide of type 1 collagen (CTX) (p < 0.0001) and inflammatory marker interleukin 10 (IL-10) (p = 0.012). Significant differences in overall postprandial response among test meals were found for CTX and soluble intercellular adhesion molecule (sICAM), with the greatest overall postprandial suppression of CTX occurring in meals containing MFGM. However, test meal by MFGM interactions were non- significant for bone and inflammatory markers. Correlations between CTX and inflammatory markers were non-significant. CONCLUSION This exploratory analysis advances the study of postprandial suppression of bone turnover by demonstrating differing effects of high SFA meals that contained MFGM; however MFGM alone did not directly moderate the difference in postprandial CTX response among test meals in this analysis. These observations may be useful for identifying foods and ingredients which maximize the suppression of bone resorption, and for generating hypotheses to test in future studies examining the role of inflammation in postprandial bone turnover. TRIAL REGISTRATION Clinicaltrials.gov NCT01811329. Registered 11 March 2013.
Collapse
Affiliation(s)
- Tara S. Rogers
- Department of Nutrition, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
- Center for Musculoskeletal Health, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA 95817 USA
| | - Elieke Demmer
- Department of Nutrition, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Nancy Rivera
- Department of Nutrition, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Erik R. Gertz
- USDA, Agricultural Research Service, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616 USA
| | - J. Bruce German
- Foods for Health Institute, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
- Department of Food Science & Technology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Jennifer T. Smilowitz
- Foods for Health Institute, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
- Department of Food Science & Technology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
- Foods for Health Institute, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Marta D. Van Loan
- Department of Nutrition, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
- USDA, Agricultural Research Service, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616 USA
| |
Collapse
|
14
|
Dietary supplementation with bovine-derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr Metab (Lond) 2017; 14:9. [PMID: 28127382 PMCID: PMC5259894 DOI: 10.1186/s12986-017-0161-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background The milk fat globule membrane (MFGM) is primarily composed of polar phospho- and sphingolipids, which have established biological effects on neuroplasticity. The present study aimed to investigate the effect of dietary MFGM supplementation on the neuromuscular system during post-natal development. Methods Growing rats received dietary supplementation with bovine-derived MFGM mixtures consisting of complex milk lipids (CML), beta serum concentrate (BSC) or a complex milk lipid concentrate (CMLc) (which lacks MFGM proteins) from post-natal day 10 to day 70. Results Supplementation with MFGM mixtures enriched in polar lipids (BSC and CMLc, but not CML) increased the plasma phosphatidylcholine (PC) concentration, with no effect on plasma phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylserine (PS) or sphingomyelin (SM). In contrast, muscle PC was reduced in rats receiving supplementation with both BSC and CMLc, whereas muscle PI, PE, PS and SM remained unchanged. Rats receiving BSC and CMLc (but not CML) displayed a slow-to-fast muscle fibre type profile shift (MyHCI → MyHCIIa) that was associated with elevated expression of genes involved in myogenic differentiation (myogenic regulatory factors) and relatively fast fibre type specialisation (Myh2 and Nfatc4). Expression of neuromuscular development genes, including nerve cell markers, components of the synaptogenic agrin–LRP4 pathway and acetylcholine receptor subunits, was also increased in muscle of rats supplemented with BSC and CMLc (but not CML). Conclusions These findings demonstrate that dietary supplementation with bovine-derived MFGM mixtures enriched in polar lipids can promote neuromuscular development during post-natal growth in rats, leading to shifts in adult muscle phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0161-y) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Ishida Y, Kiyokawa Y, Asai T, Oku N. Ameliorating Effects of Sphingomyelin-Based Liposomes on Sarcopenia in Senescence-Accelerated Mice. Biol Pharm Bull 2017; 39:786-93. [PMID: 27150148 DOI: 10.1248/bpb.b15-00915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of orally administered sphingomyelin-based liposomes (SM-lipo) on muscle function were investigated in senescence-accelerated mice prone 1 (SAMP1) for the purpose of protection against or treatment of sarcopenia. SM-lipo were prepared by thin lipid-film hydration followed by extrusion. Their spherical shape was observed by transmission electron microscopy. The obtained liposomes were stable in gastric liquid and intestinal fluid models as well as in water. In in vitro tests liposomalization of sphingomyelin significantly increased its transport into human intestinal epithelial Caco-2 cells. In addition, SM-lipo upregulated the proliferation of murine C2C12 myoblasts compared with free sphingomyelin or phosphatidylcholine-based liposomes (PC-lipo). Finally, SM-lipo orally administered to SAMP1 for 10 weeks significantly increased quadriceps femoris weight and extended swimming time until fatigue compared with PC-lipo. In conclusion, these findings indicate that SM-lipo are well absorbed into the body and improve muscle weakness caused by senescence.
Collapse
Affiliation(s)
- Yuuki Ishida
- Department of Medical Biochemistry, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | |
Collapse
|
16
|
Verardo V, Gómez-Caravaca AM, Arráez-Román D, Hettinga K. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. Int J Mol Sci 2017; 18:ijms18010173. [PMID: 28106745 PMCID: PMC5297805 DOI: 10.3390/ijms18010173] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed.
Collapse
Affiliation(s)
- Vito Verardo
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Agricultural and Food Biotechnology (BITAL), Agrifood Campus of International Excellence, ceiA3, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Ana Maria Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, c/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park (PTS) Granada, Avda. del Conocimiento s/n, EdificioBioregión, 18007 Granada, Spain.
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, c/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park (PTS) Granada, Avda. del Conocimiento s/n, EdificioBioregión, 18007 Granada, Spain.
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
17
|
Norris GH, Jiang C, Ryan J, Porter CM, Blesso CN. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J Nutr Biochem 2016; 30:93-101. [DOI: 10.1016/j.jnutbio.2015.12.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/17/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
|
18
|
MINEGISHI Y, OTA N, SOGA S, SHIMOTOYODOME A. Effects of Nutritional Supplementation with Milk Fat Globule Membrane on Physical and Muscle Function in Healthy Adults Aged 60 and Over with Semiweekly Light Exercise: A Randomized Double-Blind, Placebo-Controlled Pilot Trial. J Nutr Sci Vitaminol (Tokyo) 2016; 62:409-415. [DOI: 10.3177/jnsv.62.409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Satoko SOGA
- Biological Science Research, Kao Corporation
| | | |
Collapse
|
19
|
Soga S, Ota N, Shimotoyodome A. Dietary milk fat globule membrane supplementation combined with regular exercise improves skeletal muscle strength in healthy adults: a randomized double-blind, placebo-controlled, crossover trial. Nutr J 2015; 14:85. [PMID: 26303780 PMCID: PMC4547417 DOI: 10.1186/s12937-015-0073-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/12/2015] [Indexed: 01/20/2023] Open
Abstract
Background Our previous studies demonstrated that dietary supplementation with milk fat globule membrane (MFGM) combined with habitual exercise improved muscle strength by stimulating neuromuscular development in mice. This study aimed to demonstrate the beneficial effects of dietary MFGM supplementation plus regular exercise on muscle strength and neuromuscular function in healthy humans. Methods The study was designed as a randomized, double-blind, placebo-controlled, crossover trial. Fourteen Japanese adults aged 31–48 years took daily MFGM (1 g) or placebo tablets during the 4-week study period and attended a training program twice a week. Physical function tests and surface electromyography (EMG) were conducted at baseline and at the end of the study period. Results The MFGM group had significantly greater leg extension strength than the placebo group after the 4-week study period. Surface EMG showed that the MFGM group had a significantly higher root mean square amplitude than the placebo group, which indicated that the MFGM group had higher motor unit activity. Conclusions Dietary MFGM supplementation combined with regular exercise improves skeletal muscle strength, which may be due to increased motor unit recruitment in healthy Japanese middle-aged adults.
Collapse
Affiliation(s)
- Satoko Soga
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Noriyasu Ota
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Akira Shimotoyodome
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| |
Collapse
|
20
|
Hari S, Ochiai R, Shioya Y, Katsuragi Y. Safety evaluation of the consumption of high dose milk fat globule membrane in healthy adults: a double-blind, randomized controlled trial with parallel group design. Biosci Biotechnol Biochem 2015; 79:1172-7. [DOI: 10.1080/09168451.2015.1012150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Consumption of milk fat globule membrane (MFGM) in combination with habitual exercise suppresses age-associated muscle loss. The effects of high dose MFGM, however, are not known. A double-blind, randomized controlled trial with parallel group design was conducted to evaluate the safety of consuming high dose MFGM tablets. The subjects were 32 healthy adult men and women. Subjects were given 5 times the recommended daily intake of the tablets containing 6.5 g of MFGM or whole milk powder for 4 weeks. Stomach discomfort and diarrhea were observed; however, these symptoms were transitory and slight and were not related to consumption of the test tablets. In addition, there were no clinically significant changes in anthropometric measurements or blood tests. Total degree of safety assessed by the physicians of all subjects was “safe.” These findings suggest that consumption of the tablets containing 6.5 g MFGM for 4 weeks is safe for healthy adults.
Collapse
Affiliation(s)
- Sayaka Hari
- Health Care Food Research Laboratories, Kao Corporation, Tokyo, Japan
| | - Ryuji Ochiai
- Health Care Food Research Laboratories, Kao Corporation, Tokyo, Japan
| | - Yasushi Shioya
- Health Care Food Research Laboratories, Kao Corporation, Tokyo, Japan
| | | |
Collapse
|
21
|
Ota N, Soga S, Hase T, Shimotoyodome A. Daily consumption of milk fat globule membrane plus habitual exercise improves physical performance in healthy middle-aged adults. SPRINGERPLUS 2015; 4:120. [PMID: 25810952 PMCID: PMC4369537 DOI: 10.1186/s40064-015-0896-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022]
Abstract
Our recent studies demonstrated that habitual exercise plus dietary supplementation with milk fat globule membrane (MFGM) improved endurance capacity and muscle function by stimulating neuromuscular development in mice. The aim of this study was to investigate the efficacy of dietary MFGM supplementation plus habitual exercise on the physical performance of middle-aged Japanese adults in a pilot randomized, double-blind, placebo-controlled trial. Forty-four subjects (men, n = 22; women, n = 22) were randomly assigned into two groups: one received placebo tablets (placebo group, n = 22 [men, n = 11; women, n = 11]), while the other received MFGM tablets (MFGM group, n = 22 [men, n = 11; women, n = 11]). The subjects ingested either MFGM (1 g/day) or placebo (1 g/day of whole milk powder) tablets every day for the 10-week study period and engaged in an exercise training program twice per week. A physical function test was performed at baseline and at 5 and 10 weeks. A significant group-by-time interaction was found for the side step test, muscle cross-sectional area (CSA), and muscle fiber conduction velocity (MFCV). In the placebo group, there were no significant intragroup differences. In the MFGM group, side step score and muscle CSA were significantly greater at 10 weeks compared to the baseline, and MFCV was significantly higher than that in the placebo group at 10 weeks. The changes in percentage of the side step score, muscle CSA, and MFCV in the MFGM group were significantly higher than in the placebo group at 10 weeks. These results suggest that daily MFGM ingestion combined with regular exercise might enhance physical performance such as agility in middle-aged adults.
Collapse
Affiliation(s)
- Noriyasu Ota
- Biological Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Satoko Soga
- Biological Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Tadashi Hase
- Biological Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Akira Shimotoyodome
- Biological Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| |
Collapse
|